
Interpreter Optimizations
Ruturaj Kiran Vaidya



Outline
● Background
● Context threading
● Superoperators
● Conclusion



Background
● Decode - Dispatch Interpreter - high interpretation cost
● Indirect Threaded Interpretation - dispatch code to - interpreter routines
● Direct Threaded Interpretation

○ Best choice amongst three



Background
Motivation:

● Direct-threaded - Indirect branches - to dispatch bytecodes
● Deeply-pipelined architecture rely on - branch predictors - for performance
● context problem - indirect branches are poorly predicted

Idea:

● Refine the dispatch itself - context threading
● Efficient or fewer dispatches - superoperators



Context Threading
Idea:

● Align hardware and virtual machine state
● i.e. correlate native pc (tpc) to vpc (spc)
● Improve branch prediction



Context Threading - direct threaded interpreter

Direct threaded interpreter

Diagram credits: http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf paper

Diagram credits: 
http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/slides/chapter2.pdf

http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf
http://www.ittc.ku.edu/~kulkarni/teaching/EECS768/slides/chapter2.pdf


Context Threading - direct threaded interpreter

But there is a problem with this approach

● Target of the dispatch branch depends on vpc, but not hardware pc
● context problem



Context threading - direct threaded interpreter

Image credits: http://www.cs.toronto.edu/syslab/talks/cgoAsWorkshop.pdf

http://www.cs.toronto.edu/syslab/talks/cgoAsWorkshop.pdf


Context threading - direct threaded interpreter

But there is a problem with this approach

● Target of the dispatch branch depends on vpc, but not hardware pc
● context problem

Leverage hardware predictors



Context threading
Virtual program may contain the following control flow types:

● Conditional branches
● Call and returns
● Unconditional branches
● Linear code

But direct threading uses indirect branches for all types of control flows

Idea: expose the virtual control flow patterns to the hardware, map spc and tpc



Context threading
● Handling linear dispatch
● Handling virtual branches
● handling virtual call and return



Context threading - Handling the control flow

Diagram credits: http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf

● Handling linear 
dispatch

● Uses CTT

http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf


Context threading - Handling the control flow

Diagram credits: http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf 

Handling virtual branches

● Inline the bodies into CTT

Handling virtual call and return

● new handler instructions are 
added

http://www.cs.toronto.edu/~matz/pubs/demkea_context.pdf


Context threading - Tiny inlining
● Context threading can be combined with inlining strategies
● Inline techniques can be used to reduce the pipeline hazards
● simple heuristic
● Inlining all the small bodies
● This removes dispatch overhead surrounding smallest bodies
● Further optimizing the context threaded interpreter



Context threading - Results
95% branch mispredictions eliminated on average

27% reduction in execution time on average

Results: https://webdocs.cs.ualberta.ca/~amaral/cascon/CDP05/slides/CDP05-berndl.pdf

https://webdocs.cs.ualberta.ca/~amaral/cascon/CDP05/slides/CDP05-berndl.pdf


Superoperators
● Efficient or fewer dispatches - as seen earlier
● An optimization technique for bytecode interpreters
● combines smaller atomic operations
● Decrease the executable size
● Increase speed



Superoperators
● simple e.g.:
● ADD(R, 4)
● Requires several virtual instructions
● Extend the virtual instruction set to add a single “super-instruction”
● Decreases the executable size and makes the interpreter faster
● lcc ir uses 109 operators
● why not use remaining 147 byte codes for superoperators



Superoperators
Inference Heuristic:

● Interpreter includes a heuristic method for inferring a good set of superoperators
● Reads IR trees and decides which adjacent operators to merge
● Each tree is weighted to guide the heuristic
● Optimize for space and time



Superoperators
Let’s take an example. 

1. Assume inputs trees with weights.
2. Now find the operator frequencies.
3. Now find the frequency of adjacent nodes.
4. Find the node with the highest frequency.
5. Repeat the operation.



Conclusion
● Context problem: Branch mispredictions due to the mismatch between virtual 

and native control flow
● Context threading method
● Superoperators - optimize the interpreters by reducing branches



Thanks for listening.


