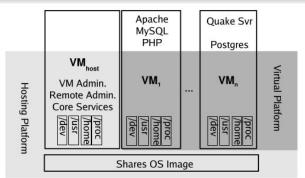
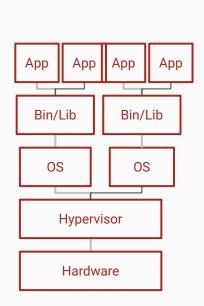
Container-based OS Virtualization

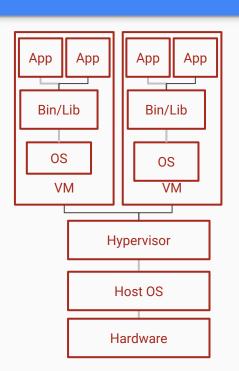
Dustin Wendt

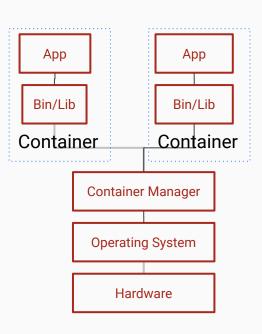
Outline

- Overview
- Isolation
- Benchmarks


Containers


- Forfeit some isolation for efficiency
- Shared Virtualized OS image
- Ran on a single kernel





Type 1 Hypervisor

Type 2 Hypervisor

Containers

Modifications to Operating System

- Xen hypervisor for i32 architecture requires 80K lines of code
- Paravirtualized Linux requires 15K
- VServer adds less than 8700 lines of code to the kernel
- However, VServer creates 50+ new kernel files and touches 300+ others

Usage Scenarios

- High Performance Computing Clusters
- Database Hosting
- Distributed Hosting
- Reproducing results on different hardware (Docker)

Hypervisors vs. Containers

Features	Hypervisors	Containers
Multiple Kernels	✓	×
Administrative Power (root)	✓	✓
Checkpoint & Resume	✓	✓
Live Migration	V	✓
Live System Update	X	V

Outline

- Overview
- Isolation
- Benchmarks

Full Isolation

- Fault Isolation
- Resource Isolation
- Security Isolation

Fault Isolation

- VMs separated from each other via address space in both hypervisor and container
- Only data and code shared is the virtualizing COS or hypervisor
- Any fault in shared code will have the whole system fail

Resource Isolation

COS handles

- CPU cycles
- I/O Bandwidth
- Memory/Disk Storage

All other physical resources are handled by privileged host VMs

VServer CPU Scheduling

- Token bucket filter on top of Linux CPU scheduler
- VMs can have a reservation or share of CPU time
- VMs with a share will be scheduled before idle tasks, but after reservations have been fulfilled

I/O Bandwidth

- Hierarchical token bucket (htb) of the Linux traffic controller
- Each VM is assigned a token bucket with a reserve and/or a share
- Having only a reservation indicates a capped outgoing bandwidth
- Excess bandwidth is assigned proportional to shares

Memory

- VServer allows setting limits on the amount of memory a VM can acquire
 - Resident Set Size (RSS)
 - # of anonymous memory pages
 - # of pages that can be mlock() and mlockall()
- Watchdog daemon if memory is limited

Security Isolation

- Separation of name spaces (contexts)
- Access controls (filters)
- Process Filtering
- Network Separation
- Chroot Barrier

VServer Process Filtering

- VServer reuses PID across all VMs
- Init process has to exist with PID 1. VServer also provides a per VM mapping to a fake init process
- At boot of a VServer system all processes belong to a default host VM
- VServer also has a spectator VM to look at all processes at once

Network Separation

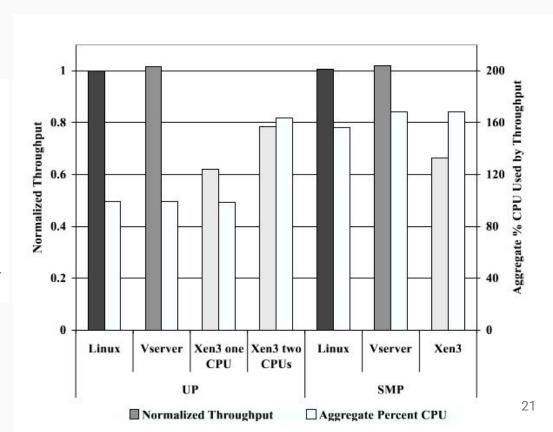
- OpenVZ fully virtualizes the network subsystem
- VServer shares the network subsystem between all VMs
- VMs are only able to bind sockets to IP addresses set
 - At VM creation
 - Dynamically by the Host VM

Problems with chroot

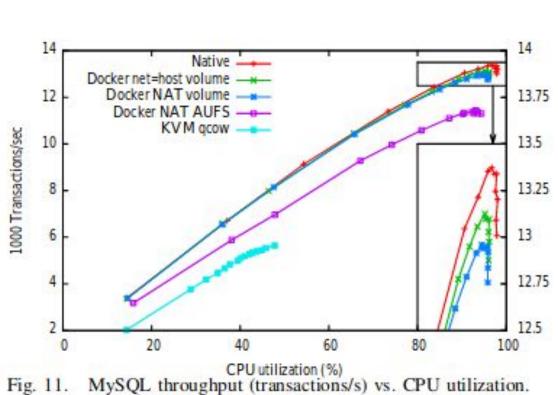
- Chroot is volatile
- Chroot does not close file descriptors
- VServer uses a file attribute, Chroot Barrier, that disallows a guest VM from going past its parent directory

Reducing Resources

- Hard link to shared files that are unlikely to change
- Mark the shared files as CoW
- One Linux server will take up 500MB of disk space and ten unified servers will take up 700MB


Outline

- Overview
- Isolation
- Benchmarks


Benchmarks (2007)

Config	Linux-UP	VServer-UP	Xen3-UP
fork process	103.2	103.4	282.7
exec process	252.9	253.6	734.4
sh process	1054.9	1047.1	1816.3
ctx (2p/0K)	2.254	2.496	3.549
ctx (16p/16K)	3.008	3.310	4.133
ctx (16p/64K)	5.026	4.994	6.354
page fault	1.065	1.070	2.245

Table 2: LMbench OS benchmark timings for uniprocessor kernels – times in μs

More Recent Benchmarks (2015)

References

http://linux-vserver.org/

- Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., & Peterson, L. (2007). Container-based operating system virtualization. *ACM SIGOPS Operating Systems Review, 41*(3), 275. doi:10.1145/1272998.1273025
- Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance comparison of virtual machines and Linux containers. 2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). doi:10.1109/ispass.2015.7095802

Questions?