
EECS 665 Compiler Construction 1

Concepts Introduced in Chapter 9

● introduction to compiler optimizations
● basic blocks and control flow graphs
● local optimizations
● global optimizations

EECS 665 Compiler Construction 2

Compiler Optimizations

● Compiler optimization is a misnomer.
● A code-improving transformation consists of a

sequence of changes that preserves the semantic
behavior (i.e. are safe).

● A code-improving transformation attempts to make
the program
– run faster

– take up less space

– consume less power

● An optimization phase consists of a sequence of
code-improving transformations of the same type.

EECS 665 Compiler Construction 3

Places for Potential Improvement

source
code

front
end

code
generator

intermediate
code

target
code

user can:
profile program

change algorithm
transform loops

compiler can:
improve loops
procedure calls

address calculations

compiler can:
use registers

select instructions
do peephole

transformations

EECS 665 Compiler Construction 4

Basic Blocks

● Basic block - a sequence of consecutive statements
with exactly 1 entry and 1 exit

● leaders are instructions that start a new basic block
– the first three-address instruction in the intermediate

code is a leader

– any instruction that is the target of a conditional or
unconditional jump is a leader

– any instruction that immediately follows a conditional or
unconditional jump is a leader

followed by Fig. 8.7, 8.9

EECS 665 Compiler Construction 5

Control Flow

● Control flow graph - a directed graph where the
nodes are basic blocks and block Bblock C iff C
can be executed immediately after B
– there is a jump from the end of B to beginning of C

– C follows B in program order

● B is a predecessor of C, and C is a successor of B
● Local optimizations - performed only within a basic

block
● Global optimizations - performed across basic

blocks

EECS 665 Compiler Construction 6

Example Control Flow Graph

EECS 665 Compiler Construction 7

Organization of the Code Optimizer

front
end

code
generator

code
optimizer

control-flow
analysis

data-flow
analysis

code
transforma-

tions

EECS 665 Compiler Construction 8

Types of Compiler Optimizations

● Function call
● Loop
● Memory access
● Control flow
● Data flow
● Machine specific

EECS 665 Compiler Construction 9

Function Call Optimizations

● Procedure integration or inlining
● Procedure specialization or cloning
● Tail recursion elimination
● Function memoization

EECS 665 Compiler Construction 10

Loop Optimizations

● Invariant code motion
● Strength reduction
● Induction variable elimination
● Unrolling
● Collapsing
● Fusion
● Software pipelining

EECS 665 Compiler Construction 16

Instruction Selection

● Accomplished by combining RTLs.
● Data dependences (links) are detected between

RTLs.
● Pairs or triples of RTLs are symbolically merged.
● Legality is checked via a machine description.

EECS 665 Compiler Construction 17

Combining a Pair of RTLs

26 r[1] = r[30]+i;
27 {26} r[2] = M[r[1]]; r[1]:

⇒
r[2] = M[r[30]+i]; r[1] = r[30]+i; r[1]:

or
r[2] = M[r[30]+i]; r[1]:

EECS 665 Compiler Construction 18

Combining Three RTLs

31 r[2] = M[r[3]];
32 {31} r[2] = r[2]+1;
33 {32} M[r[3]] = r[2]; r[2]:

⇒
M[r[3]] = M[r[3]]+1; r[2] = M[r[3]]+1; r[2]:

or
M[r[3]] = M[r[3]]+1; r[2]:

EECS 665 Compiler Construction 19

Cascading Instruction Selection

Actual example on PDP-11 (2 address machine)

38 r[36]=r[5];
39 {38} r[36]=r[36]+i;
40 r[37]=r[5];
41 {40} r[37]=r[37]+i;
42 {41} r[40]=M[r[37]]; r[37]:
43 r[41]=1;
44 {42} r[42]=r[40]; r[40]:
45 {43,44} r[42]=r[42]+r[41]; r[41]:
46 {45,39} M[r[36]]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 20

Cascading Instruction Selection (cont.)

38 r[36]=r[5];
39 {38} r[36]=r[36]+i;
40 r[37]=r[5];

42 {40} r[40]=M[r[37]+i]]; r[37]:
43 r[41]=1;
44 {42} r[42]=r[40]; r[40]:
45 {43,44} r[42]=r[42]+r[41]; r[41]:
46 {45,39} M[r[36]]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 21

Cascading Instruction Selection (cont.)

38 r[36]=r[5];
39 {38} r[36]=r[36]+i;

42 r[40]=M[r[5]+i]];
43 r[41]=1;
44 {42} r[42]=r[40]; r[40]:
45 {43,44} r[42]=r[42]+r[41]; r[41]:
46 {45,39} M[r[36]]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 22

Cascading Instruction Selection (cont.)

38 r[36]=r[5];
39 {38} r[36]=r[36]+i;

43 r[41]=1;
44 r[42]=M[r[5]+i]];
45 {43,44} r[42]=r[42]+r[41]; r[41]:
46 {45,39} M[r[36]]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 23

Cascading Instruction Selection (cont.)

38 r[36]=r[5];
39 {38} r[36]=r[36]+i;

44 r[42]=M[r[5]+i]];
45 {44} r[42]=r[42]+1;
46 {45,39} M[r[36]]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 24

Cascading Instruction Selection (cont.)

38 r[36]=r[5];

44 r[42]=M[r[5]+i]];
45 {44} r[42]=r[42]+1;
46 {45,38} M[r[36]+i]=r[42]; r[42]:r[36]:

EECS 665 Compiler Construction 25

Cascading Instruction Selection (cont.)

44 r[42]=M[r[5]+i]];
45 {44} r[42]=r[42]+1;
46 {45} M[r[5]+i]=r[42]; r[42]:

EECS 665 Compiler Construction 26

Cascading Instruction Selection (cont.)

M[r[5]+i]=M[r[5]+i]+1;

EECS 665 Compiler Construction 27

Example Sequence of Optimizations
for (sum=0, j = 0; j < n; j++)

sum = sum + a[j];

⇒ after instruction selection

M[r[13] + sum] = 0;
M[r[13] + j] = 0;
PC = L18;

L19
r[0] = M[r[13] + j] <<2;
M[r[13] + sum] = M[r[13] + sum] + M[r[0] + _a];
M[r[13] + j] = M[r[13] + j] + 1;

L18
IC = M[r[13] + j] ? M[_n];
PC = IC < 0 L19;

EECS 665 Compiler Construction 28

Example Sequence of Optimizations
(cont.)

⇒ after register allocation

r[2] = 0;
r[1] = 0;
PC = L18;

L19
r[0] = r[1] << 2;
r[2] = r[2] + M[r[0] + _a];
r[1] = r[1] + 1;

L18
IC = r[1] ? M[_n];
PC = IC < 0 L19;

EECS 665 Compiler Construction 29

Example Sequence of Optimizations
(cont.)

⇒ after code motion

r[2] = 0;
r[1] = 0;
r[4] = M[_n];
PC = L18

L19
r[0] = r[1] << 2;
r[2] = r[2] + M[r[0] + _a];
r[1] = r[1] + 1;

L18
IC = r[1] ? r[4];
PC = IC < 0 L19;

