
1

Chapter 3: Processes

 What is a process ?
 What is process scheduling ?
 What are the common operations on processes ?
 How to conduct process-level communication ?
 How to conduct client-server communication ?

2

Process Concept

 Process
 is a program in execution
 is an instance of a computer program being sequentially executed
 process execution must progress in sequential fashion
 process is also called a job

 Program Vs. process
 program is a passive entity; process is an active entity
 program only contains text; process is associated with code, data, PC,

heap, stack, registers, and other information
 program becomes a process when an executable file is loaded into

memory
 same program executed multiple times will correspond to different

process each time

3

Process in Memory

4

Process State

 During execution, the process may be in one of the following
states

 new – process is being created
 running – instructions are being executed
 waiting – waiting for some event to occur
 ready – waiting to be assigned a processor
 terminated – process has finished execution

 Each processor can only run one process at a instant.

5

Diagram of Process State

6

Process Control Block (PCB)

 PCB is representation of a process in an operating system.
 maintains process-specific information
 necessary for scheduling

 Information associated with each process
 process state
 program counter
 CPU registers
 CPU scheduling information
 memory-management information
 accounting information
 I/O status information

7

Process Control Block (PCB) (2)

8

CPU Switch From Process to Process

9

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

10

Process Scheduling

 Process scheduling selects the process to run on a CPU
 maximizes CPU utilization in a multiprogramming OS
 provides illusion of each process owning the system in a time-shared

OS

 Terminology used in OS schedulers
 job queue – set of all processes in the system
 ready queue – set of all processes residing in main memory, ready and

waiting to execute
 device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

11

Ready Queue And Various I/O Device Queues

12

Representation of Process Scheduling

13

Schedulers

 Systems with a possibility of huge deluge of job requests may
use multiple schedulers.

 Long-term scheduler (or job scheduler)
 selects processes to be brought into the ready queue
 controls the degree of multiprogramming
 controls the mix of active CPU-bound and I/O-bound processes
 invoked infrequently
 can afford more time to make selection decision

 Short-term scheduler (or CPU scheduler)
 selects the process to be executed next and allocates CPU
 invoked frequently
 necessary to limit scheduling overhead

14

Context Switch

 A context switch is the process of storing and restoring the
state (context) of the CPU such that multiple processes can
share a single CPU resource

 for time-shared or multiprogramming environments
 context of a process represented in the PCB
 context switch involves a state save of the current process, and a state

restore of the process being resumed next
 switch from user to kernel mode or vice-versa is a mode switch

 Context-switch time is overhead
 the system does no useful work while switching
 overhead depends on hardware support

 Sun UltraSPARC provides multiple banks of registers
 Intel x86 processors also provide some support

15

Process Creation

 Any process can create other processes during its execution
 operating systems have a primordial process
 creating process called parent process
 new process called child process
 processes identified and managed via a process identifier (pid)

 Resource sharing options
 parent and children share all resources
 children share subset of parent’s resources
 parent and child share no resources

 Execution options
 parent and children execute concurrently
 parent waits until children terminate

16

Process Creation (Cont)

 Address space options
 child duplicate of parent
 child has a program loaded into it

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’ memory

space with a new program

17

Process Creation Example on Unix

int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

18

Process Creation

 Parent waiting for child process to finish

19

Process Termination

 Process terminates after executing last statement
 can explicitly invoke the exit system call to terminate
 OS implicitly calls exit
 child can pass return status to parent (via wait)
 process resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)
 child has exceeded allocated resources
 task assigned to child is no longer required
 if parent is exiting

 some operating system do not allow child to continue if its parent
terminates

 all children terminated - cascading termination

20

Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 different
types of processes:

 Browser process manages user interface, disk and network I/O
 Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
 Plug-in process for each type of plug-in

21

Interprocess Communication

 Communication within the same system.
 Processes may need to co-operate for several reasons

 information sharing
 computation speedup
 modularity
 convenience

 Cooperating process can affect or be affected by other
processes

 typically, by sharing data

 Cooperating processes need interprocess communication
(IPC)

22

Producer-Consumer Problem

 Common paradigm for co-operating processes
 producer process produces information
 consumer process consumes the produced information

 Processes need synchronization
 consumer cannot use information before it is produced by the producer

 Abstraction models
 unbounded-buffer places no practical limit on the size of the buffer
 bounded-buffer assumes that there is a fixed buffer size

23

Models of IPC

 Shared memory
 share a region of memory between co-operating processes
 read or write to the shared memory region
 fast communication
 convenient communication

 Message passing
 exchange messages (send and receive)
 typically, messages do not overwrite each other

 no need for conflict resolution
 typically, used for sending smaller amounts of data
 slower communication
 easy to implement (even for inter-computer communication)

24

Models of IPC (2)

message passing shared memory

25

Message Passing
 Another mechanism for interprocess communication

 can be employed for client-server communication

 Message passing facility provides at least two operations:
 send (message) and receive (message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation issues
 how are links established?
 can a link be associated with more than two processes?
 how many links between every pair of communicating processes?
 what is the capacity of a link?
 fixed or variable sized message ?
 is the link unidirectional or bi-directional?

26

Message Passing – Naming

 Direct communication
 processes must name each other explicitly:

 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 properties of communication link
 links are established automatically
 a link is associated with exactly one pair of communicating

processes
 between each pair there exists exactly one link

 disadvantage
 process identifiers are hard-coded

27

Message Passing – Naming (2)

 Indirect communication
 messages are directed and received from mailboxes (also referred to

as ports)
 send (A, message) – send a message to mailbox A
 receive (A, message) – receive a message from mailbox A

 each mailbox has a unique id
 processes can communicate only if they share a mailbox
 properties of communication link

 link may be associated with many processes
 each pair of processes may share several communication links
 link may be unidirectional or bi-directional
 multiple receivers may need synchronization

 mailbox can be held in the process address space or in the kernel

28

Message Passing (3)
 Synchronization

 message passing may be either blocking (synchronous) or

non-blocking (asynchronous)
 blocking send has the sender block until the message is received
 blocking receive has the receiver block until a message is available
 non-blocking send has the sender send the message and continue
 non-blocking receive has the receiver receive a valid message or null

 Buffering – queue of messages attached to the link
 zero capacity – 0 messages

 Sender must wait for receiver
 bounded capacity – finite length of n messages

 Sender must wait if link full
 unbounded capacity – infinite length

 Sender never waits

29

Interprocess Communication in Unix

 Provides multiple modes of IPC
 pipes
 FIFOs (names pipes)
 message queues
 shared memory
 sockets

30

Pipes
 Most basic form of IPC on all Unix systems

 also provides a useful command-line interface

 Conduit for two processes to communicate
 ordinary pipes require parent-child relationship between communicating

processes

31

Pipes
 Issues to be addressed

 is communication unidirectional or bidirectional ?
 Unix pipes only allow unidirectional communication

 should communication processes be related ?
 anonymous pipes can only be constructed between parent-child

 can pipes communicate over a network
 processes must be controlled by the same OS

 Pipes exist only until the processes exist
 pre-mature process exit may cause data loss

 Data can only be collected in FIFO order

32

Simple Example Using Pipes
#include <unistd.h>
#include <stdio.h>
#include <string.h>

main()
{
 char *s, buf[1024];
 int fds[2];
 s = "EECS 678 Spring 2009\n";

 /* open a pipe. fd[0] is opened for reading,
 and fd[1] for writing.*/
 pipe(fds);

 /* write to the write-end of the pipe */
 write(fds[1], s, strlen(s));

 /* This can be read from the other end of the pipe */
 read(fds[0], buf, strlen(s));

 printf("fds[0]=%d, fds[1]=%d\n", fds[0], fds[1]);
 write(1, buf, strlen(s));
}

33

IPC Example Using Pipes
main()
{
 char *s, buf[1024];
 int fds[2];
 s = "EECS 678 Spring 2009. Pipe program 2\n";

 /* create a pipe */
 pipe(fds);

 /* create a new process using fork */
 if (fork() == 0) {

 /* child process. All file descriptors, including
 pipe are inherited, and copied.*/
 write(fds[1], s, strlen(s));
 exit(0);
 }

 /* parent process */
 read(fds[0], buf, strlen(s));
 write(1, buf, strlen(s));
}

34

Pipes Used for Process Synchronization
main()
{
 char *s, buf[1024];
 int fds[2];
 s = "EECS 678 Spring 2009. Pipe program 3\n";

 /* create a pipe */
 pipe(fds);

 if (fork() == 0) {

 /* child process. */
 printf("Child line 1\n");
 read(fds[0], s, strlen(s));
 printf("Child line 2\n");
 } else {

 /* parent process */
 printf("Parent line 1\n");
 write(fds[1], buf, strlen(s));
 printf("Parent line 2\n");
 }
}

35

Pipes Used in Unix Shells

 Pipes commonly used in most Unix shells
 output of one command is input to the next command
 example: /bin/ps -ef | /bin/more

 How does the shell realize this command?
 create a process to run ps -ef
 create a process to run more
 create a pipe from ps -ef to more
 the standard output of the process to run ps -ef is redirected to a pipe

streaming to the process to run more
 the standard input of the process to run more is redirected to be the pipe

from the process running ps -ef

36

FIFO (Named Pipes)

 Pipe with a name !
 More powerful than anonymous pipes

 no parent-sibling relationship required
 allow bidirectional communication
 FIFOs exists even after creating process is terminated

 Characteristics of FIFOs
 appear as typical files
 only allow half-duplex communication
 communicating process must reside on the same machine

37

Producer Consumer Example with FIFO

 Producer Code:
main()
{
 char str[MAX_LENGTH];
 int num, fd;

 mkfifo(FIFO_NAME, 0666); // create FIFO file

 printf("waiting for readers...");
 fd = open(FIFO_NAME, O_WRONLY); // open FIFO for writing
 printf("got a reader !\n");

 printf("Enter text to write in the FIFO file: ");
 fgets(str, MAX_LENGTH, stdin);
 while(!(feof(stdin))){
 if ((num = write(fd, str, strlen(str))) == -1)
 perror("write");
 else
 printf("producer: wrote %d bytes\n", num);
 fgets(str, MAX_LENGTH, stdin);
 }
}

38

Producer Consumer Example with FIFO (2)

 Consumer code:
main()
{
 char str[MAX_LENGTH];
 int num, fd;

 mkfifo(FIFO_NAME, 0666); // make fifo, if not already present

 printf("waiting for writers...");
 fd = open(FIFO_NAME, O_RDONLY); // open fifo for reading
 printf("got a writer !\n");

 do{
 if((num = read(fd, str, MAX_LENGTH)) == -1)
 perror("read");
 else{
 str[num] = '\0';
 printf("consumer: read %d bytes\n", num);
 printf("%s", str);
 }
 }while(num > 0);
}

39

Message Passing in Unix

 Linux uses indirect communication or mailboxes.
 Queues can be associated with multiple processes

 synchronization may be required

 Communicating processes can use any number of queues
 each queue is identified by a unique identifier

 Capacity of the link is system initialized
 can be over-ridden by the user

 Messages are of a fixed size
 specified by the buffer length

 Each communicating process can send and receive from the
same queue.

40

Message Queue Example
int main()
{
 /* identifier for the message queue */
 int queue_id;
 /* send and receive message buffers */
 struct msg_buf send_buf, recv_buf;

 /* create a message queue */
 queue_id = msgget(0, S_IRUSR|S_IWUSR|IPC_CREAT);

 /* send a message to the queue */
 send_buf.mtype = 1;
 strcpy(send_buf.buffer, "EECS 678 Class");
 msgsnd(queue_id, (struct msg_buf *)&send_buf, sizeof(send_buf));

 /* get the message from the queue */
 msgrcv(queue_id, (struct msg_buf *)&recv_buf, sizeof(recv_buf), 0, 0);
 printf("%s\n", recv_buf.buffer);

 /* delete the message queue, and deallocate resources */
 msgctl(queue_id, IPC_RMID, NULL);

 return 0;
}

struct msg_buf{
 long mtype;
 char buffer[1000];
}

41

Message Queues Example (2)

 Message passing in Linux is done via message queues.
 msgget – create a new message queue

 return existing queue identifier if it exists

 msgsnd – send a message to the queue
 each message should be in a buffer like,

struct msg_buf {

 long mtype;

 char mtext[1]; }

 nonblocking, unless no space in the queue

 msgrcv – receive message from the queue
 mtype can be used to get specific messages

 msgctl – perform control operations specified by cmd
 second argument, we use it to terminate queue

42

Memory Sharing in Unix

 Multiple processes share single chunk of memory.
 Implementation principles

 uniquely naming the shared segment
 system-wide or anonymous name

 specifying access permissions
 read, write, execute

 dealing with race conditions
 atomic, synchronized access

 Most thread-level communication is via shared memory.

43

Shared Memory Example

int main()
{
 int segment_id;
 char *shared_memory;
 const int size = 4096;

 /* allocate and attach a shared memory segment */
 segment_id = shmget(IPC_PRIVATE, size, S_IRUSR|S_IWUSR);
 shared_memory = (char *) shmat(segment_id, NULL, 0);

 /* write and print a message to the shared memory segment */
 sprintf(shared_memory, "EECS 678 Spring 2009 Class");
 printf("%s\n", shared_memory);

 /* detach and remove the shared memory segment */
 shmdt(shared_memory);
 shmctl(segment_id, IPC_RMID, NULL);

 return 0;
}

44

Shared Memory Example (2)

 shmget – create shared memory segment
 IPC_PRIVATE specifies creation of new memory segment of size

rounded to the system page size
 access permissions as for normal file access
 returns identifier of shared memory segment

 shmat – attach shared memory segment
 must for every process wanting access to the region
 segment identified by segment_id
 system chooses a suitable attach address

 shmctl – performs the control operation specified by cmd
 command is IPC_RMID to remove shared segment

 see program shared_memory2.c
 Read man pages!

45

Unix Domain Sockets
 Sockets

 can be defined as an end-point for communications
 two-way communication pipe
 can be used in a variety of domains, including Internet

 Unix Domain Sockets
 communication between processes on the same Unix system
 special file in the file system

 Mostly used for client-server programming
 client sending requests for information, processing
 server waiting for user requests
 server performing the requested activity and sending updates to client

 Socket communication modes
 connection-based, TCP
 connection-less, UDP

46

Unix Domain Sockets – System Calls

 socket () - create the Unix socket
 int socket(int domain, int type, int protocol);

 domain is AF_UNIX

 bind () - assign a name to a socket
 int bind(int sockfd, const struct sockaddr *my_addr,

socklen_t addrlen);

 my_addr is addrlen bytes long

 listen () - listen to incoming client requests
 int listen(int sockfd, int backlog);

 backlog specifies the queue limit for incoming connctions

47

Unix Domain Sockets – System Calls (2)

 accept () - create a new connected socket
 int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

 only for connection-based protocols

 recv () - receive messages from socket
 ssize_t recv(int s, void *buf, size_t len, int flags);

 message placed in buf

 close () - close the socket connection

48

Socket Example – Echo Server

 see socket_server.c
 see socket_client.c

49

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Remote Method Invocation (Java)

50

Remote Procedure Calls
 Remote procedure call (RPC) abstracts subroutine calls

between processes on networked systems
 subroutine executes in another address space
 uses message passing communication model
 messages are well-structured
 RPC daemon on the server handles the remote calls

 Client-side stub
 proxy for the actual procedure on the server
 responsible for locating correct port on the server
 responsible for marshalling the procedure parameters

 Server-side stub
 receives the message; unpacks the marshalled parameters
 performs the procedure on the server, returns result

51

Marshalling Parameters

52

Execution of RPC

53

Remote Method Invocation

 Remote Method Invocation (RMI)
 Java mechanism (API) to perform RPCs
 Java remote method protocol (JRMP) only allows calls from one JVM to

another JVM
 CORBA is used to support communication with non-JVM code
 client obtains reference to remote object, and invokes methods on them

	Slide 1
	Process Concept
	Process in Memory
	Slide 4
	Diagram of Process State
	Process Control Block (PCB)
	Slide 7
	CPU Switch From Process to Process
	Slide 9
	Process Scheduling Queues
	Ready Queue And Various I/O Device Queues
	Representation of Process Scheduling
	Schedulers
	Context Switch
	Process Creation
	Process Creation (Cont)
	C Program Forking Separate Process
	Slide 18
	Process Termination
	Slide 20
	Interprocess Communication
	Producer-Consumer Problem
	Slide 23
	Communications Models
	Interprocess Communication – Message Passing
	Direct Communication
	Indirect Communication
	Synchronization
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Examples of IPC Systems - POSIX
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Communications in Client-Server Systems
	Remote Procedure Calls
	Marshalling Parameters
	Execution of RPC
	Remote Method Invocation

