
Chapter 4: Threads – Outline

 What are threads ? How do they compare with processes ?
 Why are threads important ?
 What are the common multithreading models ?
 What are the common multithreading libraries ?
 Discussion on threading issues.
 Examples of threads in contemporary OSes.



Process Overview

 The basic unit of CPU utilization is a process.
 To run a program (a sequence of instructions), create a 

process.
 Process properties

 fork() → exec() can be used to start new program execution
 processes are well protected from each other
 context-switching between processes is fairly expensive
 inter-process communication used for information sharing and co-

ordination between processes
 shared memory
 message passing



Is the Process Abstraction Always 
Suitable ?

 Consider characteristics for a game software
 different code sequences for different game objects

 soldiers, cities, airplanes, cannons, user-controlled heroes, etc.
 each object is more or less independent

 Problems
 single monolithic process may not utilize resources optimally

 can create a process for each object
 action of an object depends on game state

 sharing and co-ordination of information necessary
 IPC is expensive

 number of objects proceed simultaneously
 may involve lots of context switches
 process context switches are expensive



Is the Process Abstraction Always 
Suitable ? (2)

 Ability to run multiple sequences of code (threads of control) for 
different object
 individual process only offers one thread of control

 Way for threads of control to share data effectively
 processes NOT designed to do this

 Protection between threads of control not very important
 all in one application, anyway !
 process is an over-kill

 Switching between threads of control must be efficient
 context switching involves a lot of overhead

 Different threads of control may share most information
 processes duplicate entire address space



Threads to the Rescue

 Threads are designed to achieve all the above requirements !
 do as little as possible to allow execution of a thread of control

 Thread are known as a lightweight process
 only the necessary context information is re-generated

 thread-context: PC, registers, stack, other misc. info
 process-context: also includes data and code regions

 threads are executed within a process
 code and data shared among different threads
 reduced communication overhead

 smaller context
 faster context switching

 a single address space for all threads in a process
 reduced inter-thread protection



Thread Basics

 Thread – a lightweight process
 have their own independent flow of control
 share process resources with other sibling threads
 exist within the context space of the same process

 Threads shared data
 process instructions
 most data
 open files (descriptors)
 signals and signal handlers
 current working directory
 user and group id

 Threads specific data
 thread id
 registers, stack pointer
 thread-specific data

(stack of activation records)
 signal mask
 scheduling properties
 return value



Single and Multithreaded Process

source: https://computing.llnl.gov/tutorials/pthreads/



Thread Benefits

 Responsiveness
 for an interactive user, if part of the application is blocked

 Resource Sharing
 easier, via memory sharing
 be aware of synchronization issues

 Economy
 sharing reduces creation, context-switching, and space overhead

 Scalability
 can exploit computational resources of a multicore CPU



Thread Programming In Linux

 Threads can be created using the Pthreads library
 IEEE POSIX C language thread programming interface
 may be provided either as user-level or kernel-level

 Pthreads API
 Thread management – functions to create, destroy, detach, join, set/query 

      thread attributes
 Mutexes – functions to enforce synchronization. Create, destroy, lock, 

unlock mutexes
 Condition variables – functions to manage thread communication. Create, 

   destroy, wait and signal based on specified variable 
   values



Pthreads Example
#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by all threads */
void runner(void param); /* thread function prototype */

int main (int argc, char *argv[])
{
    pthread_t tid; /* thread identifier */
    pthread_attr_t attr /* set of thread attributes */

    if(atoi(argv[1]) < 0) {
        fprintf(stderr, “%d must be >=0\n”, atoi(argv[1]));
        return -1;
    }
    /* get the default thread attributes */
    pthread_attr_init(&attr);
    /* create the thread */
    pthread_create(&tid, &attr, runner, argv[1]);
    /* wait for the thread to exit */
    pthread_join(tid, NULL);
    fprintf(stdout, “sum = %d\n”, sum);
}



Pthreads Example (2)
.... (cont. from previous page...)

/* The thread will begin control in this function */
void *runner (void  *param)
{
    int i, upper = atoi(param);
    sum = 0;

    for(i=1 ; i<=upper ; i++)
        sum += i;

    pthread_exit(0);
}



Pthread Example – API Calls

 pthread_attr_init – initialize the thread attributes object
 int pthread_attr_init(pthread_attr_t *attr);

 defines the attributes of the thread created

 pthread_create – create a new thread
 int pthread_create(pthread_t *restrict thread, const 

pthread_attr_t *restrict attr,  void 
*(*start_routine)(void*), void *restrict arg);

 upon success, a new thread id is returned in thread

 pthread_join – wait for thread to exit
 int pthread_join(pthread_t thread, void **value_ptr);

 calling process blocks until thread exits

 pthread_exit – terminate the calling thread
 void pthread_exit(void *value_ptr);

 make return value available to the joining thread



User Vs. Kernel Level Threads

 User-level threads – manage threads in user code
 advantages – efficient and flexible in space, speed, switching, and 

scheduling
 disadvantages – one thread blocked on I/O can block all threads, 

difficult to automatically take advantage of SMP
 examples of thread libraries – POSIX Pthreads, Windows threads, Java 

Threads, GNU portable Threads

 Kernel-level threads – kernel manages the threads
 Advantages – removes disadvantages of user-level threads
 Disadvantages – greater overhead due to kernel involvement
 Examples – provided by almost all GP OS

 Windows, Solaris, Linux, Mac OS, etc.



Multithreading Models

 Relationships between user and kernel threads
 Many-to-One
 One-to-One
 Many-to-Many



Many–to–One Multithreading Model

 Many user-level threads mapped to single kernel thread
 examples – Solaris Green Threads, GNU Portable Threads



One–to–One Multithreading Model

 Each user-level thread maps to kernel thread
 examples – Windows NT/XP/2000, Linux, Solaris 9 and later



Many–to–Many Multithreading Model

 m user level threads mapped to n kernel threads
 operating system can create a sufficient number of kernel threads
 examples – Solaris prior to v9, Windows NT/2000 ThreadFiber package



Two-level Multithreading Model

 Similar to M:M, except that it also allows a user thread to be 
bound to kernel thread
 examples – IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier



Threading Issues

 Semantics of fork() and exec() system calls
 Thread cancellation of target thread
 Signal handling
 Implicit Threading
 Thread-specific data
 Scheduler activations



Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads ?
 some systems provide two versions of fork()

 How about exec() ?
 most systems maintain the semantics of exec()

 Observations
 exec() called immediately after fork

 duplicating all threads is unnecessary
 exec() not called after fork

 new process should duplicate all threads



Thread Cancellation

 Terminating a thread before it has finished
 Asynchronous cancellation 

 terminates the target thread immediately
 allocated resources may not all be freed easily
 status of shared data may remain ill-defined

 Deferred cancellation 
 target thread terminates itself
 orderly cancellation can be easily achieved
 failure to check cancellation status may cause issues



Signal Handling

 Signals are used in UNIX systems to notify a process that a 
particular event has occurred

 A signal handler is used to process signals
 OS may deliver the signal to the appropriate process
 OS or process handles the signal

 Types of signals
 synchronous – generated by some event in the process
 asynchronous – generated by an event outside the process

 Where to deliver a signal in multithreaded programs ?
 deliver the signal to the thread to which the signal applies
 deliver the signal to every thread in the process
 deliver the signal to certain threads in the process
 assign a specific thread to receive all signals for the process



Implicit Threading

 Writing correct multi-threaded programs is more difficult for 
programmers
 use compilers and run-time libraries to create and manage threads 

automatically

 Some example methods include
 Thread pools
 OpenMP
 Grand central dispatch, MS Thread building blocks (TBB), 

java.util.concurrent package



Thread Pools

 Concerns with multithreaded applications
 continuously creating and destroying threads is expensive
 overshooting  the bound on concurrently active threads

 Thread Pools
 create a number of threads in a pool where they await work
 number of threads can be proportional to the number of processors

 Advantages
 faster to service a request with an existing thread than create a new 

thread every time
 allows the number of threads in the application(s) to be bound to the 

size of the pool



OpenMP

 Compiler directives and an 
API for C, C++, FORTRAN

 Supports parallel 
programming in shared-
memory environments

 User identifies parallel region
 Create as many threads as 

there are cores
#pragma omp parallel

 Run for loop in parallel
#pragma omp parallel for

for(i=0 ; i<N ; i++)

    c[i] = a[i] + b[i];



Linux Thread Implementation

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the 

parent task (process)



Windows XP Thread Implementation

 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area 
are known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)



Windows XP Threads



Multicore Processors

 Multiple processing cores on a single chip.
 Reasons for a shift to multicore processors

 power wall
 limits to frequency scaling
 transistor scaling still a reality

 Multicore programming Vs. multicomputer programming
 same-chip communication is faster
 memory sharing is easier and faster



Single Core Vs. Multicore Execution

Single core execution

Multiple core execution



Challenges for Multicore Programming

 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging
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