
1

Chapter 2: Operating-System Structures

● What are the services provided by an OS ?
● What are system calls ?
● What are some common categories of system calls ?
● What are the principles behind OS design and

implementation ?
● What are common ways of structuring an OS ?
● How are VMs and OS related ?
● How is an OS installed ?
● How does an OS boot ?

2

Operating System Services

● Operating-system services that are helpful to the user
● user interface – almost all operating systems have a user interface (UI)

● Command-Line (CLI)
● Graphics User Interface (GUI)
● Touch-Screen Interface

● program execution – load in memory and run a program
● end execution, either normally or abnormally (indicating error)

● I/O operations – allow interaction with I/O devices
● provide efficiency and protection

● file-system manipulation – provide uniform access to mass storage
● create, delete, read, write files and directories
● search, list file Information
● permission management.

3

Operating System Services (2)

● Operating-system services that are helpful to the user (cont...)
● inter-process communication – exchange information among processes

● shared memory, POSIX shm_open()
● message passing, microkernel OS, RPC, CORBA, etc.

● error detection – awareness of possible errors
● CPU and memory hardware (pwer failure, memory fault)
● I/O device errors (printer out-of-paper, network connection failure)
● user program (segmentation fault, divide-by-zero)

4

Operating System Services (3)

● Operating system services for efficient system operation
● resource allocation – providing access to shared resources in multiuser

system
● CPU cycles, main memory, file storage, I/O devices

● Accounting – keep track of system resource usage
● for cost accounting
● accumulating usage statistics (for profiling, etc.)

● Protection and security – restrict access to computer resources
● ensure that all access to system resources is controlled (protection)
● protect system from outsiders (security)
● user authentication, file access control, address space restrictions,

etc.

5

A View of Operating System Services

6

System Calls
● Programming interface to the services provided by the OS

● request privileged service from the kernel
● typically written in a high-level system language (C or C++)

● Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use
● provides a simpler interface to the user than the system call interface
● reduces coupling between kernel and application, increases portability

● Common APIs
● Win32 API for Windows
● POSIX API for POSIX-based systems (including virtually all versions of

UNIX, Linux, and Mac OS X)

● Implementation
● software trap, register contains system call number
● syscall instruction for fast control transfer to the kernel

7

Example of System Calls

● System call sequence to copy the contents of one file to
another file

8

API – System Call – OS Relationship

9

Standard C Library Example

● C program invoking printf() library call, which calls write()
system call

10

System Call Parameter Passing

● Pass additional information to the system call.
● Three general methods used to pass parameters to the OS

● pass the parameters in registers
● simplest, fastest
● what if more parameters than registers ?

● store arguments in a block on stack
● pass stack location in a register

● parameters pushed on the stack by the program and popped off the stack
by the operating system

● Pure register method is hardly ever used
● block and stack methods do not limit the number or length of parameters

being passed

11

Types of System Calls
● Process control

● create process, terminate process, get/set process attributes, wait event,
signal event, allocate and free memory

● File management
● create, delete, open, close, read, write a file, get/set file attributes

● Device management
● request, release, read, write, reposition device, get/set device attributes

● Information maintenance
● get/set time/date, get/set process/file/device attributes

● Communications
● create/delete connection, send/receive messages

● Protection
● set/get file/device permissions, allow/deny system resources

12

Examples of System Calls

13

System Programs

● User-level utility programs shipped with the OS
● ease the job of program development and execution
● not part of the OS kernel

● System programs can be divided into:
● file manipulation
● status information
● file modification
● programming language support
● program loading and execution
● communications
● application programs

14

System Programs (2)

● File management
● mkdir, cp, rm, lpr, ls, ln, etc.

● Status information
● date, time, ds, df, top, ps, etc.

● File modification
● editors such as vi and emacs, find, grep, etc.

● Programming language support
● compilers, assemblers, debuggers, such as gcc, masm, gdb, perl, java, etc.

● Program loading and execution
● ld

● Communications
● ssh, mail, write, ftp

15

Role of Linker and Loader

Compiler

source program

assembly program

object code

Executable file

program in memory

library,
relocatable
object files

Assembler

Linker

Loader

other object
files

16

OS Design and Implementation

● Design
● type of system – batch, time-shared, single/multi user, distributed, real-

time, embedded
● user goals – convenience, ease of use and learn, reliable, safe, fast
● system goals – ease of design, implementation, and maintainence, as

well as flexible, reliable, error-free, and efficient

● Mechanism
● policy – what will be done?
● mechanism – how to do it?

● Implementation
● higher-level language – easier, faster to write, compact, maintainable,

easy to debug, portable
● assembly language – more efficient

17

Operating System Structure

● Engineering an operating system
● modularized, maintainable, extensible, etc.

● Simple Structure
● Characteristics

● monolithic
● poor separation between interfaces and levels of functionality
● ill-suited design, difficult to maintain and extend

● Reasons
● growth beyond original scope and vision
● lack of necessary hardware features during initial design
● guided more by initial hardware constraints than by sound software

engineering principles
● eg., MS-DOS, UNIX

18

OS Structure - Monolithic

● MS-DOS layer structure:

19

OS Structure - Monolithic

● Traditional UNIX system structure

20

OS Structure - Layered

● Layered approach
● OS division into a number of layers (levels)
● upper layers use functions and services provided by lower-level layers
● Benefits

● more modular, extensible, and maintainable design
● achieves information hiding
● simple construction, debugging, and verification

● Drawbacks
● interdependencies make it difficult to cleanly separate functionality

among layers
● eg., backing-store drivers and CPU scheduler

● less efficient than monolithic designs

21

OS Structure - Layered

● Layered Operating System

22

OS Structure - Microkernels

● Microkernel System Structure
● moves as much functionality from the kernel into “user” space
● communicate between user modules using message passing
● Benefits

● easier to extend (user level drivers)
● easier to port to new architectures
● more reliable (less code is running in kernel mode)
● more secure

● Drawbacks
● no consensus regarding services that should remain in the kernel
● performance overhead of user space to kernel space communication

23

Operating System Structure (7)

● Microkernel system structure

Application
Program

File
System

Device
Driver

Interprocess
Communication

memory
managment

CPU
scheduling

messagesmessages

microkernel

hardware

user
mode

kernel
mode

24

OS Structure - Modules

● Modules
● uses object-oriented approach
● kernel provides core functionality, like communications, device drivers
● additional services are modules linked dynamically
● services talk directly over interfaces bypassing the kernel
● Benefits

● advantages of layered structure but with more flexible
● advantages of microkernel approach, without message passing

overhead
● Drawbacks

● not as clean a design as the layered approach
● not as small a kernel as a microkernel
● but, achieves best of both worlds as far as possible

25

OS Structure - Modules

● Solaris modular approach

26

OS Structure – Hybrid Systems

● Hybrid operating systems
● combine multiple approaches to address performance, security, usability

● Linux
● Monolithic, since OS is in a single address space
● Modular, since can be extended dynamically

● Windows
● Monolithic, but some microkernel aspects

● Hybrid OS – Android OS structure
● modified Linux kernel for process, memory, device driver management
● Runtime provided higher-level libraries and ART runtime
● Uses bionic, rather than glibc

27

OS Structure – Hybrid Systems

● Example – Apple Mac OS X
● hybrid, layered
● Mach microkernel and BSD Unix, plus I/O kit, and dynamically loadable

modules for kernel extensions

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

28

Virtual Machines

● Generally, exposes a virtual interface different from the
physical real
● time sharing, multi-user OS as a virtual machine ?
● abstraction Vs. virtualization ?

● Traditionally, exposes an interface of some hardware system
● includes CPU, memory, disk, network, I/O devices, etc.
● interface need not be identical to the underlying hardware

● A virtualization layer, called hypervisor, takes over control of
the host hardware resources
● creates the illusion that a process has its own computer system
● each guest provided with a (virtual) copy of underlying computer
● each guest process can then run another OS and application programs

29

Virtual Machines (2)

 (a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

30

Virtual Machines History and Benefits

● History
● introduced by IBM for their IBM 360/370 line of machines
● exposed an interface that was identical to the underlying machine
● ran the single-user, time-sharing CMS operating system on each VM

● Benefits
● ability to enable multiple execution environments (different operating

systems) to share the same hardware
● application programs in different VMs isolated from each other

● provides protection; can make sharing and communication difficult
● useful for development, testing (particularly OS)
● testing cross-platform compatibility
● consolidation of many low-resource use systems onto fewer busier systems
● process virtual machines (Java) provide application portability

31

VMware Architecture

32

The Java Virtual Machine

	Slide 1
	Operating System Services
	Operating System Services (Cont)
	Slide 4
	A View of Operating System Services
	System Calls
	Example of System Calls
	API – System Call – OS Relationship
	Standard C Library Example
	System Call Parameter Passing
	Types of System Calls
	Slide 12
	System Programs
	Slide 14
	Slide 15
	Operating System Design and Implementation
	Slide 17
	MS-DOS Layer Structure
	Traditional UNIX System Structure
	Layered Approach
	Layered Operating System
	Microkernel System Structure
	Slide 23
	Modules
	Solaris Modular Approach
	Slide 26
	Slide 27
	Virtual Machines
	Virtual Machines (Cont)
	Virtual Machines History and Benefits
	VMware Architecture
	The Java Virtual Machine

