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Chapter 5:  CPU Scheduling – Outline

 What is scheduling in the OS ?
 What are common scheduling criteria ?
 How to evaluate scheduling algorithms ?
 What are common scheduling algorithms ?
 How is thread scheduling different from process scheduling ?
 What are the issues in multiple-processor scheduling ?
 Operating systems case studies.
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Basic Concepts

 Multiprogramming
 most processes alternate between CPU bursts and I/O bursts
 CPU free and idle during I/O burst
 schedule another process on the CPU
 maximizes CPU utilization

 CPU bound process
 spends most of its time in the CPU
 at least a few long CPU bursts

 I/O bound process
 spends most its time performing I/O
 several short CPU bursts
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CPU Scheduler

 Responsible for the selection of the next running process
 part of the OS dispatcher
 selects from among the processes in memory that are ready to execute
 based on a particular strategy

 When does CPU scheduling happen ?
 process switches from running to waiting state 
 process switches from running to ready state 
 process switches from waiting to ready state
 process terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive
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Preemptive Vs. Non-preemptive 
CPU Scheduling

 Non-preemptive scheduling
 process voluntarily releases the CPU (conditions 1 and 4)
 easy, requires no special hardware
 poor response time for interactive and real-time systems

 Preemptive scheduling
 OS can force a running process involuntarily relinquish the CPU

 arrival of a higher priority process
 running process exceeds its time-slot

 may require special hardware, eg., timer
 may require synchronization mechanisms to maintain data consistency
 complicates design of the kernel
 favored by most OSes
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Dispatcher

 Scheduler is a part of the dispatcher module in the OS
 Functions of the dispatcher

 get the new process from the scheduler
 switch out the context of the current process
 give CPU control to the new process
 jump to the proper location in the new program to restart that program

 Time taken by the dispatcher to stop one process and start 
another running is called the dispatch latency
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Scheduling Queues

 Job queue: consists of all processes
 all jobs (processes), once submitted, are in the job queue
 scheduled by the long-term scheduler

 Ready queue: consists of processes in memory
 processes ready and waiting for execution
 scheduled by the short-term or CPU scheduler

 Device queue: processes waiting for a device
 multiple processes can be blocked for the same device
 I/O completion moves process back to ready queue
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Scheduling Queues (2)
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Performance Metrics for CPU Scheduling
 CPU utilization: percentage of time that the CPU is busy
 Throughput: number of processes that complete their 

execution per time unit
 Turnaround time: amount of time to execute a particular 

process (submission time to completion time)
 Waiting time: amount of time a process has been waiting in the 

ready queue
 Response time: amount of time it takes from when a request 

was submitted until the first response is produced
 Scheduling goals

 maximize CPU utilization and throughput
 minimize turnaround time, waiting time and response time
 be fair to all processes and all users
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Method for Evaluating 
CPU Scheduling Algorithms

 Evaluation criteria
 define relative importance of the performance metrics
 include other system-specific measures

 Deterministic modeling
 takes a particular predetermined workload and defines the performance 

of each algorithm for that workload
 simple and fast, gives exact numbers
 difficult to generalize results
 can recognize algorithm performance trends over several inputs
 used for explaining scheduling algorithms
 used in the rest of this chapter !
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Workload Models and Gantt Charts

 Workload model:

 Gantt charts:
 bar chart to illustrate a particular schedule
 figure shows batch schedule

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 1 10

P4 6 2

P1 P2 P3 P4

0 80 12 22 24
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Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and 

turnaround time of process A 

A B C A B C A C A C Time

response time = 0
+ +wait time

turnaround time
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Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and 

turnaround time of process B.
 

A B C A B C A C A C Time

response time
+wait time

turnaround time
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Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and 

turnaround time of process C
 

A B C A B C A C A C Time

response time
+ ++wait time

turnaround time
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Method for Evaluating 
CPU Scheduling Algorithms (2)

 Queueing models
 analytically model the queue behavior (under some assumptions)
 involves a lot of complicated math
 can only handle a limited number of distributions and algorithms
 may not be very accurate because of unrealistic assumptions

 Simulations
 get a workload information from a system
 simulate the scheduling algorithm
 compute the performance metrics
 time and space intensive
 is practically the best evaluation method
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Simulation Illustration
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Scheduling Algorithms

 First Come, First Served (FCFS)
 Shortest Job First (SJF)
 Priority Based
 Round Robin (RR)
 Multilevel Queue Scheduling
 Multilevel Feedback Queue Scheduling
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First Come, First Served Scheduling

 Assigns the CPU based on the order of the requests.
 Implemented using a FIFO queue.
 No preemption
 Advantages

 straightforward, simple to write and understand

 Disadvantages
 average waiting time may be too long

 huge variation based on when processes arrive
 cannot balance CPU-bound and I/O-bound processes

 convoy effect, short process behind long process
 cannot be used for time-sharing systems
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FCFS Scheduling Example

 Suppose that the processes arrive in the order: P1 , P2 , P3  

 Waiting time for P1  = 0; P2  = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Process Arrival Time Burst Time

P1 0 24

P2 0 3

P3 0 3



19

FCFS Scheduling (2)

Suppose that the processes arrive in the order
 P2 , P3 , P1 

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time:   (6 + 0 + 3)/3 = 3
 Much better than previous case

 but large variation

P1P3P2

63 300
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Shortest Job First (SJF) Scheduling

 Order each process based on the length of its next CPU burst
 Allocate CPU to the process from the front of the list

 shortest next CPU burst

 Advantages
 SJF is optimal

 achieves minimum average waiting time for a given set of processes

 Disadvantages
 difficult to know the length of the next CPU request

 can ask the user, who may not know any better !
 model-based prediction

 can lead to process starvation
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Example of SJF

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

Process Arrival Time Burst Time

P1 0 6

P2 0 8

P3 0 7

P4 0 3
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Estimate Length of Next CPU Burst

 Can only estimate the length
 next CPU burst similar to previous CPU bursts ?
 how relevant is the history of previous CPU bursts ?

 Calculated as an exponential average of the previous CPU 
bursts for the process

 Formula:

:Define  4.
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Estimate Length of the Next CPU Burst (2)

  =0
 n+1 = n

 Recent history does not count
  =1

  n+1 =  tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn - 1 + …
            +(1 -  )j  tn - j + …
            +(1 -  )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor
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Estimate Length of the Next CPU Burst (3)
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Preemptive SJF Scheduling

 New shorter process can preempt longer current running 
process

 Shortest Remaining Time First scheduling chart:

 Average waiting time = 6.5

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P
1

P
2

P
4

P
1

P
3

0 1 5 10 17 26
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Priority Scheduling

 A priority number associated with each process
 CPU allocated to the process with the highest priority 

 equal priority processes scheduled in FCFS order

 Internally determined priorities
 time limit, memory requirements, etc
 SJF uses next CPU burst for its priority (how?)

 Externally specified priorities
 process importance, user-level, etc

 Can be preemptive or non-preemptive
 Text uses low numbers for high priorities
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Priority Scheduling (2)

 Advantages
 priorities can be made as general as needed

 Disadvantage
 low priority process may never execute (indefinite blocking or starvation)

 Aging
 technique to prevent starvation
 increase priority of processes with time



28

Round Robin Scheduling (RR)
 Round robin algorithm

 arrange jobs in FCFS order
 allocate CPU to the first job in the queue for one time-slice
 preempt job, add it to the end of the queue
 allocate CPU to the next job and continue...

 One time slice is called a time quantum
 Is by definition preemptive

 can be considered as FCFS with preemption

 Advantages – simple, avoids starvation
 Disadvantages

 may involve a large context switch overhead
 higher average waiting time than SJF
 an I/O bound process on a heavily loaded system will run more slow
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Example of RR with Time Quantum = 4

 The Gantt scheduling chart is: 

 Average waiting time = 5.66 

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Process Burst Times

P1 24

P2 3

P3 3
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Round Robin Scheduling (2)

 Performance
 depends on the length of the time quantum
 large time quantum → FCFS like behavior
 small time quantum → large context switch overhead

 Generally,
 time quanta range from 10 – 100 milliseconds
 context switch time is less than 10 microseconds

 RR has larger waiting time, but provides better response time for 
interactive systems

 Turnaround time depends on the size of the time quantum
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Turnaround Time Varies With The Time Quantum
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Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground then from 

background).  Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU time which it can 

schedule amongst its processes; i.e., 80% to foreground in RR
 20% to background in FCFS 
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Multilevel Queue Scheduling

 Used when
 processes can be easily classified into groups
 each group has a different scheduling requirement

 Algorithm
 partition ready queue into multiple queues
 determine some scheduling algorithm for each processes in each queue

 FCFS, SJF, RR, etc. 
 determine inter-queue scheduling

 fixed priority, fixed CPU utilization per queue, etc.
 permanently assign a process to a particular queue 
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Multilevel Queue Scheduling Example

 Example: foreground Vs. background processes 
 foreground are interactive, background are batch processes 
 foreground have priority over background
 intra-queue scheduling

 foreground – response time, FCFS – no starvation
 foreground – RR, background – FCFS

 scheduling between the queues
 fixed priority scheduling; foreground – higher priority
 time slice; 80% to foreground in RR, 20% to background in FCFS 
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Multilevel Queue Scheduling Example (2)
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Multilevel Feedback Queue Scheduling

 Allows process to move between queues
 used to dynamically sort process based on their typical CPU bursts

 Algorithm
 multiple queues with different fixed priorities 
 round robin at each priority level 
 run highest priority jobs first, once those finish, run next highest priority, 

etc
 jobs start in the highest priority queue
 if time slice expires, drop the job by one level 
 if time slice does not expire, push the job up by one level
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 0

Time

A B C

0 2 5 9
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 1

Time

A

B C

0

0 3 7

A

1
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 2

Time

A B

C

0

0 4

3

A

1

B
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

A B C

0 63

A

1

B C
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

A B C

0 63

A

1

B C

Suppose A is blocked on I/O 
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

B C

52

A B C

Suppose A is blocked on I/O 

0
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 5

Time

A

B

C

0

3

A

1

B C

Suppose A is returned from I/O 

0
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 6

Time
AB

C

3

A B C

0
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 8

Time
AB

C

3

A B C

0

C
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Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 9

Time
AB CA B C C
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Multilevel Feedback Queues

 Approximates SRTF 
 a CPU-bound job drops like a rock 
 I/O-bound jobs stay near the top

 Still unfair for long running jobs 
 counter-measure:  Aging 

 increase the priority of long running jobs if they are not serviced for a 
period of time

 tricky to tune aging
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Lottery Scheduling

 Adaptive scheduling approach to address the fairness problem 
 Algorithm

 each process owns some tickets
 on each time slice, a ticket is randomly picked 
 on average, the allocated CPU time is proportional to the number of tickets 

given to each job 

 To approximate SJF, short jobs get more tickets
 To avoid starvation, each job gets at least one ticket
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Lottery Scheduling Example

 Short jobs: 10 tickets each
 Long jobs: 1 ticket each

# short jobs/# 
long jobs

% of CPU for 
each short job

% of CPU for 
each long job

1/1 91% 9%

0/2 0% 50%

2/0 50% 0%

10/1 10% 1%

1/10 50% 5%
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Thread Scheduling
 On systems supporting threads

 kernel threads are the real scheduling entities
 user threads need to be mapped to kernel threads for execution
 scheduling attributes may be set at thread creation

 Contention-scope
 PTHREAD_SCOPE_PROCESS 

 group user threads to contend for common kernel thread(s)
 PTHREAD_SCOPE_SYSTEM

 directly assign to kernel thread, contends with other kernel threads

 inheritsched
 PTHREAD_INHERIT_SCHED 

 inherit scheduling policy and priority from parent thread
 PTHREAD_EXPLICIT_SCHED

 explicitly specify scheduling policy and priority of the new thread
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Thread Scheduling (2)

 schedpolicy
 SCHED_OTHER

 regular non-real-time scheduling
 SCHED_RR

 real-time round-robin scheduling
 SCHED_FIFO

 real-time FCFS scheduling

 schedparam
 set/get the priority of the thread

 All parameters only relevant
 if thread library supports non-one-to-one user level threads
 for real-time scheduling
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Pthread Scheduling Example
int main(int argc, char *argv[]){

 int i;
 pthread t tid[5];
 pthread attr t attr;

    pthread attr init(&attr); /* get the default attributes */
 /* set the scheduling algorithm to PROCESS or SYSTEM */
 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
 /* set the scheduling policy - FIFO, RT, or OTHER */
 pthread attr setschedpolicy(&attr, SCHED OTHER);

 for (i = 0; i < 5; i++)
 pthread create(&tid[i],&attr,runner,NULL);

    for (i = 0; i < NUM THREADS; i++)

        pthread join(tid[i], NULL);

}

void *runner(void *param){ 

    printf("I am a thread\n");

    pthread exit(0);

}
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Multiple-Processor Scheduling Issues

 Multiprocessor Scheduling
 asymmetric multiprocessing

 only one processor accesses the system data structures
 simple

 symmetric multiprocessing  (SMP)
 each processor is self-scheduling
 need to maintain scheduler data structures synchronization

 Processor affinity
 process has affinity for processor on which it is currently running

 reduce memory and cache overhead
 memory affinity important for NUMA architectures

 soft and hard processor affinity
 how strictly OS maintains affinity policy
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NUMA and CPU Scheduling
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Multiple-Processor Scheduling Issues
 Load balancing

 keep workload evenly distributed across all CPUs
 important if each processor has its own queue of ready processes
 push and pull migration

 push or pull tasks towards idle processors

 Multicore processors
 multiple processor cores on same physical chip

 uniform memory access, faster intercore communication
 may be simultaneously multithreaded (SMT, or hyperthreaded)

 instructions from multiple threads simultaneously live in different 
pipeline stages

 OS given a view of one processor per hardware thread
 may reduce memory stalls
 may increase resource contention
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Case Studies: Solaris Scheduling

 Priority-based scheduling
 Six classes

 real time, system, fair share, fixed priority, time shar, and interactive 

(in order of priority)
 different priorities and scheduling algorithms in different classes

 The default class is time sharing
 uses multilevel feedback queue with variable time slices
 inverse relationship between priorities and time slices 
 good response time for interactive processes and good throughput for 

CPU-bound processes
 see the dispatch table
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Solaris Dispatch Table 
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Case Studies: Solaris Scheduling (2)

 Real-time scheduling class
 highest priority, bounded time response
 should be careful before putting a process in this class

 System scheduling class
 reserved for kernel threads (scheduling and paging daemon)

 Fixed priority scheduling class
 priorities not dynamically adjusted

 Fair share scheduling class
 based on lottery scheduling
 processes grouped into projects; each project assigned some nubmer of 

lottery tokens
 processes within each project share the token fairly

 Process class priorities converted to global priorities
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Map to Global Priorities
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