
Chapter 4: Threads – Outline

 What are threads ? How do they compare with processes ?
 Why are threads important ?
 What are the common multithreading models ?
 What are the common multithreading libraries ?
 Discussion on threading issues.
 Examples of threads in contemporary OSes.

Process Overview

 The basic unit of CPU utilization is a process.
 To run a program (a sequence of instructions), create a

process.
 Process properties

 fork() → exec() can be used to start new program execution
 processes are well protected from each other
 context-switching between processes is fairly expensive
 inter-process communication used for information sharing and co-

ordination between processes
 shared memory
 message passing

Is the Process Abstraction Always
Suitable ?

 Consider characteristics for a game software
 different code sequences for different game objects

 soldiers, cities, airplanes, cannons, user-controlled heroes, etc.
 each object is more or less independent

 Problems
 single monolithic process may not utilize resources optimally

 can create a process for each object
 action of an object depends on game state

 sharing and co-ordination of information necessary
 IPC is expensive

 number of objects proceed simultaneously
 may involve lots of context switches
 process context switches are expensive

Is the Process Abstraction Always
Suitable ? (2)

 Ability to run multiple sequences of code (threads of control) for
different object
 individual process only offers one thread of control

 Way for threads of control to share data effectively
 processes NOT designed to do this

 Protection between threads of control not very important
 all in one application, anyway !
 process is an over-kill

 Switching between threads of control must be efficient
 context switching involves a lot of overhead

 Different threads of control may share most information
 processes duplicate entire address space

Threads to the Rescue

 Threads are designed to achieve all the above requirements !
 do as little as possible to allow execution of a thread of control

 Thread are known as a lightweight process
 only the necessary context information is re-generated

 thread-context: PC, registers, stack, other misc. info
 process-context: also includes data and code regions

 threads are executed within a process
 code and data shared among different threads
 reduced communication overhead

 smaller context
 faster context switching

 a single address space for all threads in a process
 reduced inter-thread protection

Thread Basics

 Thread – a lightweight process
 have their own independent flow of control
 share process resources with other sibling threads
 exist within the context space of the same process

 Threads shared data
 process instructions
 most data
 open files (descriptors)
 signals and signal handlers
 current working directory
 user and group id

 Threads specific data
 thread id
 registers, stack pointer
 thread-specific data

(stack of activation records)
 signal mask
 scheduling properties
 return value

Single and Multithreaded Process

source: https://computing.llnl.gov/tutorials/pthreads/

Thread Benefits

 Responsiveness
 for an interactive user, if part of the application is blocked

 Resource Sharing
 easier, via memory sharing
 be aware of synchronization issues

 Economy
 sharing reduces creation, context-switching, and space overhead

 Scalability
 can exploit computational resources of a multicore CPU

Thread Programming In Linux

 Threads can be created using the Pthreads library
 IEEE POSIX C language thread programming interface
 may be provided either as user-level or kernel-level

 Pthreads API
 Thread management – functions to create, destroy, detach, join, set/query

 thread attributes
 Mutexes – functions to enforce synchronization. Create, destroy, lock,

unlock mutexes
 Condition variables – functions to manage thread communication. Create,

 destroy, wait and signal based on specified variable
 values

Pthreads Example
#include <pthread.h>
#include <stdio.h>

int sum; /* data shared by all threads */
void runner(void param); /* thread function prototype */

int main (int argc, char *argv[])
{
 pthread_t tid; /* thread identifier */
 pthread_attr_t attr /* set of thread attributes */

 if(atoi(argv[1]) < 0) {
 fprintf(stderr, “%d must be >=0\n”, atoi(argv[1]));
 return -1;
 }
 /* get the default thread attributes */
 pthread_attr_init(&attr);
 /* create the thread */
 pthread_create(&tid, &attr, runner, argv[1]);
 /* wait for the thread to exit */
 pthread_join(tid, NULL);
 fprintf(stdout, “sum = %d\n”, sum);
}

Pthreads Example (2)
.... (cont. from previous page...)

/* The thread will begin control in this function */
void *runner (void *param)
{
 int i, upper = atoi(param);
 sum = 0;

 for(i=1 ; i<=upper ; i++)
 sum += i;

 pthread_exit(0);
}

Pthread Example – API Calls

 pthread_attr_init – initialize the thread attributes object
 int pthread_attr_init(pthread_attr_t *attr);

 defines the attributes of the thread created

 pthread_create – create a new thread
 int pthread_create(pthread_t *restrict thread, const

pthread_attr_t *restrict attr, void
*(*start_routine)(void*), void *restrict arg);

 upon success, a new thread id is returned in thread

 pthread_join – wait for thread to exit
 int pthread_join(pthread_t thread, void **value_ptr);

 calling process blocks until thread exits

 pthread_exit – terminate the calling thread
 void pthread_exit(void *value_ptr);

 make return value available to the joining thread

User Vs. Kernel Level Threads

 User-level threads – manage threads in user code
 advantages – efficient and flexible in space, speed, switching, and

scheduling
 disadvantages – one thread blocked on I/O can block all threads,

difficult to automatically take advantage of SMP
 examples of thread libraries – POSIX Pthreads, Windows threads, Java

Threads, GNU portable Threads

 Kernel-level threads – kernel manages the threads
 Advantages – removes disadvantages of user-level threads
 Disadvantages – greater overhead due to kernel involvement
 Examples – provided by almost all GP OS

 Windows, Solaris, Linux, Mac OS, etc.

Multithreading Models

 Relationships between user and kernel threads
 Many-to-One
 One-to-One
 Many-to-Many

Many–to–One Multithreading Model

 Many user-level threads mapped to single kernel thread
 examples – Solaris Green Threads, GNU Portable Threads

One–to–One Multithreading Model

 Each user-level thread maps to kernel thread
 examples – Windows NT/XP/2000, Linux, Solaris 9 and later

Many–to–Many Multithreading Model

 m user level threads mapped to n kernel threads
 operating system can create a sufficient number of kernel threads
 examples – Solaris prior to v9, Windows NT/2000 ThreadFiber package

Two-level Multithreading Model

 Similar to M:M, except that it also allows a user thread to be
bound to kernel thread
 examples – IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

Threading Issues

 Semantics of fork() and exec() system calls
 Thread cancellation of target thread
 Signal handling
 Implicit Threading
 Thread-specific data
 Scheduler activations

Semantics of fork() and exec()

 Does fork() duplicate only the calling thread or all threads ?
 some systems provide two versions of fork()

 How about exec() ?
 most systems maintain the semantics of exec()

 Observations
 exec() called immediately after fork

 duplicating all threads is unnecessary
 exec() not called after fork

 new process should duplicate all threads

Thread Cancellation

 Terminating a thread before it has finished
 Asynchronous cancellation

 terminates the target thread immediately
 allocated resources may not all be freed easily
 status of shared data may remain ill-defined

 Deferred cancellation
 target thread terminates itself
 orderly cancellation can be easily achieved
 failure to check cancellation status may cause issues

Signal Handling

 Signals are used in UNIX systems to notify a process that a
particular event has occurred

 A signal handler is used to process signals
 OS may deliver the signal to the appropriate process
 OS or process handles the signal

 Types of signals
 synchronous – generated by some event in the process
 asynchronous – generated by an event outside the process

 Where to deliver a signal in multithreaded programs ?
 deliver the signal to the thread to which the signal applies
 deliver the signal to every thread in the process
 deliver the signal to certain threads in the process
 assign a specific thread to receive all signals for the process

Implicit Threading

 Writing correct multi-threaded programs is more difficult for
programmers
 use compilers and run-time libraries to create and manage threads

automatically

 Some example methods include
 Thread pools
 OpenMP
 Grand central dispatch, MS Thread building blocks (TBB),

java.util.concurrent package

Thread Pools

 Concerns with multithreaded applications
 continuously creating and destroying threads is expensive
 overshooting the bound on concurrently active threads

 Thread Pools
 create a number of threads in a pool where they await work
 number of threads can be proportional to the number of processors

 Advantages
 faster to service a request with an existing thread than create a new

thread every time
 allows the number of threads in the application(s) to be bound to the

size of the pool

OpenMP

 Compiler directives and an
API for C, C++, FORTRAN

 Supports parallel
programming in shared-
memory environments

 User identifies parallel region
 Create as many threads as

there are cores
#pragma omp parallel

 Run for loop in parallel
#pragma omp parallel for

for(i=0 ; i<N ; i++)

 c[i] = a[i] + b[i];

Linux Thread Implementation

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the

parent task (process)

Windows XP Thread Implementation

 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set
 Separate user and kernel stacks
 Private data storage area

 The register set, stacks, and private storage area
are known as the context of the threads

 The primary data structures of a thread include:
 ETHREAD (executive thread block)
 KTHREAD (kernel thread block)
 TEB (thread environment block)

Windows XP Threads

Multicore Processors

 Multiple processing cores on a single chip.
 Reasons for a shift to multicore processors

 power wall
 limits to frequency scaling
 transistor scaling still a reality

 Multicore programming Vs. multicomputer programming
 same-chip communication is faster
 memory sharing is easier and faster

Single Core Vs. Multicore Execution

Single core execution

Multiple core execution

Challenges for Multicore Programming

 Dividing activities
 Balance
 Data splitting
 Data dependency
 Testing and debugging

	Chapter 4: Threads
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	User Threads
	Multithreading Models
	Many-to-One
	One-to-One
	Many-to-Many Model
	Two-level Model
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Slide 23
	Thread Pools
	Slide 25
	Slide 26
	Slide 27
	Windows XP Threads
	Slide 29
	Concurrent Execution on a Single-core System
	Multicore Programming

