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Process Synchronization – Outline

 Why do processes need synchronization ?
 What is the critical-section problem ?
 Describe solutions to the critical-section problem

 Peterson’s solution
 using synchronization hardware
 semaphores
 monitors

 Classic Problems of Synchronization
 What are atomic transactions ?
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Why Process Synchronization ?
 Processes may cooperate with each other

 producer-consumer and service-oriented system models
 exploit concurrent execution on multiprocessors

 Cooperating processes may share data (globals, files, etc)
 imperative to maintain data correctness

 Why is data correctness in danger ?
 process run asynchronously, context switches can happen at any time
 processes may run concurrently
 different orders of updating shared data may produce different values

 Process synchronization
 to coordinate updates to shared data
 order of process execution should not affect shared data

 Only needed when processes share data !
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Producer-Consumer Data Sharing

while (true){

    /* wait if buffer full */
    while (counter == 10)
     ;  /* do nothing */

    /* produce data */
    buffer[in] = sdata;
    in = (in + 1) % 10;

    /* update number of 
        items in buffer */
    counter++;
}

while (true){

    /* wait if buffer empty */
    while (counter == 0)
     ;  /* do nothing */

    /* consume data */
    sdata = buffer[out];
    out = (out + 1) % 10;

    /* update number of 
        items in buffer */
    counter--;
}

Producer Consumer
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Producer-Consumer Data Sharing

while (true){

    /* wait if buffer full */
    while (counter == 10)
     ;  /* do nothing */

    /* produce data */
    buffer[in] = sdata;
    in = (in + 1) % 10;

    /* update number of 
        items in buffer */
    R1 = load (counter);
    R1 = R1 + 1;
    counter = store (R1);
}

while (true){

    /* wait if buffer empty */
    while (counter == 0)
     ;  /* do nothing */

    /* consume data */
    sdata = buffer[out];
    out = (out + 1) % 10;

    /* update number of 
        items in buffer */
    R2 = load (counter);
    R2 = R2 – 1;
    counter = store (R2);
}

Producer Consumer
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 Suppose counter = 5

 Race condition is a situation where
 several processes concurrently manipulate shared data, and
 shared data value depends on the order of execution

Race Condition

    R1 = load (counter);
    R1 = R1 + 1;
    R2 = load (counter);
    R2 = R2 – 1;    
    counter = store (R1);
    counter = store (R2);

Final Value in counter = 4!

    R1 = load (counter);
    R1 = R1 + 1;
    R2 = load (counter);
    R2 = R2 – 1;    
    counter = store (R2);
    counter = store (R1);

Final Value in counter = 6!

Incorrect Sequence 1 Incorrect Sequence 2
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Critical Section Problem

 Region of code in a process updating shared data is called a 
critical region.

 Concurrent updating of shared data by multiple processes is 
dangerous.

 Critical section problem
 how to ensure synchronization between cooperating processes ?

 Solution to the critical section problem
 only allow a single process to enter its critical section at a time

 Protocol for solving the critical section problem
 request permission to enter critical section
 indicate after exit from critical section
 only permit a single process at a time
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Solution to the Critical Section Problem

 Formally states, each solution should ensure
 mutual exclusion: only a single process can execute in its critical section at 

a time
 progress: selection of a process to enter its critical section should be fair, 

and the decision cannot be postponed indefinitely.
 bounded waiting: there should be a fixed bound on how long it takes for the 

system to grant a process's request to enter its critical section

 Other than satisfying these requirements, the system should 
also guard against deadlocks.
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Preemptive Vs. Non-preemptive Kernels

 Several kernel processes share data
 structures for maintaining file systems, memory allocation, interrupt 

handling, etc.

 How to ensure OSes are free from race conditions ?
 Non–preemptive kernels

 process executing in kernel mode cannot be preempted
 disable interrupts when process is in kernel mode
 what about multiprocessor systems ?

 Preemptive kernels
 process executing in kernel mode can be preempted
 suitable for real-time programming
 more responsive
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Peterson’s Solution to 
Critical Section Problem

 Software based solution
 Only supports two processes
 The two processes share two variables:

 int turn; 
 indicates whose turn it is to enter the critical section

 boolean flag[2]
 indicates if a process is ready to enter its critical section
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 Solution meets all three requirements
 P0 and P1 can never be in the critical section at the same time
 if P0 does not want to enter critical region, P1 does no waiting
 process waits for at most one turn of the other to progress

Peterson's Solution

do { 
    flag[0] = TRUE; 
    turn = 1; 
    while (flag[1]  &&  turn==1)
        ; 
    // critical section
    
    flag[0] = FALSE; 
    
    // remainder section 
} while (TRUE)

do { 
    flag[1] = TRUE; 
    turn = 0; 
    while (flag[0]  &&  turn==0)
        ; 
    // critical section
    
    flag[1] = FALSE; 
    
    // remainder section 
} while (TRUE)

Process 0 Process 1



1
1

Peterson's Solution – Notes

 Only supports two processes
 generalizing for more than two processes has been achieved

 Assumes that the LOAD and STORE instructions are atomic
 Assumes that memory accesses are not reordered
 May be less efficient than a hardware approach

 particularly for >2 processes
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Lock-Based Solutions

 General solution to the critical section problem
 critical sections are protected by locks
 process must acquire lock before entry
 process releases lock on exit

do {
    acquire lock;

        critical section

    release lock;

        remainder section

} while(TRUE);
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Hardware Support for Lock-Based 
Solutions – Uniprocessors

 For uniprocessor systems
 concurrent processes cannot be overlapped, only interleaved
 process runs until it invokes system call, or is interrupted 

 Disable interrupts !
 active process will run without preemption

do {

    disable interrupts;
        critical section
    enable interrupts;

        remainder section
} while(TRUE);
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Hardware Support for Lock-Based 
Solutions – Multiprocessors

 In multiprocessors
 several processes share memory
 processors behave independently in a peer manner

 Disabling interrupt based solution will not work
 too inefficient
 OS using this not broadly scalable

 Provide hardware support in the form of atomic instructions
 atomic test-and-set instruction
 atomic swap instruction
 atomic compare-and-swap instruction

 Atomic execution of a set of instructions means that instructions 
are treated as a single step that cannot be interrupted.



1
5

TestAndSet Instruction 

 Pseudo code definition of TestAndSet

         boolean TestAndSet (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }
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Mutual Exclusion using TestAndSet

int mutex;
init_lock (&mutex);

do {

    lock (&mutex);
        critical section
    unlock (&mutex);

        remainder section
} while(TRUE);

void init_lock (int *mutex)
{
    *mutex = 0;
}

void lock (int *mutex)
{
    while(TestAndSet(mutex))
        ;
}

void unlock (int *mutex)
{
    *mutex = 0;
}
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Swap  Instruction

 Psuedo code definition of swap instruction

         void Swap (boolean *a, boolean *b)
          {
                  boolean temp = *a;
                  *a = *b;
                  *b = temp:
          }
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Mutual Exclusion using Swap

int mutex;
init_lock (&mutex);

do {

    lock (&mutex);
        critical section
    unlock (&mutex);

        remainder section
} while(TRUE);

void init_lock (int *mutex) {
    *mutex = 0;
}

void lock (int *mutex) {
    int key = TRUE;
    do {
        Swap(&key, mutex);
    }while(key == TRUE);
}

void unlock (int *mutex) {
    *mutex = 0;
}

Fairness not guaranteed by any implementation !
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 0

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=0, waiting[1]=0
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 1

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=1, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 2

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 3

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 4

Process i = 0

lock=TRUE, key=FALSE, waiting[0]=1, waiting[1]=1

Process 0 
wins 

the race
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 5

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 6

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 7

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

j = 1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 8

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 9

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 10

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 11

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0
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Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 12

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0
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Semaphores
 Another solution to the critical section problem

 higher-level than using direct ISA instructions
 similar to locks, but semantics are different

 Semaphore (simple definition)
 is an integer variable
 only accessed via init( ), wait( ), and signal( ) operations
 all semaphore operations are atomic

 Binary semaphores
 value of semaphore can either be 0 or 1
 used for providing mutual exclusion

 Counting semaphore
 can have any integer value
 access control to some finite resource
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Mutual Exclusion Using Semaphores

int S;
sem_init (&S);

do {

    wait (&S);
        // critical section
    signal (&S);

        // remainder section

} while(TRUE);

void sem_init (int *S)
{
    *S = 0;
}

void wait (int *S)
{
    while (*S <= 0) 
        ;
    *S–– ; 
}

void signal (int *S)
{
    *S++;
}
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Problem With All Earlier Solutions ?

 Busy waiting or spinlocks
 process may loop continuously in the entry code to the critical section

 Disadvantage of busy waiting
 waiting process holds on to the CPU during its time-slice
 does no useful work
 does not let any other process do useful work

 Multiprocessors still do use busy-waiting solutions.
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Semaphore with no Busy waiting 

 Associate waiting queue with each semaphore
 Semaphore (no busy waiting definition)

 integer value
 waiting queue

typedef struct {
     int value;
     struct process *list;
} semaphore;

                        



3
6

Operations on Semaphore
 with no Busy waiting (2)

• Wait ( ) operation

wait (semaphore *S) {
    S–>value–– ;
    if (S–>value < 0) {
        // add process to 
        // S –>list
        
        block ( );
    }
}

block ( ) suspends the 
process that invokes it.

• Signal ( ) operation

signal (semaphore *S) {
    S–>value++ ;
    if (S–>value >= 0) {
        // remove process P 
        // from S –>list
        
        wakeup (P);
    }
}

wakeup ( ) resumes 
execution of the blocked 
process P.
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Atomic Implementation of 
Semaphore Operations

 Guarantee that wait and signal operations are atomic
 critical section problem again ?
 how to ensure atomicity of wait and signal ?

 Ensuring atomicity of wait and signal
 implement semaphore operations using hardware solutions
 uniprocessors – enable/disable interrupts
 multiprocessors – using spinlocks around wait and signal

 Did we really solve the busy-waiting problem
 NO!
 but we shifted its location, only busy-wait around wait and signal
 wait and signal are small routines
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Deadlock

 Deadlock
 two or more processes are waiting indefinitely for an event that can be 

caused by only one of the waiting processes
 Example: S and Q be two semaphores initialized to 1

        P00                             P11
     wait (S);                                    wait (Q);
      wait (Q);                                      wait (S);

. .

. .

. .
      signal  (S);                                   signal (Q);
      signal (Q);                                    signal (S);
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Starvation and Priority Inversion

 Indefinite blocking or starvation
 process is not deadlocked
 but is never removed from the semaphore queue

 Priority inversion
 lower-priority process holds a lock needed by higher-priority process !
 assume three processes L, M, and H
 priorities in the order L < M < H
 L holds shared resource R, needed by H
 M preempts L, H needs to wait for both L and M !!
 solutions

 only support at most two priorities
 priority inheritance protocol – lower priority process accessing shared 

resource inherits higher priority
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Problem Solving Using Semaphores

 Bounded-buffer problem
 Readers-Writers problem
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Bounded-Buffer Problem

 Problem synopsis
 a set of resource buffers shared by producer and consumer threads

 buffers are shared between producer and consumer
 producer inserts resources into the buffers

 output, disk blocks, memory pages, processes, etc.
 consumer removes resources from the buffer set

 whatever is generated by the producer
 producer and consumer execute asynchronously

 no serialization of one behind the other
 CPU scheduler determines what run when

 Ensure data (buffer) consistency
 consumer should see each produced item at least once
 consumer should see each produced item at most once
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Bounded Buffer Problem (2)

 Solution employs three semaphores
 mutex 

 allow exclusive access to the buffer pools
 mutex semaphore, initialized to 1

 empty
 count number of empty buffers
 counting semaphore, initialized to n (the total number of available buffers)

 full
 count number of full buffers
 counting semaphore, initialized to 0
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Bounded Buffer Problem (3)

Semaphore bool mutex;

Semaphore int full, empty;

do {

    Produce new resource

    wait (empty);

    wait (mutex);

    Add resource to next buffer

    signal (mutex);

    signal (full);

} while (TRUE);      

Producer
do {

    wait (full);

    wait (mutex);

    Remove resource from buffer  

    signal (mutex);

    signal (empty);

    Consume resource

} while (TRUE);      

Consumer
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Readers – Writers Problem

 Problem synopsis
 an object shared among several threads
 some threads only read the object (Readers)
 some threads only write the object (Writers)

 Problem is to ensure data consistency
 multiple readers can access the shared resource simultaneously
 only one writer should update the object at a time
 readers should not access the object as it is being updated
 additional constraint

 readers have priority over writers
 easier to implement
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Readers – Writers Problem (2)

 We use two semaphores
 mutex

 ensure mutual exclusion for the readcount variable
 mutex semaphore, initialized to 1

 wrt
 ensure mutual exclusion for writers
 ensure mutual exclusion between readers and writer
 mutex semaphore, initialized to 1
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Readers – Writers Problem (3)

semaphore bool mutex, wrt;
int readcount;

do {

    wait (wrt);

    . . . .

     write object resource

    . . . .

    signal (wrt);

} while (TRUE);      

Writer
do {
    wait (mutex);
    readcount++;
    if (readcount == 1)
        wait (wrt);
    signal (mutex);
    read from object resource
    wait (mutex);
    readcount––;
    if (readcount == 0)
        signal (wrt);
    signal (mutex);
} while (TRUE);      

Reader
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Semaphore – Summary

 Semaphores can be used to solve any of the traditional 
synchronization problems

 Drawbacks of semaphores
 semaphores are essentially shared global variables

 can be accessed from anywhere in a program
 semaphores are very low-level constructs

 no connection between semaphore and data controlled by a semaphore
 difficult to use

 used for both critical section (mutual exclusion) and coordination 
(scheduling)

 provides no control of proper usage
 user may miss a wait or signal, or replace order of wait, and signal

 The solution is to use programming-language level support.
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Monitors

 Monitor is a programming language construct that controls 
access to shared data
 synchronization code added by the compiler
 synchronization enforced by the runtime

 Monitor is an abstract data type (ADT) that encapsulates
 shared data structures
 procedures that operate on the shared data structures
 synchronization between the concurrent procedure invocations

 Protects the shared data structures inside the monitor from 
outside access.

 Guarantees that monitor procedures (or operations) can only 
legitimately update the shared data.
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Monitor Semantics for Mutual Exclusion

 Only one thread can execute any monitor procedure at a time.
 Other threads invoking a monitor procedure when one is already 

executing some monitor procedure must wait.
 When the active thread exits the monitor procedure, one other 

waiting thread can enter.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread
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Monitor for Mutual Exclusion

Monitor Account {

    double balance;

    double withdraw (amount) {

        balance = balance – 

                       amount ;

        return balance;

    }

}

withdraw (amount) {
    balance = balance – amount;

withdraw (amount)

withdraw (amount)

    return balance; 
} ( release lock and exit )

    balance = balance – amount;
    return balance; 
} ( release lock and exit )

    balance = balance – amount;
    return balance; 
} ( release lock and exit )

1

2

3

1

3

2
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Monitor for Coordination 

 What if a thread needs to wait inside a monitor
 waiting for some resource, like in producer-consumer relationship
 monitor with condition variables.

 Condition variables provide mechanism to wait for events
 resource available, no more writers, etc.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread

release

acquire

suspended thread

Wait Set
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Condition Variable Semantics

 Condition variables support two operations
 wait – release monitor lock, and suspend thread

 condition variables have wait queues
 signal – wakeup one waiting thread

 if no process is suspended, then signal has no affect

 Signal semantics
 Hoare monitors (original)

 signal immediately switches from the caller to the waiting thread
 waiter's condition is guaranteed to hold when it continues execution

 Mesa monitors
 waiter placed on ready queue, signaler continues 
 waiter's condition may no longer be true when it runs

 Compromise - signaler immediately leaves monitor, waiter resumes operation
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Bounded Buffer Using Monitors

Monitor bounded_buffer {

    Resource buffer[N];

    // condition variables

    Condition empty, full;

    void producer (Resource R) {

        while (buffer full)

            empty.wait( );

        // add R to buffer array

        full.signal( );

    }

    Resource consumer ( ) {

        while (buffer empty)

            full.wait( );

        // get Resource from buffer 

        empty.signal( );

        return R;

    }

} // end monitor
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Condition Variables
 Condition variables are not booleans

 ''if (condition_variable) then … '' is not logically correct
 wait( ) and signal( ) are the only operations that are correct

 Condition variable != Semaphores
 they have very different semantics
 each can be used to implement the other

 Wait ( ) semantics
 wait blocks the calling thread, and gives up the lock
 Semaphore::wait just blocks the calling thread
 only monitor operations can call wait ( ) and signal ( )

 Signal ( ) semantics
 if there are no waiting threads, then the signal is lost
 Semaphore::signal just increases global variable count, allowing entry to 

future thread
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 Monitor with Condition Variables
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Dining Philosophers Problem

 Represents need to allocate several resources among several 
processes in a deadlock-free and starvation-free manner.

 Problem synopsis
 5 philosophers, circular table
 2 states, hungry and thinking
 5 single chopsticks
 hungry, pick up two chopsticks

 right and left
 may only pick up one stick at a time
 eat when have both sticks

 Problem definition
 allow each philosopher to eat and think 

without deadlocks and starvation
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Dining Philosophers Problem (2)

 Restriction on the problem
 only pick chopsticks if both are available

 Problem solution
 use three states, thinking, hungry, eating
 condition variable for each philosopher

 delay if hungry but waiting for chopsticks
 invoke monitor operations in the following sequence

DiningPhilosophers.pickup (i);

    ......

     // eat 

    .......

DiningPhilosophers.putdown (i);
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Solution to Dining Philosophers
Monitor DP
{ 
    enum { THINKING; HUNGRY,    
 EATING) state [5] ;
    condition self [5];

    void pickup (int i) 
    { 
        state[i] = HUNGRY;
        test(i);
        if (state[i] != EATING) 
            self [i].wait;
    }

    void putdown (int i) 
    { 
        state[i] = THINKING;
        // test neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);
    }

    void test (int i) 
    { 
        if ( (state[(i + 4) % 5] !=          
        EATING) &&
           (state[i] == HUNGRY) &&
           (state[(i + 1) % 5] !=            
          EATING) ) { 
                state[i] = EATING ;
                self[i].signal () ;

 }
    }

    initialization_code() { 
        for (int i = 0; i < 5; i++)
            state[i] = THINKING;
    }

} // end monitor
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OS Implementation Issues

 How to wait on a lock held by another thread ?
 sleeping or spin-waiting

 Overhead of spin-waiting
 a spinning thread occupies the CPU; slows progress of all other threads, 

including the one holding the lock

 Overhead of sleeping
 issue a wait and sleep; send signal to sleeping thread; wakeup thread; 

multiple context switches

 Spin-waiting is used on
 multiprocessor systems
 when the thread holding the lock is the one running
 locked data is only accessed by short code segments
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OS Implementation Issues (2)

 Reader-writer locks
 used when shared data is read more often
 more expensive to set up than mutual exclusion locks

 Non-preemptive kernel
 process in kernel mode cannot be preempted
 used in Linux on single processor machines
 uses preempt_disable() and preempt_enable()system calls
 spin-locks, semaphores used on multiprocessor machines
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Atomic Transactions

 Transaction – collection of instructions that perform a single 
logical function

 Atomicity – execute transaction as one uninterruptible unit
 Mutual exclusion – execute critical sections atomically

 what happens if system fails during a transaction ?
 how to preserve atomicity in the possibility of system failures ?

 Committed – transaction has completed successfully
 Aborted – transaction has failed

 rollback the transaction to previous consistent state, called recovery

 Strategies
 log-based recovery
 checkpoints
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Concurrent Atomic Transactions

 Serializability – execution of multiple concurrent transactions is 
equivalent to their execution in an arbitrary order
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