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Chapter 3:  Processes

 What is a process ?
 What is process scheduling ?
 What are the common operations on processes ?
 How to conduct process-level communication ?
 How to conduct client-server communication ?
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Process Concept

 Process
 is a program in execution
 is an instance of a computer program being sequentially executed
 process execution must progress in sequential fashion
 process is also called a job

 Program Vs. process
 program is a passive entity; process is an active entity
 program only contains text; process is associated with code, data, PC, 

heap, stack, registers, and other information
 program becomes a process when an executable file is loaded into 

memory
 same program executed multiple times will correspond to different 

process each time
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Process in Memory
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Process State

 During execution, the process may be in one of the following 
states

 new – process is being created
 running – instructions are being executed
 waiting – waiting for some event to occur
 ready – waiting to be assigned a processor
 terminated – process has finished execution

 Each processor can only run one process at a instant.
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Diagram of Process State
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Process Control Block (PCB)

 PCB is representation of a process in an operating system.
 maintains process-specific information
 necessary for scheduling

 Information associated with each process
 process state
 program counter
 CPU registers
 CPU scheduling information
 memory-management information
 accounting information
 I/O status information
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Process Control Block (PCB) (2)
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CPU Switch From Process to Process
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Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */ 
long state; /* state of the process */ 
unsigned int time_slice /* scheduling information */ 
struct task_struct *parent; /* this process’s parent */ 
struct list_head children; /* this process’s children */ 
struct files_struct *files; /* list of open files */ 
struct mm_struct *mm; /* address space of this process */
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Process Scheduling

 Process scheduling selects the process to run on a CPU
 maximizes CPU utilization in a multiprogramming OS
 provides illusion of each process owning the system in a time-shared 

OS

 Terminology used in OS schedulers
 job queue – set of all processes in the system
 ready queue – set of all processes residing in main memory, ready and 

waiting to execute
 device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling
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Schedulers

 Systems with a possibility of huge deluge of job requests may 
use multiple schedulers.

 Long-term scheduler (or job scheduler)
 selects processes to be brought into the ready queue
 controls the degree of multiprogramming
 controls the mix of active CPU-bound and I/O-bound processes
 invoked infrequently
 can afford more time to make selection decision

 Short-term scheduler (or CPU scheduler) 
 selects the process to be executed next and allocates CPU
 invoked frequently
 necessary to limit scheduling overhead
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Context Switch

 A context switch is the process of storing and restoring the 
state (context) of the CPU such that multiple processes can 
share a single CPU resource

 for time-shared or multiprogramming environments
 context of a process represented in the PCB
 context switch involves a state save of the current process, and a state 

restore of the process being resumed next
 switch from user to kernel mode or vice-versa is a mode switch

 Context-switch time is overhead
 the system does no useful work while switching
 overhead depends on hardware support

 Sun UltraSPARC provides multiple banks of registers
 Intel x86 processors also provide some support
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Process Creation

 Any process can create other processes during its execution
 operating systems have a primordial process
 creating process called parent process
 new process called child process
 processes identified and managed via a process identifier (pid)

 Resource sharing options
 parent and children share all resources
 children share subset of parent’s resources
 parent and child share no resources

 Execution options
 parent and children execute concurrently
 parent waits until children terminate
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Process Creation (Cont)

 Address space options
 child duplicate of parent
 child has a program loaded into it

 UNIX examples
 fork system call creates new process
 exec system call used after a fork to replace the process’ memory 

space with a new program
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Process Creation Example on Unix

int main()
{
pid_t  pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}
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Process Creation

 Parent waiting for child process to finish
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Process Termination

 Process terminates after executing last statement 
 can explicitly invoke the exit system call to terminate
 OS implicitly calls exit
 child can pass return status to parent (via wait)
 process resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)
 child has exceeded allocated resources
 task assigned to child is no longer required
 if parent is exiting

 some operating system do not allow child to continue if its parent 
terminates

 all children terminated - cascading termination
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Multiprocess Architecture – Chrome Browser

 Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 different 
types of processes: 

 Browser process manages user interface, disk and network I/O
 Renderer process renders web pages, deals with HTML, 

Javascript. A new renderer created for each website opened
 Runs in sandbox restricting disk and network I/O, minimizing 

effect of security exploits
 Plug-in process for each type of plug-in
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Interprocess Communication

 Communication within the same system.
 Processes may need to co-operate for several reasons

 information sharing
 computation speedup
 modularity
 convenience

 Cooperating process can affect or be affected by other 
processes

 typically, by sharing data

 Cooperating processes need interprocess communication 
(IPC)
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Producer-Consumer Problem

 Common paradigm for co-operating processes
 producer process produces information 
 consumer process consumes the produced information 

 Processes need synchronization
 consumer cannot use information before it is produced by the producer

 Abstraction models
 unbounded-buffer places no practical limit on the size of the buffer
 bounded-buffer assumes that there is a fixed buffer size
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Models of IPC

 Shared memory
 share a region of memory between co-operating processes
 read or write to the shared memory region
 fast communication
 convenient communication

 Message passing
 exchange messages (send and receive)
 typically, messages do not overwrite each other

 no need for conflict resolution
 typically, used for sending smaller amounts of data
 slower communication
 easy to implement (even for inter-computer communication)
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Models of IPC (2)

message passing shared memory
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Message Passing
 Another mechanism for interprocess communication

 can be employed for client-server communication

 Message passing facility provides at least two operations:
 send (message) and receive (message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them
 exchange messages via send/receive

 Implementation issues
 how are links established?
 can a link be associated with more than two processes?
 how many links between every pair of communicating processes?
 what is the capacity of a link?
 fixed or variable sized message ?
 is the link unidirectional or bi-directional?
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Message Passing – Naming

 Direct communication
 processes must name each other explicitly:

 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 properties of communication link
 links are established automatically
 a link is associated with exactly one pair of communicating 

processes
 between each pair there exists exactly one link

 disadvantage
 process identifiers are hard-coded
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Message Passing – Naming (2)

 Indirect communication
 messages are directed and received from mailboxes (also referred to 

as ports)
 send (A, message) – send a message to mailbox A
 receive (A, message) – receive a message from mailbox A

 each mailbox has a unique id
 processes can communicate only if they share a mailbox
 properties of communication link

 link may be associated with many processes
 each pair of processes may share several communication links
 link may be unidirectional or bi-directional
 multiple receivers may need synchronization

 mailbox can be held in the process address space or in the kernel
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Message Passing (3)
 Synchronization

 message passing may be either blocking (synchronous) or 

non-blocking (asynchronous)
 blocking send has the sender block until the message is received
 blocking receive has the receiver block until a message is available
  non-blocking send has the sender send the message and continue
 non-blocking receive has the receiver receive a valid message or null

 Buffering – queue of messages attached to the link
 zero capacity – 0 messages

 Sender must wait for receiver
 bounded capacity – finite length of n messages

 Sender must wait if link full 
 unbounded capacity – infinite length 

 Sender never waits
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Interprocess Communication in Unix

 Provides multiple modes of IPC
 pipes
 FIFOs (names pipes)
 message queues
 shared memory
 sockets
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Pipes
 Most basic form of IPC on all Unix systems

 also provides a useful command-line interface

 Conduit for two processes to communicate
 ordinary pipes require parent-child relationship between communicating 

processes
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Pipes
 Issues to be addressed

 is communication unidirectional or bidirectional ?
 Unix pipes only allow unidirectional communication

 should communication processes be related ?
 anonymous pipes can only be constructed between parent-child

 can pipes communicate over a network
 processes must be controlled by the same OS

 Pipes exist only until the processes exist
 pre-mature process exit may cause data loss

 Data can only be collected in FIFO order
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Simple Example Using Pipes
#include <unistd.h>
#include <stdio.h>
#include <string.h>
              
main()         
{              
  char *s, buf[1024];
  int fds[2];        
  s  = "EECS 678 Spring 2009\n";
                                  
  /* open a pipe. fd[0] is opened for reading, 
     and fd[1] for writing.*/
  pipe(fds);             
                          
  /* write to the write-end of the pipe */ 
  write(fds[1], s, strlen(s));     
                                  
  /* This can be read from the other end of the pipe */ 
  read(fds[0], buf, strlen(s));  
                              
  printf("fds[0]=%d, fds[1]=%d\n", fds[0], fds[1]);
  write(1, buf, strlen(s));  
}
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IPC Example Using Pipes
main()
{                       
  char *s, buf[1024]; 
  int fds[2];          
  s  = "EECS 678 Spring 2009. Pipe program 2\n";
                     
  /* create a pipe */  
  pipe(fds);              
                    
  /* create a new process using fork */ 
  if (fork() == 0) {            
                                  
    /* child process. All file descriptors, including 
       pipe are inherited, and copied.*/
    write(fds[1], s, strlen(s));  
    exit(0);               
  }         
                   
  /* parent process */     
  read(fds[0], buf, strlen(s)); 
  write(1, buf, strlen(s)); 
} 
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Pipes Used for Process Synchronization
main()              
{               
  char *s, buf[1024];         
  int fds[2];                   
  s  = "EECS 678 Spring 2009. Pipe program 3\n";
                          
  /* create a pipe */    
  pipe(fds);          
                    
  if (fork() == 0) { 
                     
    /* child process. */    
    printf("Child line 1\n"); 
    read(fds[0], s, strlen(s));
    printf("Child line 2\n"); 
  } else {  
              
    /* parent process */
    printf("Parent line 1\n"); 
     write(fds[1], buf, strlen(s));
    printf("Parent line 2\n"); 
  }                                
} 
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Pipes Used in Unix Shells

 Pipes commonly used in most Unix shells
 output of one command is input to the next command
 example: /bin/ps -ef | /bin/more

 How does the shell realize this command?
 create a process to run ps -ef
 create a process to run more
 create a pipe from ps -ef to more
 the standard output of the process to run ps -ef is redirected to a pipe 

streaming to the process to run more
 the standard input of the process to run more is redirected to be the pipe 

from the process running ps -ef
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FIFO (Named Pipes)

 Pipe with a name !
 More powerful than anonymous pipes

 no parent-sibling relationship required
 allow bidirectional communication
 FIFOs exists even after creating process is terminated

 Characteristics of FIFOs
 appear as typical files
 only allow half-duplex communication
 communicating process must reside on the same machine
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Producer Consumer Example with FIFO

 Producer Code:
main()           
{               
  char str[MAX_LENGTH]; 
  int num, fd;   
                  
  mkfifo(FIFO_NAME, 0666); // create FIFO file
        
  printf("waiting for readers...");
  fd = open(FIFO_NAME, O_WRONLY); // open FIFO for writing
  printf("got a reader !\n");
                         
  printf("Enter text to write in the FIFO file: ");
  fgets(str, MAX_LENGTH, stdin);
  while(!(feof(stdin))){  
    if ((num = write(fd, str, strlen(str))) == -1)
      perror("write");   
    else                 
      printf("producer: wrote %d bytes\n", num);
    fgets(str, MAX_LENGTH, stdin);
  }                          
}
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Producer Consumer Example with FIFO (2)

 Consumer code:
main()   
{      
  char str[MAX_LENGTH];
  int num, fd;
              
  mkfifo(FIFO_NAME, 0666); // make fifo, if not already present
              
  printf("waiting for writers...");
  fd = open(FIFO_NAME, O_RDONLY); // open fifo for reading
  printf("got a writer !\n");

  do{                           
    if((num = read(fd, str, MAX_LENGTH)) == -1)
      perror("read");       
    else{             
      str[num] = '\0';    
      printf("consumer: read %d bytes\n", num); 
      printf("%s", str);       
    }                  
  }while(num > 0); 
}
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Message Passing in Unix

 Linux uses indirect communication or mailboxes.
 Queues can be associated with multiple processes

 synchronization may be required

 Communicating processes can use any number of queues
 each queue is identified by a unique identifier

 Capacity of the link is system initialized
 can be over-ridden by the user

 Messages are of a fixed size
 specified by the buffer length

 Each communicating process can send and receive from the 
same queue.
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Message Queue Example
int main()
{
  /* identifier for the message queue */
  int queue_id;
  /* send and receive message buffers */
  struct msg_buf send_buf, recv_buf;

  /* create a message queue */
  queue_id = msgget(0, S_IRUSR|S_IWUSR|IPC_CREAT);
 
  /* send a message to the queue */
  send_buf.mtype = 1;
  strcpy(send_buf.buffer, "EECS 678 Class");
  msgsnd(queue_id, (struct msg_buf *)&send_buf, sizeof(send_buf)); 
 
  /* get the message from the queue */ 
  msgrcv(queue_id, (struct msg_buf *)&recv_buf, sizeof(recv_buf), 0, 0); 
  printf("%s\n", recv_buf.buffer); 
                     
  /* delete the message queue, and deallocate resources */ 
  msgctl(queue_id, IPC_RMID, NULL);
                                                      
  return 0; 
} 

struct msg_buf{
   long mtype;
   char buffer[1000];
}
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Message Queues Example (2)

 Message passing in Linux is done via message queues.
 msgget – create a new message queue

 return existing queue identifier if it exists

 msgsnd – send a message to the queue
 each message should be in a buffer like,

struct msg_buf {

    long mtype;

    char mtext[1]; }

 nonblocking, unless no space in the queue

 msgrcv – receive message from the queue
 mtype can be used to get specific messages

 msgctl – perform control operations specified by cmd
 second argument, we use it to terminate queue
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Memory Sharing in Unix

 Multiple processes share single chunk of memory.
 Implementation principles

 uniquely naming the shared segment
 system-wide or anonymous name

 specifying access permissions
 read, write, execute

 dealing with race conditions
 atomic, synchronized access

 Most thread-level communication is via shared memory.



43

Shared Memory Example

int main()
{                                                                             
  int segment_id;
  char *shared_memory;
  const int size = 4096;
   
  /* allocate and attach a shared memory segment */ 
  segment_id = shmget(IPC_PRIVATE, size, S_IRUSR|S_IWUSR);
  shared_memory = (char *) shmat(segment_id, NULL, 0);
                                                                                             
  /* write and print a message to the shared memory segment */
  sprintf(shared_memory, "EECS 678 Spring 2009 Class");
  printf("%s\n", shared_memory);
                                                                                             
  /* detach and remove the shared memory segment */
  shmdt(shared_memory);
  shmctl(segment_id, IPC_RMID, NULL); 
                                                                                             
  return 0;
}
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Shared Memory Example (2)

 shmget – create shared memory segment
 IPC_PRIVATE specifies creation of new memory segment of size  

rounded to the system page size
 access permissions as for normal file access
 returns identifier of shared memory segment

 shmat – attach shared memory segment 
 must for every process wanting access to the region
 segment identified by segment_id
 system chooses a suitable attach address

 shmctl – performs the control operation specified by cmd
 command is IPC_RMID to remove shared segment

 see program shared_memory2.c
 Read man pages!
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Unix Domain Sockets
 Sockets 

 can be defined as an end-point for communications
 two-way communication pipe
 can be used in a variety of domains, including Internet

 Unix Domain Sockets
 communication between processes on the same Unix system
 special file in the file system

 Mostly used for client-server programming
 client sending requests for information, processing
 server waiting for user requests
 server performing the requested activity and sending updates to client

 Socket communication modes
 connection-based, TCP
 connection-less, UDP
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Unix Domain Sockets – System Calls

 socket ( ) - create the Unix socket
 int socket(int domain, int type, int protocol);

 domain is AF_UNIX

 bind ( ) - assign a name to a socket
 int bind(int sockfd, const struct sockaddr *my_addr, 

socklen_t addrlen);

 my_addr is addrlen bytes long

 listen ( ) - listen to incoming client requests
 int listen(int sockfd, int backlog);

 backlog specifies the queue limit for incoming connctions
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Unix Domain Sockets – System Calls (2)

 accept ( ) - create a new connected socket
 int accept(int sockfd, struct sockaddr *addr,  

socklen_t *addrlen);

 only for connection-based protocols

 recv ( ) - receive messages from socket
 ssize_t recv(int s, void *buf, size_t len, int flags);

 message placed in buf

 close ( ) - close the socket connection
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Socket Example – Echo Server

 see socket_server.c
 see socket_client.c
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Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Remote Method Invocation (Java)
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Remote Procedure Calls
 Remote procedure call (RPC) abstracts subroutine calls 

between processes on networked systems
 subroutine executes in another address space
 uses message passing communication model
 messages are well-structured
 RPC daemon on the server handles the remote calls

 Client-side stub
 proxy for the actual procedure on the server
 responsible for locating correct port on the server
 responsible for marshalling the procedure parameters

 Server-side stub
 receives the message; unpacks the marshalled parameters
 performs the procedure on the server, returns result
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Marshalling Parameters
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Execution of RPC
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Remote Method Invocation

 Remote Method Invocation (RMI) 
 Java mechanism (API) to perform RPCs
 Java remote method protocol (JRMP) only allows calls from one JVM to 

another JVM
 CORBA is used to support communication with non-JVM code
 client obtains reference to remote object, and invokes methods on them
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