
1

Process Synchronization – Outline

 Why do processes need synchronization ?
 What is the critical-section problem ?
 Describe solutions to the critical-section problem

 Peterson’s solution
 using synchronization hardware
 semaphores
 monitors

 Classic Problems of Synchronization
 What are atomic transactions ?



2

Why Process Synchronization ?
 Processes may cooperate with each other

 producer-consumer and service-oriented system models
 exploit concurrent execution on multiprocessors

 Cooperating processes may share data (globals, files, etc)
 imperative to maintain data correctness

 Why is data correctness in danger ?
 process run asynchronously, context switches can happen at any time
 processes may run concurrently
 different orders of updating shared data may produce different values

 Process synchronization
 to coordinate updates to shared data
 order of process execution should not affect shared data

 Only needed when processes share data !



3

Producer-Consumer Data Sharing

while (true){

    /* wait if buffer full */
    while (counter == 10)
     ;  /* do nothing */

    /* produce data */
    buffer[in] = sdata;
    in = (in + 1) % 10;

    /* update number of 
        items in buffer */
    counter++;
}

while (true){

    /* wait if buffer empty */
    while (counter == 0)
     ;  /* do nothing */

    /* consume data */
    sdata = buffer[out];
    out = (out + 1) % 10;

    /* update number of 
        items in buffer */
    counter--;
}

Producer Consumer



4

Producer-Consumer Data Sharing

while (true){

    /* wait if buffer full */
    while (counter == 10)
     ;  /* do nothing */

    /* produce data */
    buffer[in] = sdata;
    in = (in + 1) % 10;

    /* update number of 
        items in buffer */
    R1 = load (counter);
    R1 = R1 + 1;
    counter = store (R1);
}

while (true){

    /* wait if buffer empty */
    while (counter == 0)
     ;  /* do nothing */

    /* consume data */
    sdata = buffer[out];
    out = (out + 1) % 10;

    /* update number of 
        items in buffer */
    R2 = load (counter);
    R2 = R2 – 1;
    counter = store (R2);
}

Producer Consumer



5

 Suppose counter = 5

 Race condition is a situation where
 several processes concurrently manipulate shared data, and
 shared data value depends on the order of execution

Race Condition

    R1 = load (counter);
    R1 = R1 + 1;
    R2 = load (counter);
    R2 = R2 – 1;    
    counter = store (R1);
    counter = store (R2);

Final Value in counter = 4!

    R1 = load (counter);
    R1 = R1 + 1;
    R2 = load (counter);
    R2 = R2 – 1;    
    counter = store (R2);
    counter = store (R1);

Final Value in counter = 6!

Incorrect Sequence 1 Incorrect Sequence 2



6

Critical Section Problem

 Region of code in a process updating shared data is called a 
critical region.

 Concurrent updating of shared data by multiple processes is 
dangerous.

 Critical section problem
 how to ensure synchronization between cooperating processes ?

 Solution to the critical section problem
 only allow a single process to enter its critical section at a time

 Protocol for solving the critical section problem
 request permission to enter critical section
 indicate after exit from critical section
 only permit a single process at a time



7

Solution to the Critical Section Problem

 Formally states, each solution should ensure
 mutual exclusion: only a single process can execute in its critical section at 

a time
 progress: selection of a process to enter its critical section should be fair, 

and the decision cannot be postponed indefinitely.
 bounded waiting: there should be a fixed bound on how long it takes for the 

system to grant a process's request to enter its critical section

 Other than satisfying these requirements, the system should 
also guard against deadlocks.



8

Preemptive Vs. Non-preemptive Kernels

 Several kernel processes share data
 structures for maintaining file systems, memory allocation, interrupt 

handling, etc.

 How to ensure OSes are free from race conditions ?
 Non–preemptive kernels

 process executing in kernel mode cannot be preempted
 disable interrupts when process is in kernel mode
 what about multiprocessor systems ?

 Preemptive kernels
 process executing in kernel mode can be preempted
 suitable for real-time programming
 more responsive



9

Peterson’s Solution to 
Critical Section Problem

 Software based solution
 Only supports two processes
 The two processes share two variables:

 int turn; 
 indicates whose turn it is to enter the critical section

 boolean flag[2]
 indicates if a process is ready to enter its critical section



1
0

 Solution meets all three requirements
 P0 and P1 can never be in the critical section at the same time
 if P0 does not want to enter critical region, P1 does no waiting
 process waits for at most one turn of the other to progress

Peterson's Solution

do { 
    flag[0] = TRUE; 
    turn = 1; 
    while (flag[1]  &&  turn==1)
        ; 
    // critical section
    
    flag[0] = FALSE; 
    
    // remainder section 
} while (TRUE)

do { 
    flag[1] = TRUE; 
    turn = 0; 
    while (flag[0]  &&  turn==0)
        ; 
    // critical section
    
    flag[1] = FALSE; 
    
    // remainder section 
} while (TRUE)

Process 0 Process 1



1
1

Peterson's Solution – Notes

 Only supports two processes
 generalizing for more than two processes has been achieved

 Assumes that the LOAD and STORE instructions are atomic
 Assumes that memory accesses are not reordered
 May be less efficient than a hardware approach

 particularly for >2 processes



1
2

Lock-Based Solutions

 General solution to the critical section problem
 critical sections are protected by locks
 process must acquire lock before entry
 process releases lock on exit

do {
    acquire lock;

        critical section

    release lock;

        remainder section

} while(TRUE);



1
3

Hardware Support for Lock-Based 
Solutions – Uniprocessors

 For uniprocessor systems
 concurrent processes cannot be overlapped, only interleaved
 process runs until it invokes system call, or is interrupted 

 Disable interrupts !
 active process will run without preemption

do {

    disable interrupts;
        critical section
    enable interrupts;

        remainder section
} while(TRUE);



1
4

Hardware Support for Lock-Based 
Solutions – Multiprocessors

 In multiprocessors
 several processes share memory
 processors behave independently in a peer manner

 Disabling interrupt based solution will not work
 too inefficient
 OS using this not broadly scalable

 Provide hardware support in the form of atomic instructions
 atomic test-and-set instruction
 atomic swap instruction
 atomic compare-and-swap instruction

 Atomic execution of a set of instructions means that instructions 
are treated as a single step that cannot be interrupted.



1
5

TestAndSet Instruction 

 Pseudo code definition of TestAndSet

         boolean TestAndSet (boolean *target)
          {
               boolean rv = *target;
               *target = TRUE;
               return rv:
          }



1
6

Mutual Exclusion using TestAndSet

int mutex;
init_lock (&mutex);

do {

    lock (&mutex);
        critical section
    unlock (&mutex);

        remainder section
} while(TRUE);

void init_lock (int *mutex)
{
    *mutex = 0;
}

void lock (int *mutex)
{
    while(TestAndSet(mutex))
        ;
}

void unlock (int *mutex)
{
    *mutex = 0;
}



1
7

Swap  Instruction

 Psuedo code definition of swap instruction

         void Swap (boolean *a, boolean *b)
          {
                  boolean temp = *a;
                  *a = *b;
                  *b = temp:
          }



1
8

Mutual Exclusion using Swap

int mutex;
init_lock (&mutex);

do {

    lock (&mutex);
        critical section
    unlock (&mutex);

        remainder section
} while(TRUE);

void init_lock (int *mutex) {
    *mutex = 0;
}

void lock (int *mutex) {
    int key = TRUE;
    do {
        Swap(&key, mutex);
    }while(key == TRUE);
}

void unlock (int *mutex) {
    *mutex = 0;
}

Fairness not guaranteed by any implementation !



1
9

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 0

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=0, waiting[1]=0



2
0

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 1

Process i = 0

lock=FALSE, key=FALSE, waiting[0]=1, waiting[1]=1



2
1

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 2

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1



2
2

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 3

Process i = 0

lock=FALSE, key=TRUE, waiting[0]=1, waiting[1]=1



2
3

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 4

Process i = 0

lock=TRUE, key=FALSE, waiting[0]=1, waiting[1]=1

Process 0 
wins 

the race



2
4

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 5

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1



2
5

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 6

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1



2
6

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 7

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1

j = 1



2
7

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 8

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1



2
8

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 9

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=1



2
9

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 10

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0



3
0

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 11

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0



3
1

Bounded Waiting Solution

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != i) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;  
    // Remainder Section
} while (TRUE);

do{
    waiting[i] = TRUE;
    key = TRUE;
    while(waiting[i] && key)
        key = TestAndSet(&lock);
    waiting[i] = FALSE;

    // Critical Section

    j = (i + 1) % n;
    while ((j != I) && !waiting[j])
        j = (j+1) % n;

    if (j == i )
        lock = FALSE;
    else
        waiting[j] = FALSE;
    // Remainder Section
} while (TRUE);

Process i = 0 Process i = 1

Cycle = 12

Process i = 0

lock=TRUE, key=TRUE, waiting[0]=0, waiting[1]=0



3
2

Semaphores
 Another solution to the critical section problem

 higher-level than using direct ISA instructions
 similar to locks, but semantics are different

 Semaphore (simple definition)
 is an integer variable
 only accessed via init( ), wait( ), and signal( ) operations
 all semaphore operations are atomic

 Binary semaphores
 value of semaphore can either be 0 or 1
 used for providing mutual exclusion

 Counting semaphore
 can have any integer value
 access control to some finite resource



3
3

Mutual Exclusion Using Semaphores

int S;
sem_init (&S);

do {

    wait (&S);
        // critical section
    signal (&S);

        // remainder section

} while(TRUE);

void sem_init (int *S)
{
    *S = 0;
}

void wait (int *S)
{
    while (*S <= 0) 
        ;
    *S–– ; 
}

void signal (int *S)
{
    *S++;
}



3
4

Problem With All Earlier Solutions ?

 Busy waiting or spinlocks
 process may loop continuously in the entry code to the critical section

 Disadvantage of busy waiting
 waiting process holds on to the CPU during its time-slice
 does no useful work
 does not let any other process do useful work

 Multiprocessors still do use busy-waiting solutions.



3
5

Semaphore with no Busy waiting 

 Associate waiting queue with each semaphore
 Semaphore (no busy waiting definition)

 integer value
 waiting queue

typedef struct {
     int value;
     struct process *list;
} semaphore;

                        



3
6

Operations on Semaphore
 with no Busy waiting (2)

• Wait ( ) operation

wait (semaphore *S) {
    S–>value–– ;
    if (S–>value < 0) {
        // add process to 
        // S –>list
        
        block ( );
    }
}

block ( ) suspends the 
process that invokes it.

• Signal ( ) operation

signal (semaphore *S) {
    S–>value++ ;
    if (S–>value >= 0) {
        // remove process P 
        // from S –>list
        
        wakeup (P);
    }
}

wakeup ( ) resumes 
execution of the blocked 
process P.



3
7

Atomic Implementation of 
Semaphore Operations

 Guarantee that wait and signal operations are atomic
 critical section problem again ?
 how to ensure atomicity of wait and signal ?

 Ensuring atomicity of wait and signal
 implement semaphore operations using hardware solutions
 uniprocessors – enable/disable interrupts
 multiprocessors – using spinlocks around wait and signal

 Did we really solve the busy-waiting problem
 NO!
 but we shifted its location, only busy-wait around wait and signal
 wait and signal are small routines



3
8

Deadlock

 Deadlock
 two or more processes are waiting indefinitely for an event that can be 

caused by only one of the waiting processes
 Example: S and Q be two semaphores initialized to 1

        P00                             P11
     wait (S);                                    wait (Q);
      wait (Q);                                      wait (S);

. .

. .

. .
      signal  (S);                                   signal (Q);
      signal (Q);                                    signal (S);



3
9

Starvation and Priority Inversion

 Indefinite blocking or starvation
 process is not deadlocked
 but is never removed from the semaphore queue

 Priority inversion
 lower-priority process holds a lock needed by higher-priority process !
 assume three processes L, M, and H
 priorities in the order L < M < H
 L holds shared resource R, needed by H
 M preempts L, H needs to wait for both L and M !!
 solutions

 only support at most two priorities
 priority inheritance protocol – lower priority process accessing shared 

resource inherits higher priority



4
0

Problem Solving Using Semaphores

 Bounded-buffer problem
 Readers-Writers problem



4
1

Bounded-Buffer Problem

 Problem synopsis
 a set of resource buffers shared by producer and consumer threads

 buffers are shared between producer and consumer
 producer inserts resources into the buffers

 output, disk blocks, memory pages, processes, etc.
 consumer removes resources from the buffer set

 whatever is generated by the producer
 producer and consumer execute asynchronously

 no serialization of one behind the other
 CPU scheduler determines what run when

 Ensure data (buffer) consistency
 consumer should see each produced item at least once
 consumer should see each produced item at most once



4
2

Bounded Buffer Problem (2)

 Solution employs three semaphores
 mutex 

 allow exclusive access to the buffer pools
 mutex semaphore, initialized to 1

 empty
 count number of empty buffers
 counting semaphore, initialized to n (the total number of available buffers)

 full
 count number of full buffers
 counting semaphore, initialized to 0



4
3

Bounded Buffer Problem (3)

Semaphore bool mutex;

Semaphore int full, empty;

do {

    Produce new resource

    wait (empty);

    wait (mutex);

    Add resource to next buffer

    signal (mutex);

    signal (full);

} while (TRUE);      

Producer
do {

    wait (full);

    wait (mutex);

    Remove resource from buffer  

    signal (mutex);

    signal (empty);

    Consume resource

} while (TRUE);      

Consumer



4
4

Readers – Writers Problem

 Problem synopsis
 an object shared among several threads
 some threads only read the object (Readers)
 some threads only write the object (Writers)

 Problem is to ensure data consistency
 multiple readers can access the shared resource simultaneously
 only one writer should update the object at a time
 readers should not access the object as it is being updated
 additional constraint

 readers have priority over writers
 easier to implement



4
5

Readers – Writers Problem (2)

 We use two semaphores
 mutex

 ensure mutual exclusion for the readcount variable
 mutex semaphore, initialized to 1

 wrt
 ensure mutual exclusion for writers
 ensure mutual exclusion between readers and writer
 mutex semaphore, initialized to 1



4
6

Readers – Writers Problem (3)

semaphore bool mutex, wrt;
int readcount;

do {

    wait (wrt);

    . . . .

     write object resource

    . . . .

    signal (wrt);

} while (TRUE);      

Writer
do {
    wait (mutex);
    readcount++;
    if (readcount == 1)
        wait (wrt);
    signal (mutex);
    read from object resource
    wait (mutex);
    readcount––;
    if (readcount == 0)
        signal (wrt);
    signal (mutex);
} while (TRUE);      

Reader



4
7

Semaphore – Summary

 Semaphores can be used to solve any of the traditional 
synchronization problems

 Drawbacks of semaphores
 semaphores are essentially shared global variables

 can be accessed from anywhere in a program
 semaphores are very low-level constructs

 no connection between semaphore and data controlled by a semaphore
 difficult to use

 used for both critical section (mutual exclusion) and coordination 
(scheduling)

 provides no control of proper usage
 user may miss a wait or signal, or replace order of wait, and signal

 The solution is to use programming-language level support.



4
8

Monitors

 Monitor is a programming language construct that controls 
access to shared data
 synchronization code added by the compiler
 synchronization enforced by the runtime

 Monitor is an abstract data type (ADT) that encapsulates
 shared data structures
 procedures that operate on the shared data structures
 synchronization between the concurrent procedure invocations

 Protects the shared data structures inside the monitor from 
outside access.

 Guarantees that monitor procedures (or operations) can only 
legitimately update the shared data.



4
9

Monitor Semantics for Mutual Exclusion

 Only one thread can execute any monitor procedure at a time.
 Other threads invoking a monitor procedure when one is already 

executing some monitor procedure must wait.
 When the active thread exits the monitor procedure, one other 

waiting thread can enter.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread



5
0

Monitor for Mutual Exclusion

Monitor Account {

    double balance;

    double withdraw (amount) {

        balance = balance – 

                       amount ;

        return balance;

    }

}

withdraw (amount) {
    balance = balance – amount;

withdraw (amount)

withdraw (amount)

    return balance; 
} ( release lock and exit )

    balance = balance – amount;
    return balance; 
} ( release lock and exit )

    balance = balance – amount;
    return balance; 
} ( release lock and exit )

1

2

3

1

3

2



5
1

Monitor for Coordination 

 What if a thread needs to wait inside a monitor
 waiting for some resource, like in producer-consumer relationship
 monitor with condition variables.

 Condition variables provide mechanism to wait for events
 resource available, no more writers, etc.

Entry Set

Owner

acquireenter

release and
exit

waiting thread

active thread

release

acquire

suspended thread

Wait Set



5
2

Condition Variable Semantics

 Condition variables support two operations
 wait – release monitor lock, and suspend thread

 condition variables have wait queues
 signal – wakeup one waiting thread

 if no process is suspended, then signal has no affect

 Signal semantics
 Hoare monitors (original)

 signal immediately switches from the caller to the waiting thread
 waiter's condition is guaranteed to hold when it continues execution

 Mesa monitors
 waiter placed on ready queue, signaler continues 
 waiter's condition may no longer be true when it runs

 Compromise - signaler immediately leaves monitor, waiter resumes operation



5
3

Bounded Buffer Using Monitors

Monitor bounded_buffer {

    Resource buffer[N];

    // condition variables

    Condition empty, full;

    void producer (Resource R) {

        while (buffer full)

            empty.wait( );

        // add R to buffer array

        full.signal( );

    }

    Resource consumer ( ) {

        while (buffer empty)

            full.wait( );

        // get Resource from buffer 

        empty.signal( );

        return R;

    }

} // end monitor



5
4

Condition Variables
 Condition variables are not booleans

 ''if (condition_variable) then … '' is not logically correct
 wait( ) and signal( ) are the only operations that are correct

 Condition variable != Semaphores
 they have very different semantics
 each can be used to implement the other

 Wait ( ) semantics
 wait blocks the calling thread, and gives up the lock
 Semaphore::wait just blocks the calling thread
 only monitor operations can call wait ( ) and signal ( )

 Signal ( ) semantics
 if there are no waiting threads, then the signal is lost
 Semaphore::signal just increases global variable count, allowing entry to 

future thread



5
5

 Monitor with Condition Variables



5
6

Dining Philosophers Problem

 Represents need to allocate several resources among several 
processes in a deadlock-free and starvation-free manner.

 Problem synopsis
 5 philosophers, circular table
 2 states, hungry and thinking
 5 single chopsticks
 hungry, pick up two chopsticks

 right and left
 may only pick up one stick at a time
 eat when have both sticks

 Problem definition
 allow each philosopher to eat and think 

without deadlocks and starvation



5
7

Dining Philosophers Problem (2)

 Restriction on the problem
 only pick chopsticks if both are available

 Problem solution
 use three states, thinking, hungry, eating
 condition variable for each philosopher

 delay if hungry but waiting for chopsticks
 invoke monitor operations in the following sequence

DiningPhilosophers.pickup (i);

    ......

     // eat 

    .......

DiningPhilosophers.putdown (i);



5
8

Solution to Dining Philosophers
Monitor DP
{ 
    enum { THINKING; HUNGRY,    
 EATING) state [5] ;
    condition self [5];

    void pickup (int i) 
    { 
        state[i] = HUNGRY;
        test(i);
        if (state[i] != EATING) 
            self [i].wait;
    }

    void putdown (int i) 
    { 
        state[i] = THINKING;
        // test neighbors
        test((i + 4) % 5);
        test((i + 1) % 5);
    }

    void test (int i) 
    { 
        if ( (state[(i + 4) % 5] !=          
        EATING) &&
           (state[i] == HUNGRY) &&
           (state[(i + 1) % 5] !=            
          EATING) ) { 
                state[i] = EATING ;
                self[i].signal () ;

 }
    }

    initialization_code() { 
        for (int i = 0; i < 5; i++)
            state[i] = THINKING;
    }

} // end monitor
    



5
9

OS Implementation Issues

 How to wait on a lock held by another thread ?
 sleeping or spin-waiting

 Overhead of spin-waiting
 a spinning thread occupies the CPU; slows progress of all other threads, 

including the one holding the lock

 Overhead of sleeping
 issue a wait and sleep; send signal to sleeping thread; wakeup thread; 

multiple context switches

 Spin-waiting is used on
 multiprocessor systems
 when the thread holding the lock is the one running
 locked data is only accessed by short code segments



6
0

OS Implementation Issues (2)

 Reader-writer locks
 used when shared data is read more often
 more expensive to set up than mutual exclusion locks

 Non-preemptive kernel
 process in kernel mode cannot be preempted
 used in Linux on single processor machines
 uses preempt_disable() and preempt_enable()system calls
 spin-locks, semaphores used on multiprocessor machines



6
1

Atomic Transactions

 Transaction – collection of instructions that perform a single 
logical function

 Atomicity – execute transaction as one uninterruptible unit
 Mutual exclusion – execute critical sections atomically

 what happens if system fails during a transaction ?
 how to preserve atomicity in the possibility of system failures ?

 Committed – transaction has completed successfully
 Aborted – transaction has failed

 rollback the transaction to previous consistent state, called recovery

 Strategies
 log-based recovery
 checkpoints



6
2

Concurrent Atomic Transactions

 Serializability – execution of multiple concurrent transactions is 
equivalent to their execution in an arbitrary order


	Module 6: Process Synchronization
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Peterson’s Solution
	Algorithm for Process Pi
	Slide 11
	Slide 12
	Synchronization Hardware
	Slide 14
	TestAndndSet Instruction
	Solution using TestAndSet
	Swap Instruction
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Semaphore Implementation with no Busy waiting
	Slide 36
	Slide 37
	Deadlock and Starvation
	Slide 39
	Slide 40
	Bounded-Buffer Problem
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Monitor with Condition Variables
	Slide 56
	Slide 57
	Slide 58
	Synchronization Examples
	Slide 60
	Atomic Transactions
	Slide 62

