
1

Chapter 5: CPU Scheduling – Outline

 What is scheduling in the OS ?
 What are common scheduling criteria ?
 How to evaluate scheduling algorithms ?
 What are common scheduling algorithms ?
 How is thread scheduling different from process scheduling ?
 What are the issues in multiple-processor scheduling ?
 Operating systems case studies.

2

Basic Concepts

 Multiprogramming
 most processes alternate between CPU bursts and I/O bursts
 CPU free and idle during I/O burst
 schedule another process on the CPU
 maximizes CPU utilization

 CPU bound process
 spends most of its time in the CPU
 at least a few long CPU bursts

 I/O bound process
 spends most its time performing I/O
 several short CPU bursts

3

CPU Scheduler

 Responsible for the selection of the next running process
 part of the OS dispatcher
 selects from among the processes in memory that are ready to execute
 based on a particular strategy

 When does CPU scheduling happen ?
 process switches from running to waiting state
 process switches from running to ready state
 process switches from waiting to ready state
 process terminates

 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive

4

Preemptive Vs. Non-preemptive
CPU Scheduling

 Non-preemptive scheduling
 process voluntarily releases the CPU (conditions 1 and 4)
 easy, requires no special hardware
 poor response time for interactive and real-time systems

 Preemptive scheduling
 OS can force a running process involuntarily relinquish the CPU

 arrival of a higher priority process
 running process exceeds its time-slot

 may require special hardware, eg., timer
 may require synchronization mechanisms to maintain data consistency
 complicates design of the kernel
 favored by most OSes

5

Dispatcher

 Scheduler is a part of the dispatcher module in the OS
 Functions of the dispatcher

 get the new process from the scheduler
 switch out the context of the current process
 give CPU control to the new process
 jump to the proper location in the new program to restart that program

 Time taken by the dispatcher to stop one process and start
another running is called the dispatch latency

6

Scheduling Queues

 Job queue: consists of all processes
 all jobs (processes), once submitted, are in the job queue
 scheduled by the long-term scheduler

 Ready queue: consists of processes in memory
 processes ready and waiting for execution
 scheduled by the short-term or CPU scheduler

 Device queue: processes waiting for a device
 multiple processes can be blocked for the same device
 I/O completion moves process back to ready queue

7

Scheduling Queues (2)

8

Performance Metrics for CPU Scheduling
 CPU utilization: percentage of time that the CPU is busy
 Throughput: number of processes that complete their

execution per time unit
 Turnaround time: amount of time to execute a particular

process (submission time to completion time)
 Waiting time: amount of time a process has been waiting in the

ready queue
 Response time: amount of time it takes from when a request

was submitted until the first response is produced
 Scheduling goals

 maximize CPU utilization and throughput
 minimize turnaround time, waiting time and response time
 be fair to all processes and all users

9

Method for Evaluating
CPU Scheduling Algorithms

 Evaluation criteria
 define relative importance of the performance metrics
 include other system-specific measures

 Deterministic modeling
 takes a particular predetermined workload and defines the performance

of each algorithm for that workload
 simple and fast, gives exact numbers
 difficult to generalize results
 can recognize algorithm performance trends over several inputs
 used for explaining scheduling algorithms
 used in the rest of this chapter !

10

Workload Models and Gantt Charts

 Workload model:

 Gantt charts:
 bar chart to illustrate a particular schedule
 figure shows batch schedule

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 1 10

P4 6 2

P1 P2 P3 P4

0 80 12 22 24

11

Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and

turnaround time of process A

A B C A B C A C A C Time

response time = 0
+ +wait time

turnaround time

12

Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and

turnaround time of process B.

A B C A B C A C A C Time

response time
+wait time

turnaround time

13

Deterministic Modeling Example

 Suppose we have processes A, B, and C, submitted at time 0.
 We want to know the response time, waiting time, and

turnaround time of process C

A B C A B C A C A C Time

response time
+ ++wait time

turnaround time

14

Method for Evaluating
CPU Scheduling Algorithms (2)

 Queueing models
 analytically model the queue behavior (under some assumptions)
 involves a lot of complicated math
 can only handle a limited number of distributions and algorithms
 may not be very accurate because of unrealistic assumptions

 Simulations
 get a workload information from a system
 simulate the scheduling algorithm
 compute the performance metrics
 time and space intensive
 is practically the best evaluation method

15

Simulation Illustration

16

Scheduling Algorithms

 First Come, First Served (FCFS)
 Shortest Job First (SJF)
 Priority Based
 Round Robin (RR)
 Multilevel Queue Scheduling
 Multilevel Feedback Queue Scheduling

17

First Come, First Served Scheduling

 Assigns the CPU based on the order of the requests.
 Implemented using a FIFO queue.
 No preemption
 Advantages

 straightforward, simple to write and understand

 Disadvantages
 average waiting time may be too long

 huge variation based on when processes arrive
 cannot balance CPU-bound and I/O-bound processes

 convoy effect, short process behind long process
 cannot be used for time-sharing systems

18

FCFS Scheduling Example

 Suppose that the processes arrive in the order: P1 , P2 , P3

 Waiting time for P1 = 0; P2 = 24; P3 = 27
 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Process Arrival Time Burst Time

P1 0 24

P2 0 3

P3 0 3

19

FCFS Scheduling (2)

Suppose that the processes arrive in the order
 P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3
 Average waiting time: (6 + 0 + 3)/3 = 3
 Much better than previous case

 but large variation

P1P3P2

63 300

20

Shortest Job First (SJF) Scheduling

 Order each process based on the length of its next CPU burst
 Allocate CPU to the process from the front of the list

 shortest next CPU burst

 Advantages
 SJF is optimal

 achieves minimum average waiting time for a given set of processes

 Disadvantages
 difficult to know the length of the next CPU request

 can ask the user, who may not know any better !
 model-based prediction

 can lead to process starvation

21

Example of SJF

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

Process Arrival Time Burst Time

P1 0 6

P2 0 8

P3 0 7

P4 0 3

22

Estimate Length of Next CPU Burst

 Can only estimate the length
 next CPU burst similar to previous CPU bursts ?
 how relevant is the history of previous CPU bursts ?

 Calculated as an exponential average of the previous CPU
bursts for the process

 Formula:

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1 1 nnn t

23

Estimate Length of the Next CPU Burst (2)

 =0
 n+1 = n

 Recent history does not count
 =1

 n+1 = tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

n+1 = tn+(1 -) tn - 1 + …
 +(1 -)j tn - j + …
 +(1 -)n +1 0

 Since both and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

24

Estimate Length of the Next CPU Burst (3)

25

Preemptive SJF Scheduling

 New shorter process can preempt longer current running
process

 Shortest Remaining Time First scheduling chart:

 Average waiting time = 6.5

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

P
1

P
2

P
4

P
1

P
3

0 1 5 10 17 26

26

Priority Scheduling

 A priority number associated with each process
 CPU allocated to the process with the highest priority

 equal priority processes scheduled in FCFS order

 Internally determined priorities
 time limit, memory requirements, etc
 SJF uses next CPU burst for its priority (how?)

 Externally specified priorities
 process importance, user-level, etc

 Can be preemptive or non-preemptive
 Text uses low numbers for high priorities

27

Priority Scheduling (2)

 Advantages
 priorities can be made as general as needed

 Disadvantage
 low priority process may never execute (indefinite blocking or starvation)

 Aging
 technique to prevent starvation
 increase priority of processes with time

28

Round Robin Scheduling (RR)
 Round robin algorithm

 arrange jobs in FCFS order
 allocate CPU to the first job in the queue for one time-slice
 preempt job, add it to the end of the queue
 allocate CPU to the next job and continue...

 One time slice is called a time quantum
 Is by definition preemptive

 can be considered as FCFS with preemption

 Advantages – simple, avoids starvation
 Disadvantages

 may involve a large context switch overhead
 higher average waiting time than SJF
 an I/O bound process on a heavily loaded system will run more slow

29

Example of RR with Time Quantum = 4

 The Gantt scheduling chart is:

 Average waiting time = 5.66

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Process Burst Times

P1 24

P2 3

P3 3

30

Round Robin Scheduling (2)

 Performance
 depends on the length of the time quantum
 large time quantum → FCFS like behavior
 small time quantum → large context switch overhead

 Generally,
 time quanta range from 10 – 100 milliseconds
 context switch time is less than 10 microseconds

 RR has larger waiting time, but provides better response time for
interactive systems

 Turnaround time depends on the size of the time quantum

31

Turnaround Time Varies With The Time Quantum

32

Multilevel Queue

 Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm
 foreground – RR
 background – FCFS

 Scheduling must be done between the queues
 Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
 Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR
 20% to background in FCFS

33

Multilevel Queue Scheduling

 Used when
 processes can be easily classified into groups
 each group has a different scheduling requirement

 Algorithm
 partition ready queue into multiple queues
 determine some scheduling algorithm for each processes in each queue

 FCFS, SJF, RR, etc.
 determine inter-queue scheduling

 fixed priority, fixed CPU utilization per queue, etc.
 permanently assign a process to a particular queue

34

Multilevel Queue Scheduling Example

 Example: foreground Vs. background processes
 foreground are interactive, background are batch processes
 foreground have priority over background
 intra-queue scheduling

 foreground – response time, FCFS – no starvation
 foreground – RR, background – FCFS

 scheduling between the queues
 fixed priority scheduling; foreground – higher priority
 time slice; 80% to foreground in RR, 20% to background in FCFS

35

Multilevel Queue Scheduling Example (2)

36

Multilevel Feedback Queue Scheduling

 Allows process to move between queues
 used to dynamically sort process based on their typical CPU bursts

 Algorithm
 multiple queues with different fixed priorities
 round robin at each priority level
 run highest priority jobs first, once those finish, run next highest priority,

etc
 jobs start in the highest priority queue
 if time slice expires, drop the job by one level
 if time slice does not expire, push the job up by one level

37

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 0

Time

A B C

0 2 5 9

38

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 1

Time

A

B C

0

0 3 7

A

1

39

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 2

Time

A B

C

0

0 4

3

A

1

B

40

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

A B C

0 63

A

1

B C

41

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

A B C

0 63

A

1

B C

Suppose A is blocked on I/O

42

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 3

Time

B C

52

A B C

Suppose A is blocked on I/O

0

43

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 5

Time

A

B

C

0

3

A

1

B C

Suppose A is returned from I/O

0

44

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 6

Time
AB

C

3

A B C

0

45

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 8

Time
AB

C

3

A B C

0

C

46

Example of Multilevel Feedback Queues

 Priority 0 (time slice = 1):

 Priority 1 (time slice = 2):

 Priority 2 (time slice = 4):

time = 9

Time
AB CA B C C

47

Multilevel Feedback Queues

 Approximates SRTF
 a CPU-bound job drops like a rock
 I/O-bound jobs stay near the top

 Still unfair for long running jobs
 counter-measure: Aging

 increase the priority of long running jobs if they are not serviced for a
period of time

 tricky to tune aging

48

Lottery Scheduling

 Adaptive scheduling approach to address the fairness problem
 Algorithm

 each process owns some tickets
 on each time slice, a ticket is randomly picked
 on average, the allocated CPU time is proportional to the number of tickets

given to each job

 To approximate SJF, short jobs get more tickets
 To avoid starvation, each job gets at least one ticket

49

Lottery Scheduling Example

 Short jobs: 10 tickets each
 Long jobs: 1 ticket each

short jobs/#
long jobs

% of CPU for
each short job

% of CPU for
each long job

1/1 91% 9%

0/2 0% 50%

2/0 50% 0%

10/1 10% 1%

1/10 50% 5%

50

Thread Scheduling
 On systems supporting threads

 kernel threads are the real scheduling entities
 user threads need to be mapped to kernel threads for execution
 scheduling attributes may be set at thread creation

 Contention-scope
 PTHREAD_SCOPE_PROCESS

 group user threads to contend for common kernel thread(s)
 PTHREAD_SCOPE_SYSTEM

 directly assign to kernel thread, contends with other kernel threads

 inheritsched
 PTHREAD_INHERIT_SCHED

 inherit scheduling policy and priority from parent thread
 PTHREAD_EXPLICIT_SCHED

 explicitly specify scheduling policy and priority of the new thread

51

Thread Scheduling (2)

 schedpolicy
 SCHED_OTHER

 regular non-real-time scheduling
 SCHED_RR

 real-time round-robin scheduling
 SCHED_FIFO

 real-time FCFS scheduling

 schedparam
 set/get the priority of the thread

 All parameters only relevant
 if thread library supports non-one-to-one user level threads
 for real-time scheduling

52

Pthread Scheduling Example
int main(int argc, char *argv[]){

 int i;
 pthread t tid[5];
 pthread attr t attr;

 pthread attr init(&attr); /* get the default attributes */
 /* set the scheduling algorithm to PROCESS or SYSTEM */
 pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
 /* set the scheduling policy - FIFO, RT, or OTHER */
 pthread attr setschedpolicy(&attr, SCHED OTHER);

 for (i = 0; i < 5; i++)
 pthread create(&tid[i],&attr,runner,NULL);

 for (i = 0; i < NUM THREADS; i++)

 pthread join(tid[i], NULL);

}

void *runner(void *param){

 printf("I am a thread\n");

 pthread exit(0);

}

53

Multiple-Processor Scheduling Issues

 Multiprocessor Scheduling
 asymmetric multiprocessing

 only one processor accesses the system data structures
 simple

 symmetric multiprocessing (SMP)
 each processor is self-scheduling
 need to maintain scheduler data structures synchronization

 Processor affinity
 process has affinity for processor on which it is currently running

 reduce memory and cache overhead
 memory affinity important for NUMA architectures

 soft and hard processor affinity
 how strictly OS maintains affinity policy

54

NUMA and CPU Scheduling

55

Multiple-Processor Scheduling Issues
 Load balancing

 keep workload evenly distributed across all CPUs
 important if each processor has its own queue of ready processes
 push and pull migration

 push or pull tasks towards idle processors

 Multicore processors
 multiple processor cores on same physical chip

 uniform memory access, faster intercore communication
 may be simultaneously multithreaded (SMT, or hyperthreaded)

 instructions from multiple threads simultaneously live in different
pipeline stages

 OS given a view of one processor per hardware thread
 may reduce memory stalls
 may increase resource contention

56

Case Studies: Solaris Scheduling

 Priority-based scheduling
 Six classes

 real time, system, fair share, fixed priority, time shar, and interactive

(in order of priority)
 different priorities and scheduling algorithms in different classes

 The default class is time sharing
 uses multilevel feedback queue with variable time slices
 inverse relationship between priorities and time slices
 good response time for interactive processes and good throughput for

CPU-bound processes
 see the dispatch table

57

Solaris Dispatch Table

58

Case Studies: Solaris Scheduling (2)

 Real-time scheduling class
 highest priority, bounded time response
 should be careful before putting a process in this class

 System scheduling class
 reserved for kernel threads (scheduling and paging daemon)

 Fixed priority scheduling class
 priorities not dynamically adjusted

 Fair share scheduling class
 based on lottery scheduling
 processes grouped into projects; each project assigned some nubmer of

lottery tokens
 processes within each project share the token fairly

 Process class priorities converted to global priorities

59

Map to Global Priorities

	Slide 1
	Basic Concepts
	CPU Scheduler
	Slide 4
	Dispatcher
	Slide 6
	Slide 7
	Scheduling Criteria
	Algorithm Evaluation
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Evaluation of CPU schedulers by Simulation
	Slide 16
	Slide 17
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Examples of Exponential Averaging
	Prediction of the Length of the Next CPU Burst
	Slide 25
	Priority Scheduling
	Slide 27
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Slide 30
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Slide 33
	Slide 34
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Thread Scheduling
	Slide 51
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multicore Processors
	Operating System Examples
	Solaris Dispatch Table
	Slide 58
	Solaris Scheduling

