
1

Process Synchronization – Outline

 Why do processes need synchronization ?
 What is the critical-section problem ?
 Describe solutions to the critical-section problem

 Peterson’s solution
 using synchronization hardware
 semaphores
 monitors

 Classic Problems of Synchronization
 What are atomic transactions ?

2

Why Process Synchronization ?
 Processes may cooperate with each other

 producer-consumer and service-oriented system models
 exploit concurrent execution on multiprocessors

 Cooperating processes may share data (globals, files, etc)
 imperative to maintain data correctness

 Why is data correctness in danger ?
 process run asynchronously, context switches can happen at any time
 processes may run concurrently
 different orders of updating shared data may produce different values

 Process synchronization
 to coordinate updates to shared data
 order of process execution should not affect shared data

 Only needed when processes share data !

3

Producer-Consumer Data Sharing

while (true){

 /* wait if buffer full */
 while (counter == 10)
 ; /* do nothing */

 /* produce data */
 buffer[in] = sdata;
 in = (in + 1) % 10;

 /* update number of
 items in buffer */
 counter++;
}

while (true){

 /* wait if buffer empty */
 while (counter == 0)
 ; /* do nothing */

 /* consume data */
 sdata = buffer[out];
 out = (out + 1) % 10;

 /* update number of
 items in buffer */
 counter--;
}

Producer Consumer

4

Producer-Consumer Data Sharing

while (true){

 /* wait if buffer full */
 while (counter == 10)
 ; /* do nothing */

 /* produce data */
 buffer[in] = sdata;
 in = (in + 1) % 10;

 /* update number of
 items in buffer */
 R1 = load (counter);
 R1 = R1 + 1;
 counter = store (R1);
}

while (true){

 /* wait if buffer empty */
 while (counter == 0)
 ; /* do nothing */

 /* consume data */
 sdata = buffer[out];
 out = (out + 1) % 10;

 /* update number of
 items in buffer */
 R2 = load (counter);
 R2 = R2 – 1;
 counter = store (R2);
}

Producer Consumer

5

 Suppose counter = 5

 Race condition is a situation where
 several processes concurrently manipulate shared data, and
 shared data value depends on the order of execution

Race Condition

 R1 = load (counter);
 R1 = R1 + 1;
 R2 = load (counter);
 R2 = R2 – 1;
 counter = store (R1);
 counter = store (R2);

Final Value in counter = 4!

 R1 = load (counter);
 R1 = R1 + 1;
 R2 = load (counter);
 R2 = R2 – 1;
 counter = store (R2);
 counter = store (R1);

Final Value in counter = 6!

Incorrect Sequence 1 Incorrect Sequence 2

6

Critical Section Problem

 Region of code in a process updating shared data is called a
critical region.

 Concurrent updating of shared data by multiple processes is
dangerous.

 Critical section problem
 how to ensure synchronization between cooperating processes ?

 Solution to the critical section problem
 only allow a single process to enter its critical section at a time

 Protocol for solving the critical section problem
 request permission to enter critical section
 indicate after exit from critical section
 only permit a single process at a time

7

Solution to the Critical Section Problem

 Formally states, each solution should ensure
 mutual exclusion: only a single process can execute in its critical section at

a time
 progress: selection of a process to enter its critical section should be fair,

and the decision cannot be postponed indefinitely.
 bounded waiting: there should be a fixed bound on how long it takes for the

system to grant a process's request to enter its critical section

 Other than satisfying these requirements, the system should
also guard against deadlocks.

8

Preemptive Vs. Non-preemptive Kernels

 Several kernel processes share data
 structures for maintaining file systems, memory allocation, interrupt

handling, etc.

 How to ensure OSes are free from race conditions ?
 Non–preemptive kernels

 process executing in kernel mode cannot be preempted
 disable interrupts when process is in kernel mode
 what about multiprocessor systems ?

 Preemptive kernels
 process executing in kernel mode can be preempted
 suitable for real-time programming
 more responsive

9

Peterson’s Solution to
Critical Section Problem

 Software based solution
 Only supports two processes
 The two processes share two variables:

 int turn;
 indicates whose turn it is to enter the critical section

 boolean flag[2]
 indicates if a process is ready to enter its critical section

1
0

 Solution meets all three requirements
 P0 and P1 can never be in the critical section at the same time
 if P0 does not want to enter critical region, P1 does no waiting
 process waits for at most one turn of the other to progress

Peterson's Solution

do {
 flag[0] = TRUE;
 turn = 1;
 while (flag[1] && turn==1)
 ;
 // critical section

 flag[0] = FALSE;

 // remainder section
} while (TRUE)

do {
 flag[1] = TRUE;
 turn = 0;
 while (flag[0] && turn==0)
 ;
 // critical section

 flag[1] = FALSE;

 // remainder section
} while (TRUE)

Process 0 Process 1

1
1

Peterson's Solution – Notes

 Only supports two processes
 generalizing for more than two processes has been achieved

 Assumes that the LOAD and STORE instructions are atomic
 Assumes that memory accesses are not reordered
 May be less efficient than a hardware approach

 particularly for >2 processes

1
2

Lock-Based Solutions

 General solution to the critical section problem
 critical sections are protected by locks
 process must acquire lock before entry
 process releases lock on exit

do {
 acquire lock;

 critical section

 release lock;

 remainder section

} while(TRUE);

1
3

Hardware Support for Lock-Based
Solutions – Uniprocessors

 For uniprocessor systems
 concurrent processes cannot be overlapped, only interleaved
 process runs until it invokes system call, or is interrupted

 Disable interrupts !
 active process will run without preemption

do {

 disable interrupts;
 critical section
 enable interrupts;

 remainder section
} while(TRUE);

1
4

Hardware Support for Lock-Based
Solutions – Multiprocessors

 In multiprocessors
 several processes share memory
 processors behave independently in a peer manner

 Disabling interrupt based solution will not work
 too inefficient
 OS using this not broadly scalable

 Provide hardware support in the form of atomic instructions
 atomic test-and-set instruction
 atomic swap instruction
 atomic compare-and-swap instruction

 Atomic execution of a set of instructions means that instructions
are treated as a single step that cannot be interrupted.

1
5

TestAndSet Instruction

 Pseudo code definition of TestAndSet

 boolean TestAndSet (boolean *target)
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }

1
6

Mutual Exclusion using TestAndSet

int mutex;
init_lock (&mutex);

do {

 lock (&mutex);
 critical section
 unlock (&mutex);

 remainder section
} while(TRUE);

void init_lock (int *mutex)
{
 *mutex = 0;
}

void lock (int *mutex)
{
 while(TestAndSet(mutex))
 ;
}

void unlock (int *mutex)
{
 *mutex = 0;
}

1
7

Swap Instruction

 Psuedo code definition of swap instruction

 void Swap (boolean *a, boolean *b)
 {
 boolean temp = *a;
 *a = *b;
 *b = temp:
 }

1
8

Mutual Exclusion using Swap

int mutex;
init_lock (&mutex);

do {

 lock (&mutex);
 critical section
 unlock (&mutex);

 remainder section
} while(TRUE);

void init_lock (int *mutex) {
 *mutex = 0;
}

void lock (int *mutex) {
 int key = TRUE;
 do {
 Swap(&key, mutex);
 }while(key == TRUE);
}

void unlock (int *mutex) {
 *mutex = 0;
}

Fairness not guaranteed by any implementation !

1
9

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 0

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=0, waiting[1]=0

2
0

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 1

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=1, waiting[1]=1

2
1

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 2

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1

2
2

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 3

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1

2
3

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 4

Process i = 0

lock=TRUE, key=FALSE, waiting[0]=1, waiting[1]=1

Process 0
wins

the race

2
4

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 5

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

2
5

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 6

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

2
6

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 7

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

j = 1

2
7

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 8

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

2
8

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 9

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

2
9

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 10

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0

3
0

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 11

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0

3
1

Bounded Waiting Solution

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

do{
 waiting[i] = TRUE;
 key = TRUE;
 while(waiting[i] && key)
 key = TestAndSet(&lock);
 waiting[i] = FALSE;

 // Critical Section

 j = (i + 1) % n;
 while ((j != I) && !waiting[j])
 j = (j+1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;
 // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 12

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0

3
2

Semaphores
 Another solution to the critical section problem

 higher-level than using direct ISA instructions
 similar to locks, but semantics are different

 Semaphore (simple definition)
 is an integer variable
 only accessed via init(), wait(), and signal() operations
 all semaphore operations are atomic

 Binary semaphores
 value of semaphore can either be 0 or 1
 used for providing mutual exclusion

 Counting semaphore
 can have any integer value
 access control to some finite resource

3
3

Mutual Exclusion Using Semaphores

int S;
sem_init (&S);

do {

 wait (&S);
 // critical section
 signal (&S);

 // remainder section

} while(TRUE);

void sem_init (int *S)
{
 *S = 0;
}

void wait (int *S)
{
 while (*S <= 0)
 ;
 *S–– ;
}

void signal (int *S)
{
 *S++;
}

3
4

Problem With All Earlier Solutions ?

 Busy waiting or spinlocks
 process may loop continuously in the entry code to the critical section

 Disadvantage of busy waiting
 waiting process holds on to the CPU during its time-slice
 does no useful work
 does not let any other process do useful work

 Multiprocessors still do use busy-waiting solutions.

3
5

Semaphore with no Busy waiting

 Associate waiting queue with each semaphore
 Semaphore (no busy waiting definition)

 integer value
 waiting queue

typedef struct {
 int value;
 struct process *list;
} semaphore;

3
6

Operations on Semaphore
 with no Busy waiting (2)

• Wait () operation

wait (semaphore *S) {
 S–>value–– ;
 if (S–>value < 0) {
 // add process to
 // S –>list

 block ();
 }
}

block () suspends the
process that invokes it.

• Signal () operation

signal (semaphore *S) {
 S–>value++ ;
 if (S–>value >= 0) {
 // remove process P
 // from S –>list

 wakeup (P);
 }
}

wakeup () resumes
execution of the blocked
process P.

3
7

Atomic Implementation of
Semaphore Operations

 Guarantee that wait and signal operations are atomic
 critical section problem again ?
 how to ensure atomicity of wait and signal ?

 Ensuring atomicity of wait and signal
 implement semaphore operations using hardware solutions
 uniprocessors – enable/disable interrupts
 multiprocessors – using spinlocks around wait and signal

 Did we really solve the busy-waiting problem
 NO!
 but we shifted its location, only busy-wait around wait and signal
 wait and signal are small routines

3
8

Deadlock

 Deadlock
 two or more processes are waiting indefinitely for an event that can be

caused by only one of the waiting processes
 Example: S and Q be two semaphores initialized to 1

 P00 P11
 wait (S); wait (Q);
 wait (Q); wait (S);

. .

. .

. .
 signal (S); signal (Q);
 signal (Q); signal (S);

3
9

Starvation and Priority Inversion

 Indefinite blocking or starvation
 process is not deadlocked
 but is never removed from the semaphore queue

 Priority inversion
 lower-priority process holds a lock needed by higher-priority process !
 assume three processes L, M, and H
 priorities in the order L < M < H
 L holds shared resource R, needed by H
 M preempts L, H needs to wait for both L and M !!
 solutions

 only support at most two priorities
 priority inheritance protocol – lower priority process accessing shared

resource inherits higher priority

4
0

Problem Solving Using Semaphores

 Bounded-buffer problem
 Readers-Writers problem

4
1

Bounded-Buffer Problem

 Problem synopsis
 a set of resource buffers shared by producer and consumer threads

 buffers are shared between producer and consumer
 producer inserts resources into the buffers

 output, disk blocks, memory pages, processes, etc.
 consumer removes resources from the buffer set

 whatever is generated by the producer
 producer and consumer execute asynchronously

 no serialization of one behind the other
 CPU scheduler determines what run when

 Ensure data (buffer) consistency
 consumer should see each produced item at least once
 consumer should see each produced item at most once

4
2

Bounded Buffer Problem (2)

 Solution employs three semaphores
 mutex

 allow exclusive access to the buffer pools
 mutex semaphore, initialized to 1

 empty
 count number of empty buffers
 counting semaphore, initialized to n (the total number of available buffers)

 full
 count number of full buffers
 counting semaphore, initialized to 0

4
3

Bounded Buffer Problem (3)

Semaphore bool mutex;

Semaphore int full, empty;

do {

 Produce new resource

 wait (empty);

 wait (mutex);

 Add resource to next buffer

 signal (mutex);

 signal (full);

} while (TRUE);

Producer
do {

 wait (full);

 wait (mutex);

 Remove resource from buffer

 signal (mutex);

 signal (empty);

 Consume resource

} while (TRUE);

Consumer

4
4

Readers – Writers Problem

 Problem synopsis
 an object shared among several threads
 some threads only read the object (Readers)
 some threads only write the object (Writers)

 Problem is to ensure data consistency
 multiple readers can access the shared resource simultaneously
 only one writer should update the object at a time
 readers should not access the object as it is being updated
 additional constraint

 readers have priority over writers
 easier to implement

4
5

Readers – Writers Problem (2)

 We use two semaphores
 mutex

 ensure mutual exclusion for the readcount variable
 mutex semaphore, initialized to 1

 wrt
 ensure mutual exclusion for writers
 ensure mutual exclusion between readers and writer
 mutex semaphore, initialized to 1

4
6

Readers – Writers Problem (3)

semaphore bool mutex, wrt;
int readcount;

do {

 wait (wrt);

 write object resource

 signal (wrt);

} while (TRUE);

Writer
do {
 wait (mutex);
 readcount++;
 if (readcount == 1)
 wait (wrt);
 signal (mutex);
 read from object resource
 wait (mutex);
 readcount––;
 if (readcount == 0)
 signal (wrt);
 signal (mutex);
} while (TRUE);

Reader

4
7

Semaphore – Summary

 Semaphores can be used to solve any of the traditional
synchronization problems

 Drawbacks of semaphores
 semaphores are essentially shared global variables

 can be accessed from anywhere in a program
 semaphores are very low-level constructs

 no connection between semaphore and data controlled by a semaphore
 difficult to use

 used for both critical section (mutual exclusion) and coordination
(scheduling)

 provides no control of proper usage
 user may miss a wait or signal, or replace order of wait, and signal

 The solution is to use programming-language level support.

4
8

Monitors

 Monitor is a programming language construct that controls
access to shared data
 synchronization code added by the compiler
 synchronization enforced by the runtime

 Monitor is an abstract data type (ADT) that encapsulates
 shared data structures
 procedures that operate on the shared data structures
 synchronization between the concurrent procedure invocations

 Protects the shared data structures inside the monitor from
outside access.

 Guarantees that monitor procedures (or operations) can only
legitimately update the shared data.

4
9

Monitor Semantics for Mutual Exclusion

 Only one thread can execute any monitor procedure at a time.
 Other threads invoking a monitor procedure when one is already

executing some monitor procedure must wait.
 When the active thread exits the monitor procedure, one other

waiting thread can enter.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread

5
0

Monitor for Mutual Exclusion

Monitor Account {

 double balance;

 double withdraw (amount) {

 balance = balance –

 amount ;

 return balance;

 }

}

withdraw (amount) {
 balance = balance – amount;

withdraw (amount)

withdraw (amount)

 return balance;
} (release lock and exit)

 balance = balance – amount;
 return balance;
} (release lock and exit)

 balance = balance – amount;
 return balance;
} (release lock and exit)

1

2

3

1

3

2

5
1

Monitor for Coordination

 What if a thread needs to wait inside a monitor
 waiting for some resource, like in producer-consumer relationship
 monitor with condition variables.

 Condition variables provide mechanism to wait for events
 resource available, no more writers, etc.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread

release

acquire

suspended thread

Wait Set

5
2

Condition Variable Semantics

 Condition variables support two operations
 wait – release monitor lock, and suspend thread

 condition variables have wait queues
 signal – wakeup one waiting thread

 if no process is suspended, then signal has no affect

 Signal semantics
 Hoare monitors (original)

 signal immediately switches from the caller to the waiting thread
 waiter's condition is guaranteed to hold when it continues execution

 Mesa monitors
 waiter placed on ready queue, signaler continues
 waiter's condition may no longer be true when it runs

 Compromise - signaler immediately leaves monitor, waiter resumes operation

5
3

Bounded Buffer Using Monitors

Monitor bounded_buffer {

 Resource buffer[N];

 // condition variables

 Condition empty, full;

 void producer (Resource R) {

 while (buffer full)

 empty.wait();

 // add R to buffer array

 full.signal();

 }

 Resource consumer () {

 while (buffer empty)

 full.wait();

 // get Resource from buffer

 empty.signal();

 return R;

 }

} // end monitor

5
4

Condition Variables
 Condition variables are not booleans

 ''if (condition_variable) then … '' is not logically correct
 wait() and signal() are the only operations that are correct

 Condition variable != Semaphores
 they have very different semantics
 each can be used to implement the other

 Wait () semantics
 wait blocks the calling thread, and gives up the lock
 Semaphore::wait just blocks the calling thread
 only monitor operations can call wait () and signal ()

 Signal () semantics
 if there are no waiting threads, then the signal is lost
 Semaphore::signal just increases global variable count, allowing entry to

future thread

5
5

 Monitor with Condition Variables

5
6

Dining Philosophers Problem

 Represents need to allocate several resources among several
processes in a deadlock-free and starvation-free manner.

 Problem synopsis
 5 philosophers, circular table
 2 states, hungry and thinking
 5 single chopsticks
 hungry, pick up two chopsticks

 right and left
 may only pick up one stick at a time
 eat when have both sticks

 Problem definition
 allow each philosopher to eat and think

without deadlocks and starvation

5
7

Dining Philosophers Problem (2)

 Restriction on the problem
 only pick chopsticks if both are available

 Problem solution
 use three states, thinking, hungry, eating
 condition variable for each philosopher

 delay if hungry but waiting for chopsticks
 invoke monitor operations in the following sequence

DiningPhilosophers.pickup (i);

 // eat

DiningPhilosophers.putdown (i);

5
8

Solution to Dining Philosophers
Monitor DP
{
 enum { THINKING; HUNGRY,
 EATING) state [5] ;
 condition self [5];

 void pickup (int i)
 {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 self [i].wait;
 }

 void putdown (int i)
 {
 state[i] = THINKING;
 // test neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

 void test (int i)
 {
 if ((state[(i + 4) % 5] !=
 EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] !=
 EATING)) {
 state[i] = EATING ;
 self[i].signal () ;

 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

} // end monitor

5
9

OS Implementation Issues

 How to wait on a lock held by another thread ?
 sleeping or spin-waiting

 Overhead of spin-waiting
 a spinning thread occupies the CPU; slows progress of all other threads,

including the one holding the lock

 Overhead of sleeping
 issue a wait and sleep; send signal to sleeping thread; wakeup thread;

multiple context switches

 Spin-waiting is used on
 multiprocessor systems
 when the thread holding the lock is the one running
 locked data is only accessed by short code segments

6
0

OS Implementation Issues (2)

 Reader-writer locks
 used when shared data is read more often
 more expensive to set up than mutual exclusion locks

 Non-preemptive kernel
 process in kernel mode cannot be preempted
 used in Linux on single processor machines
 uses preempt_disable() and preempt_enable()system calls
 spin-locks, semaphores used on multiprocessor machines

6
1

Atomic Transactions

 Transaction – collection of instructions that perform a single
logical function

 Atomicity – execute transaction as one uninterruptible unit
 Mutual exclusion – execute critical sections atomically

 what happens if system fails during a transaction ?
 how to preserve atomicity in the possibility of system failures ?

 Committed – transaction has completed successfully
 Aborted – transaction has failed

 rollback the transaction to previous consistent state, called recovery

 Strategies
 log-based recovery
 checkpoints

6
2

Concurrent Atomic Transactions

 Serializability – execution of multiple concurrent transactions is
equivalent to their execution in an arbitrary order

	Module 6: Process Synchronization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Peterson’s Solution
	Algorithm for Process Pi
	Slide 11
	Slide 12
	Synchronization Hardware
	Slide 14
	TestAndndSet Instruction
	Solution using TestAndSet
	Swap Instruction
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Semaphore Implementation with no Busy waiting
	Slide 36
	Slide 37
	Deadlock and Starvation
	Slide 39
	Slide 40
	Bounded-Buffer Problem
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Monitor with Condition Variables
	Slide 56
	Slide 57
	Slide 58
	Synchronization Examples
	Slide 60
	Atomic Transactions
	Slide 62

