
Containerization
Introduction to Containers, Docker and Kubernetes

EECS 768
Apoorv Ingle
ani@ku.edu

Containers

• Containers – lightweight VM or chroot on steroids
• Feels like a virtual machine

• Get a shell
• Install packages
• Run applications
• Run services

• But not really
• Uses host kernel
• Cannot boot OS
• Does not need PID 1

• Process visible to host machine

Containers

• VM vs Containers

Containers

• Container Anatomy
• cgroup: limit the use of resources
• namespace: limit what processes can see (hence use)

Containers

• cgroup
• Resource metering and limiting

• CPU
• IO
• Network
• etc..

• $ ls /sys/fs/cgroup

Containers

• Separate Hierarchies for each resource subsystem (CPU, IO, etc.)
• Each process belongs to exactly 1 node
• Node is a group of processes

• Share resource

Containers

• CPU cgroup
• Keeps track

• user/system CPU
• Usage per CPU

• Can set weights
• CPUset cgroup
• Reserve to CPU to specific applications
• Avoids context switch overheads
• Useful for non uniform memory access (NUMA)

Containers

• Memory cgroup
• Tracks pages used by each group
• Pages can be shared across groups
• Pages “charged” to a group
• Shared pages “split the cost”
• Set limits on usage

Containers

• Namespaces
• Provides a view of the system to process
• Controls what a process can see

• Multiple namespaces
• pid
• net
• mnt
• uts
• ipc
• usr

Containers

• PID namespace
• Processes within a PID namespace see only process in the same namespace
• Each PID namespace has its own numbering staring from 1
• Namespace is killed when PID 1 goes away
• Nesting of namespaces possible

• Each process gets a multiple PID depending on the namespace

• Mnt namespace
• choot – each process gets its own root

Containers

• Namespaces
• <ns>:[<inode>]
• Same inode => same ns

• Namespaces manipulation
• $ nsenter

Containers

• cgroups and namespaces are orthogonal
• One can have systems
• Use only cgroups
• Or only name spaces
• Or both depending on the use case

• Every process in current Linux system is containerized

Docker

• Manages lifecycle of containers
• cgroups and namespace view is too low level

• Old version of docker based on LXC
• New version ships libcontainer/runc
• Same concept different name

Docker

• Platform
• dockerd – daemon server
• Client – instructs server
• CLI – embeds client

Docker

• Images
• Executable – includes application binary, libraries etc.

Docker

• Containers
• Runtime instances of images
• Just a process running on host OS

• cgroups and namespaces

Docker

• $ docker run -it ubuntu /bin/bash
• Runs image name ubuntu
• Start point bash

• $ docker run -it ubuntu -u nobody /bin/bash
• User is nobody instead of root
• Checks from passwd file

• Run command pulls image from repository if not locally stored
• Runs the image

Kubernetes

• Orchestration of containers
• Dynamic load balancer?
• OSS by Google in 2014

• Think of application rather than machines

• Stores information about which service is located where

Kubernetes

• Microservice architecture
• Roughly each service handles a business logic
• Service may consist of multiple processes on different hosts

• Scaling
• Add/reduce containers per application

• Healing
• Restart on failure

• Monitoring at different levels
• Container, service

Kubernetes

• Glossary
• Master: Main Orchestrator machine
• Node: Worker machines
• Pod: Group of containers on a node. Abstraction over network/fs
• Replication controller: Controls how many identical copies of a pod

should be running
• Kubelet: Monitoring. Runs on nodes to ensure the necessary

containers are started and running.

Kubernetes

Summary

• Containers
• cgroups and namespaces
• Uses same kernel

• Docker
• Abstraction over low-level cgroups and ns

• Kubernetes
• Container orchestrator for infrastructure

Questions?

References
• Anatomy of a Container: Namespaces, cgroups & Some Filesystem Magic, https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-

some-filesystem-magic-linuxcon

• Soltesz, Stephen, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson. 2007. “Container-Based Operating System Virtualization: A Scalable, High-
Performance Alternative to Hypervisors.” In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, 275–287. EuroSys ’07.
New York, NY, USA: ACM. https://doi.org/10.1145/1272996.1273025.

• Bernstein, D. 2014. “Containers and Cloud: From LXC to Docker to Kubernetes.” IEEE Cloud Computing 1 (3): 81–84. https://doi.org/10.1109/MCC.2014.51.

• Burns, Brendan, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. 2016. “Borg, Omega, and Kubernetes.” Queue 14 (1): 10:70–10:93.
https://doi.org/10.1145/2898442.2898444.

• “Everything You Need to Know about Linux Containers, Part I: Linux Control Groups and Process Isolation | Linux Journal.” n.d. Accessed April 16, 2019.
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process.

• “Everything You Need to Know about Linux Containers, Part II: Working with Linux Containers (LXC) | Linux Journal.” n.d. Accessed April 16, 2019.
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc.

• “Everything You Need to Know about Containers, Part III: Orchestration with Kubernetes | Linux Journal.” n.d. Accessed April 16, 2019.
https://www.linuxjournal.com/content/everything-you-need-know-about-containers-part-iii-orchestration-kubernetes.

https://www.slideshare.net/jpetazzo/anatomy-of-a-container-namespaces-cgroups-some-filesystem-magic-linuxcon
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1145/2898442.2898444
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-i-linux-control-groups-and-process
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-working-linux-containers-lxc
https://www.linuxjournal.com/content/everything-you-need-know-about-containers-part-iii-orchestration-kubernetes

