
JIT Compilation and Dynamically Typed Languages

TJ Barclay

University of Kansas

April 26, 2019

1 / 28



Outline

1 Dynamic Programming Languages

2 JIT Compilation

3 Compiler Optimizations

4 Examples
ActionScript
Julia

2 / 28



Dynamic Programming Languages

3 / 28



Dynamic Programming Languages - Introduction

Static

”Stuff” happens at/before compile time

Dynamic

”Stuff” happens at runtime

”Stuff” includes:

Method binding

Typing

Program extension

Modifying objects/classes

4 / 28



Dynamic Typing vs Static Typing

Static typing: types are checked before runtime, for example Java checks
while compiling to bytecode
Dynamic typing: types are checked during runtime, Julia/Actionscript

5 / 28



Optional Typing

Dynamic typing but the programmer can force the type of a variable to be
something

6 / 28



JIT Compilation

7 / 28



What is JIT compilation?

Just-In-Time (JIT) compilation is compilation to machine code that
happens at runtime.

8 / 28



JIT Tradeoffs

Compilation speed vs. generating performant code

9 / 28



Compiler Optimizations

10 / 28



High-Level Optimization

High-Level Optimization

Optimization that requires knowledge about the language semantics and
runtime environment

Examples:

Type inference

Method inlining

Type speculation

Method specialization

Object unboxing

11 / 28



Low Level Optimization

Low-Level Optimization

Optimization that happens in any context, simply by observing the
structure of low-level IR

Examples:

Redundant load/store removal

Common subexpression elimination

Dead code elimination

Register allocation

12 / 28



Type Inference

Iterative data flow problem

Start from the most specific type and generalize
(contrast with Hindley-Milner)

Example in Julia

13 / 28

https://juliacomputing.com/blog/2016/04/04/inference-convergence.html


Examples

14 / 28



ActionScript

Dynamic programming language

Optionally typed

Programmer can specify type of variable or it has Any type

Tamarin VM

NanoJIT
Type Enriched Static Single Assignment (TESSA)

15 / 28



NanoJIT

Designed for fast compilation

ActionScript Bytecode (ABC)

Few optimizations

Common subexpression elimination
Redundant load/store removal

Untyped variables given the Any Type

requires C++ conversion code to be
inlined

16 / 28



TESSA

Designed to produce faster code

Performs heavier optimizations

Type inference
Method inlining
LLVM low-level optimizations

17 / 28



Evaluation

Comparing:

Generated code performance

Differing amounts of type information
Different backend optimization levels

JIT compilation time

18 / 28



Typed Code

19 / 28



Untyped Code

20 / 28



Partially Typed Code

21 / 28



Compilation Time

22 / 28



Julia

Dynamic programming language

Optionally typed

Multiple dispatch

Designed for fast development that can be later sped up

Can control memory layout of datatypes

23 / 28



Julia’s Optimizations

Method specialization

Type inference

Method inlining (In Julia methods are function implementations that
are ad hoc polymorphic)

Object unboxing

24 / 28



Evaluation

25 / 28



Conclusions

Conclusions:

High-level optimizations are key to performance gains

Large amounts of low-level optimization often takes too long to
justify the speedup

26 / 28



References

Mason Chang, Bernd Mathiske, Edwin Smith, Avik Chaudhuri,
Andreas Gal, Michael Bebenita, Christian Wimmer, and Michael
Franz.
2011. The impact of optional type information on jit compilation of
dynamically typed languages.
SIGPLAN Not. 47, 2 (October 2011), 13-24. DOI:
https://doi.org/10.1145/2168696.2047853

Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral
B. Shah, Jan Vitek, and Lionel Zoubritzky.
2018. Julia: dynamism and performance reconciled by design.
Proc. ACM Program. Lang. 2, OOPSLA, Article 120 (October 2018),
23 pages. DOI: https://doi.org/10.1145/3276490

27 / 28



Questions?

28 / 28


	Dynamic Programming Languages
	JIT Compilation
	Compiler Optimizations
	Examples
	ActionScript
	Julia


