
RT-Xen: Real-Time
Virtualization in Xen

Presented by: Waqar Ali
EECS-768

�1

Agenda
• Problem Statement

• Background

• RT-Xen

• Demonstration

• Active Research Topics

• Conclusion

!2

Main Sections

Agenda
• Problem Statement

• Contemporary Utility of System Virtual Machines

• Need for Real-Time Performance

• Background

• RT-Xen

• Demonstration

• Active Research Topics

• Conclusion

!3

Main Sections

Problem Statement

Utility

•Hardware is becoming increasingly more capable

• Example: Intel Xeon E7-8894 (48 Cores, 60 MB L3
Cache, Up-to 3-TB Main Memory)

• Single user not enough to employ all resources

• Solution: Virtualization!

•Use-Case: Amazon Cloud

•Multiple users utilizing high-end physical (server)
machines in virtualized environments

Contemporary Utility of System Virtual Machines

!4

• Purpose of System Virtual Machines

• Support multiple environments (users) on a single machine

Problem Statement
• Similar advancements in COTS embedded platforms

• SWaP (Size, Weight and Power) requirements are leading to
more consolidation

• Example: NVIDIA Jetson Xavier (8-Cores, 4-MB LLC, 512-Core
Volta GPU, 2 DL-Accelerators, VLIW Vision Processor, 16-GB
Main Memory)

• Use-Case: Virtualization for Cars

• 100s of ECUs N-physical processors

• Integrate multiple systems on a common platform (e.g., Xavier)

!5

Contemporary Utility of System Virtual Machines

Problem Statement
• Different systems have

different QoS
requirements

• Infotainment System -
Best-Effort Requirement

• Driver Assistance
System - Soft Real-
Time Requirement

• Emergency Braking
System - Hard Real-
Time Requirement

The Need for Real-Time Performance

!6

Reference: https://www.edn.com/design/automotive/4399434/
Multicore-and-virtualization-in-automotive-environments

Problem Statement
“In the virtualized environment, the real-time requirements of the individual
systems being virtualized must be respected.”

• Example

• VM-1: Braking system requires 5-ms response latency

• VM-2: Lane keeping assist requires bounded tardiness (the extent to
which a job can miss its deadline)

• VM-3: Streaming application requires a 20-FPS throughput

• Xen, by default, cannot guarantee this under the credit based scheduling
paradigm

• Each VM will get 1/3 of the CPU credit (Proportional Fairness)

• Hard real-time tasks cannot be analytically guaranteed their deadlines

The Need for Real-Time Performance

!7

Agenda
• Problem Statement

• Background

• Meaning of Real-Time

• Concepts from Scheduling Theory

• Fair Scheduling

• Real-Time Scheduling

• RT-Xen

• Demonstration

• Active Research Topics

• Conclusion

!8

Main Sections

Background
• Traditional meaning of Correctness

• Given an input, the system computes the logically right response

• Example: 2+2=4

• Real-Time Correctness

• Given an input, the system computes the logically right response
within a deterministic amount of time

• Example: An autonomous car applies brakes within 30-usec of
detecting an object in its way

• A logically correct output at a wrong time is a fault!

Meaning of Real-Time

!9

Background
• Purpose of Scheduling: Sharing of a resource among

multiple clients

• Example: CPU scheduling shares the CPU (resource)
among multiple processes (clients)

• Different scheduling schemes can provide different guarantees

• Fairness: Given N clients, each receives 1/Nth portion of
the resource

• Real-Time Response: Given N clients, the response time
constraints of each can be satisfied based on their priority

Concepts from Scheduling Theory

!10

Background
• Purpose: Ensure proportional fairness among clients

• Example: CFS (Completely Fair Scheduler) in Linux, Credit
Scheduler in Xen

• Fair Scheduling Illustration

• Two VCPUs on a single-core system

• Scheduling Granularity: 6-msec

• At each 6-msec boundary, both VCPUs would have been
given equal amount of CPU time

Fair Scheduling

!11

Background
• Purpose: Each client can execute its job with deterministic latency

• Example: FIFO, Round-Robin, Deadline in Linux

• RT Scheduling (FIFO) Illustration

• Two VCPUs on a single-core system, VCPU-1 high priority,
VCPU-2 low priority

• VCPU-1 guaranteed execution on physical core whenever ready

• Classic response time analysis (RTA) can be applied to
analytically verify schedulability

Real-Time Scheduling

!12

Background
“In a virtualized environment, real-time schedulability of the system cannot be
guaranteed unless the scheduler in each layer of abstraction is using a real-time
policy.”

• Xen, with credit scheduler, can provide no guarantee on the latency of the jobs
running in each VM

• Illustration

• System virtualized by Xen (Credit Scheduler)

• VM-1 running a real-time OS with FIFO policy

• VM-2 running Linux with CFS policy

• Tasksets in VM-1 cannot be guaranteed real-time performance since the root
scheduler is not real-time

Real-Time Scheduling in Xen

!13

Agenda
• Problem Statement

• Background

• RT-Xen

• Features

• Bringing RT to Xen

• Scheduling Policies

• Development over the Years

• Demonstration

• Active Research Topics

• Conclusion

!14

Main Sections

RT-Xen
• Real-Time VMM based on Xen

• Real-Time CPU Sharing among VMs

• Real-Time arbitration of IO / Network resources

• Spatial Isolation among VMs at Hardware Level

• Cache Level Isolation

• Memory Level Isolation

• Built on Compositional Scheduling Paradigm

• Provides real-time guarantees to tasks inside individual VMs

• Open-Source

Features

!15

RT-Xen
• Xen: Baremetal (i.e., Classic) System Virtual Machine

• Runs paravirtualized or fully virtualized OSes

Bringing RT to Xen

!16

• VMM Scheduler: Credit
based

• Assign Round-Robin
quanta of execution on
physical CPUs to each
client (i.e., VCPU) to
ensure proportional
fairness

Reference: https://www.cse.wustl.edu/~lu/papers/emsoft14-rt-xen.pdf

RT-Xen
• RT-Xen

• Each virtual machine is considered a real-time
resource interface defined by parameters

• Period, Budget, # of VCPUs

• The runtime parameters assigned to each interface are
determined based on its requirement using
Composition Scheduling Theory

• Each VM is scheduled with its assigned parameters
using a real-time scheduling policy

Bringing RT to Xen

!17

RT-Xen
• Supports both Global and Partitioned scheduling

• Dictates placement of VCPUs

• Allows selection of Static and Dynamic scheduling schemes

• Dictates ordering of VCPUs

• Static: RMS (FIFO, RR etc.)

• Dynamic: EDF

• Allows Server based scheduling schemes

• Mechanism for Resource Isolation

• Periodic, Polling, Deferrable, Sporadic

Scheduling Policies

!18

RT-Xen
• RT-Xen 1.0

• Introduced Single-Core RT scheduling

• RT-Xen 2.0

• Multi-Core RT scheduling

• RT-global

• RT-partition

Scheduling Policies: Development over the Years

!19

Agenda
• Problem Statement

• Background

• RT-Xen

• Demonstration

• Xen vs RT-Xen

• Active Research Topics

• Conclusion

!20

Main Sections

Demonstration
Xen vs RT-Xen

!21

• Setup

• Platform: Intel i7 Processor, 6 cores, 3.3 GHz

• Software: Xen-4.3 patched with RT-Xen

• Workload: Periodic real-time tasksets with increasing utilization

• Metric: Proportion of tasksets which are schedulable

• If all tasksets (i.e., 100%) of a given utilization are
schedulable, the algorithm is said to satisfy real-time
schedulability requirement

Demonstration
Xen vs RT-Xen

!22

Xen
RT-Xen}

Reference: https://www.cse.wustl.edu/~lu/papers/emsoft14-rt-xen.pdf

Agenda
• Problem Statement

• Background

• RT-Xen

• Demonstration

• Active Research Topics

• Hardware Level Resource Isolation

• Conclusion

!23

Main Sections

Active Research Topics
• In Multicore Platforms, resource sharing in hardware can lead to unpredictable

behavior

• Example

• Dual core system with shared Last-Level Cache (LLC)

• Miss in LLC incurs 100x penalty to memory request

• Application running in VCPU of Core-1 fits in LLC

• Application running in VCPU of Core-2 thrashes the LLC

• When run simultaneously, the execution time of application on Core-1 will
increase 100x

• Real-Time guarantees cannot be satisfied in an unmanaged system

Hardware Level Resource Isolation

!24

Active Research Topics
“In VMM context, real-time scheduling of CPUs is not enough to provide guaranteed
latencies to virtual guests.”

• Ensure isolation among VMs at hardware level

• Common Solution: Partitioning

• Paritioning in RT-Xen

• vCAT: Dynamic Cache Management using CAT Virtualization (2017)

• Mechanism to parition shared LLC among virtual guests in RT-Xen in Intel
Haswell processors

• Multi-Mode Virtualization for Soft Real-Time Systems (2018)

• Memory level isolation among VMs using page-coloring

Hardware Level Resource Isolation

!25

Conclusion
• Xen provides a mechanism to effictively utilize immensely

capable emerging hardware platforms among multiple users

• RT-Xen ensures real-time schedulability of virtual guests in
Xen

• Implements real-time scheduling policies

• Ensures hardware level isolation among virtual guests

• Immensely improves real-time schedulability over the
default credit scheduler of Xen

Key Takeaways

!26

QUESTIONS?

!27

