
Chapter 4: Threads – Outline

 What are threads ? How do they compare with processes ?
 Why are threads important ?
 What are the common multithreading models ?
 What are the common multithreading libraries ?
 Discussion on threading issues.
 Examples of threads in contemporary OSes.

Process Overview

 The basic unit of CPU utilization is a process.
 To run a program (a sequence of instructions), create a

process.
 Process properties

 fork() → exec() can be used to start new program execution
 processes are well protected from each other
 context-switching between processes is fairly expensive
 inter-process communication used for information sharing and co-

ordination between processes
 shared memory
 message passing

Is the Process Abstraction Always
Suitable ?

 Consider characteristics for a game software
 different code sequences for different game objects

 soldiers, cities, airplanes, cannons, user-controlled heroes, etc.
 each object is more or less independent

 Problems
 single monolithic process may not utilize resources optimally

 can create a process for each object
 action of an object depends on game state

 sharing and co-ordination of information necessary
 IPC is expensive

 number of objects proceed simultaneously
 may involve lots of context switches
 process context switches are expensive

Is the Process Abstraction Always
Suitable ? (2)

 Ability to run multiple sequences of code (threads of control) for
different object
 individual process only offers one thread of control

 Way for threads of control to share data effectively
 processes NOT designed to do this

 Protection between threads of control not very important
 all in one application, anyway !
 process is an over-kill

 Switching between threads of control must be efficient
 context switching involves a lot of overhead

 Different threads of control may share most information
 processes duplicate entire address space

Threads to the Rescue

 Threads are designed to achieve all the above requirements !
 do as little as possible to allow execution of a thread of control

 Thread are known as a lightweight process
 only the necessary context information is re-generated

 thread-context: PC, registers, stack, other misc. info
 process-context: also includes data and code regions

 threads are executed within a process
 code and data shared among different threads
 reduced communication overhead

 smaller context
 faster context switching

 a single address space for all threads in a process
 reduced inter-thread protection

Thread Basics

 Thread – a lightweight process
 have their own independent flow of control
 share process resources with other sibling threads
 exist within the context space of the same process

 Threads shared data
 process instructions
 most data
 open files (descriptors)
 signals and signal handlers
 current working directory
 user and group id

 Threads specific data
 thread id
 registers, stack pointer
 thread-specific data

(stack of activation records)
 signal mask
 scheduling properties
 return value

Single and Multithreaded Process

source: https://computing.llnl.gov/tutorials/pthreads/

Thread Benefits

 Responsiveness
 for an interactive user, if part of the application is blocked

 Resource Sharing
 easier, via memory sharing
 be aware of synchronization issues

 Economy
 sharing reduces creation, context-switching, and space overhead

 Scalability
 can exploit computational resources of a multicore CPU

Thread Programming In Linux

 Threads can be created using the Pthreads library
 IEEE POSIX C language thread programming interface
 may be provided either as user-level or kernel-level

 Pthreads API
 Thread management – functions to create, destroy, detach, join, set/query

 thread attributes
 Mutexes – functions to enforce synchronization. Create, destroy, lock,

unlock mutexes
 Condition variables – functions to manage thread communication. Create,

 destroy, wait and signal based on specified variable
 values

Pthreads Example
#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by all threads */
void runner(void param); /* thread function prototype */

int main (int argc, char *argv[])
{
 pthread_t tid; /* thread identifier */
 pthread_attr_t attr /* set of thread attributes */

 if(atoi(argv[1]) < 0) {
 fprintf(stderr, “%d must be >=0\n”, atoi(argv[1]));
 return -1;
 }
 /* get the default thread attributes */
 pthread_attr_init(&attr);
 /* create the thread */
 pthread_create(&tid, &attr, runner, argv[1]);
 /* wait for the thread to exit */
 pthread_join(tid, NULL);
 fprintf(stdout, “sum = %d\n”, sum);
}

Pthreads Example (2)
.... (cont. from previous page...)

/* The thread will begin control in this function */
void *runner (void *param)
{
 int i, upper = atoi(param);
 sum = 0;

 for(i=1 ; i<=upper ; i++)
 sum += i;

 pthread_exit(0);
}

Pthread Example – API Calls

 pthread_attr_init – initialize the thread attributes object
 int pthread_attr_init(pthread_attr_t *attr);

 defines the attributes of the thread created

 pthread_create – create a new thread
 int pthread_create(pthread_t *restrict thread, const

pthread_attr_t *restrict attr, void
*(*start_routine)(void*), void *restrict arg);

 upon success, a new thread id is returned in thread

 pthread_join – wait for thread to exit
 int pthread_join(pthread_t thread, void **value_ptr);

 calling process blocks until thread exits

 pthread_exit – terminate the calling thread
 void pthread_exit(void *value_ptr);

 make return value available to the joining thread

User Vs. Kernel Level Threads

 User-level threads – manage threads in user code
 advantages – efficient and flexible in space, speed, switching, and

scheduling
 disadvantages – one thread blocked on I/O can block all threads,

difficult to automatically take advantage of SMP
 examples of thread libraries – POSIX Pthreads, Windows threads, Java

Threads, GNU portable Threads

 Kernel-level threads – kernel manages the threads
 Advantages – removes disadvantages of user-level threads
 Disadvantages – greater overhead due to kernel involvement
 Examples – provided by almost all GP OS

 Windows, Solaris, Linux, Mac OS, etc.

Multithreading Models

 Relationships between user and kernel threads
 Many-to-One
 One-to-One
 Many-to-Many

Many–to–One Multithreading Model

 Many user-level threads mapped to single kernel thread
 examples – Solaris Green Threads, GNU Portable Threads

One–to–One Multithreading Model

 Each user-level thread maps to kernel thread
 examples – Windows NT/XP/2000, Linux, Solaris 9 and later

Many–to–Many Multithreading Model

 m user level threads mapped to n kernel threads
 operating system can create a sufficient number of kernel threads
 examples – Solaris prior to v9, Windows NT/2000 ThreadFiber package

Two-level Multithreading Model

 Similar to M:M, except that it also allows a user thread to be
bound to kernel thread
 examples – IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

Threading Issues

 Semantics of fork() and exec() system calls
 Thread cancellation of target thread
 Signal handling
 Implicit Threading
 Thread-specific data
 Scheduler activations

Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads ?
 some systems provide two versions of fork()

 How about exec() ?
 most systems maintain the semantics of exec()

 Observations
 exec() called immediately after fork

 duplicating all threads is unnecessary
 exec() not called after fork

 new process should duplicate all threads

Thread Cancellation

 Terminating a thread before it has finished
 Asynchronous cancellation

 terminates the target thread immediately
 allocated resources may not all be freed easily
 status of shared data may remain ill-defined

 Deferred cancellation
 target thread terminates itself
 orderly cancellation can be easily achieved
 failure to check cancellation status may cause issues

Signal Handling

 Signals are used in UNIX systems to notify a process that a
particular event has occurred

 A signal handler is used to process signals
 OS may deliver the signal to the appropriate process
 OS or process handles the signal

 Types of signals
 synchronous – generated by some event in the process
 asynchronous – generated by an event outside the process

 Where to deliver a signal in multithreaded programs ?
 deliver the signal to the thread to which the signal applies
 deliver the signal to every thread in the process
 deliver the signal to certain threads in the process
 assign a specific thread to receive all signals for the process

Implicit Threading

 Writing correct multi-threaded programs is more difficult for
programmers
 use compilers and run-time libraries to create and manage threads

automatically

 Some example methods include
 Thread pools
 OpenMP
 Grand central dispatch, MS Thread building blocks (TBB),

java.util.concurrent package

Thread Pools

 Concerns with multithreaded applications
 continuously creating and destroying threads is expensive
 overshooting the bound on concurrently active threads

 Thread Pools
 create a number of threads in a pool where they await work
 number of threads can be proportional to the number of processors

 Advantages
 faster to service a request with an existing thread than create a new

thread every time
 allows the number of threads in the application(s) to be bound to the

size of the pool

OpenMP

 Compiler directives and an
API for C, C++, FORTRAN

 Supports parallel
programming in shared-
memory environments

 User identifies parallel region
 Create as many threads as

there are cores
#pragma omp parallel

 Run for loop in parallel
#pragma omp parallel for

for(i=0 ; i<N ; i++)

 c[i] = a[i] + b[i];

Linux Thread Implementation

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the

parent task (process)

Windows XP Thread Implementation

 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area
are known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

Windows XP Threads

Multicore Processors

 Multiple processing cores on a single chip.
 Reasons for a shift to multicore processors

 power wall
 limits to frequency scaling
 transistor scaling still a reality

 Multicore programming Vs. multicomputer programming
 same-chip communication is faster
 memory sharing is easier and faster

Single Core Vs. Multicore Execution

Single core execution

Multiple core execution

Challenges for Multicore Programming

 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

	Chapter 4: Threads
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	User Threads
	Multithreading Models
	Many-to-One
	One-to-One
	Many-to-Many Model
	Two-level Model
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Slide 23
	Thread Pools
	Slide 25
	Slide 26
	Slide 27
	Windows XP Threads
	Slide 29
	Concurrent Execution on a Single-core System
	Multicore Programming

