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Chapter 2:  Operating-System Structures

● What are the services provided by an OS ?
● What are system calls ?
● What are some common categories of system calls ?
● What are the principles behind OS design and 

implementation ?
● What are common ways of structuring an OS ?
● How are VMs and OS related ?
● How is an OS installed ?
● How does an OS boot ?
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Operating System Services

● Operating-system services that are helpful to the user
● user interface – almost all operating systems have a user interface (UI)

● Command-Line (CLI)
● Graphics User Interface (GUI)
● Touch-Screen Interface

● program execution – load in memory and run a program
● end execution, either normally or abnormally (indicating error)

● I/O operations – allow interaction with I/O devices
● provide efficiency and protection 

● file-system manipulation – provide uniform access to mass storage
● create, delete, read, write files and directories
● search, list file Information
● permission management.
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Operating System Services (2)

● Operating-system services that are helpful to the user (cont...) 
● inter-process communication – exchange information among processes

● shared memory, POSIX shm_open()
● message passing, microkernel OS, RPC, CORBA, etc.

● error detection – awareness of possible errors
● CPU and memory hardware (pwer failure, memory fault)
● I/O device errors (printer out-of-paper, network connection failure)
● user program (segmentation fault, divide-by-zero)
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Operating System Services (3)

● Operating system services for efficient system operation
● resource allocation – providing access to shared resources in multiuser 

system
● CPU cycles, main memory, file storage, I/O devices

● Accounting – keep track of system resource usage
● for cost accounting
● accumulating usage statistics (for profiling, etc.)

● Protection and security – restrict access to computer resources
● ensure that all access to system resources is controlled (protection)
● protect system from outsiders (security) 
● user authentication, file access control, address space restrictions, 

etc.
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A View of Operating System Services
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System Calls
● Programming interface to the services provided by the OS

● request privileged service from the kernel
● typically written in a high-level system language (C or C++)

● Mostly accessed by programs via a high-level Application Program 
Interface (API) rather than direct system call use
● provides a simpler interface to the user than the system call interface
● reduces coupling between kernel and application, increases portability

● Common APIs 
● Win32 API for Windows
● POSIX API for POSIX-based systems (including virtually all versions of 

UNIX, Linux, and Mac OS X)

● Implementation
● software trap, register contains system call number
● syscall instruction for fast control transfer to the kernel
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Example of System Calls

● System call sequence to copy the contents of one file to 
another file
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API – System Call – OS Relationship
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Standard C Library Example

● C program invoking printf() library call, which calls write() 
system call
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System Call Parameter Passing

● Pass additional information to the system call.
● Three general methods used to pass parameters to the OS

● pass the parameters in registers
● simplest, fastest
●  what if more parameters than registers ?

● store arguments in a block on stack
●  pass stack location in a register

● parameters pushed on the stack by the program and popped off the stack 
by the operating system

● Pure register method is hardly ever used
● block and stack methods do not limit the number or length of parameters 

being passed
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Types of System Calls
● Process control

● create process, terminate process, get/set process attributes, wait event, 
signal event, allocate and free memory

● File management
● create, delete, open, close, read, write a file, get/set file attributes

● Device management
● request, release, read, write, reposition device, get/set device attributes

● Information maintenance
● get/set time/date, get/set process/file/device attributes

● Communications
● create/delete connection, send/receive messages

● Protection
● set/get file/device permissions, allow/deny system resources
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Examples of System Calls
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System Programs

● User-level utility programs shipped with the OS
● ease the job of program development and execution
● not part of the OS kernel

● System programs can be divided into:
● file manipulation 
● status information
● file modification
● programming language support
● program loading and execution
● communications
● application programs
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System Programs (2)

● File management
● mkdir, cp, rm, lpr, ls, ln, etc.

● Status information
● date, time, ds, df, top, ps, etc.

● File modification
● editors such as vi and emacs, find, grep, etc.

● Programming language support
● compilers, assemblers, debuggers, such as gcc, masm, gdb, perl, java, etc.

● Program loading and execution
● ld

● Communications
● ssh, mail, write, ftp
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Role of Linker and Loader
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OS Design and Implementation

● Design
● type of system – batch, time-shared, single/multi user, distributed, real-

time, embedded
● user goals – convenience, ease of use and learn, reliable, safe, fast
● system goals – ease of design, implementation, and maintainence, as 

well as flexible, reliable, error-free, and efficient

● Mechanism
● policy – what will be done? 
● mechanism – how to do it?

● Implementation
● higher-level language – easier, faster to write, compact, maintainable, 

easy to debug, portable
● assembly language – more efficient
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Operating System Structure

● Engineering an operating system
● modularized, maintainable, extensible, etc.

● Simple Structure
● Characteristics

● monolithic
● poor separation between interfaces and levels of functionality
● ill-suited design, difficult to maintain and extend

● Reasons
● growth beyond original scope and vision
● lack of necessary hardware features during initial design
● guided more by initial hardware constraints than by sound software 

engineering principles
● eg., MS-DOS, UNIX
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OS Structure - Monolithic

● MS-DOS layer structure:
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OS Structure - Monolithic

● Traditional UNIX system structure
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OS Structure - Layered

● Layered approach
● OS division into a number of layers (levels) 
● upper layers use functions and services provided by  lower-level layers
● Benefits

● more modular, extensible, and maintainable design
● achieves information hiding
● simple construction, debugging, and verification

● Drawbacks
● interdependencies make it difficult to cleanly separate functionality 

among layers
● eg., backing-store drivers and CPU scheduler

● less efficient than monolithic designs
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OS Structure - Layered

● Layered Operating System
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OS Structure - Microkernels

● Microkernel System Structure 
● moves as much functionality from the kernel into “user” space
● communicate between user modules using message passing
● Benefits

● easier to extend (user level drivers)
● easier to port to new architectures
● more reliable (less code is running in kernel mode)
● more secure

● Drawbacks
● no consensus regarding services that should remain in the kernel
● performance overhead of user space to kernel space communication
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Operating System Structure (7)

● Microkernel system structure
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OS Structure - Modules

● Modules
● uses object-oriented approach
● kernel provides core functionality, like communications, device drivers
● additional services are modules linked dynamically
● services talk directly over interfaces bypassing the kernel
● Benefits

● advantages of layered structure but with more flexible
● advantages of microkernel approach, without message passing 

overhead
● Drawbacks

● not as clean a design as the layered approach
● not as small a kernel as a microkernel
● but, achieves best of both worlds as far as possible



25

OS Structure - Modules

● Solaris modular approach
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OS Structure – Hybrid Systems

● Hybrid operating systems
● combine multiple approaches to address performance, security, usability

● Linux
● Monolithic, since OS is in a single address space
● Modular, since can be extended dynamically

● Windows
● Monolithic, but some microkernel aspects

● Hybrid OS – Android OS structure
● modified Linux kernel for process, memory, device driver management
● Runtime provided higher-level libraries and ART runtime
● Uses bionic, rather than glibc
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OS Structure – Hybrid Systems

● Example – Apple Mac OS X
● hybrid, layered
● Mach microkernel and BSD Unix, plus I/O kit, and dynamically loadable 

modules for kernel extensions

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD
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Virtual Machines

● Generally, exposes a virtual interface different from the 
physical real
● time sharing, multi-user OS as a virtual machine ?
● abstraction Vs. virtualization ?

● Traditionally, exposes an interface of some hardware system
● includes CPU, memory, disk, network, I/O devices, etc.
● interface need not be identical to the underlying hardware

● A virtualization layer, called hypervisor, takes over control of 
the host hardware resources
● creates the illusion that a process has its own computer system
● each guest provided with a (virtual) copy of underlying computer
● each guest process can then run another OS and application programs
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Virtual Machines (2)

   (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine
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Virtual Machines History and Benefits

● History
● introduced by IBM for their IBM 360/370 line of machines
● exposed an interface that was identical to the underlying machine
● ran the single-user, time-sharing CMS operating system on each VM

● Benefits
● ability to enable multiple execution environments (different operating 

systems) to share the same hardware
● application programs in different VMs isolated from each other

● provides protection; can make sharing and communication difficult
● useful for development, testing (particularly OS)
● testing cross-platform compatibility
● consolidation of many low-resource use systems onto fewer busier systems
● process virtual machines (Java) provide application portability
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VMware Architecture
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The Java Virtual Machine
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