
1EECS 768 Virtual Machines

Introduction to Virtual Machines

• Introduction
• Abstraction and interfaces
• Virtualization
• Computer system architecture
• Process virtual machines
• System virtual machines

2EECS 768 Virtual Machines

Abstraction

• Mechanism to manage complexity in computer
systems.

• Mechanism consists of
– partition the design of a system into levels
– allow higher levels to ignore the implementation

details of lower levels

• In computer systems, lower levels are
implemented in hardware, and higher levels in
software.

3EECS 768 Virtual Machines

Interfaces

• An interface defines the communication
boundary between two entities
– hierarchical relationship
– linear relationship

• Software can run on any machine supporting a
compatible interface

PowerPC

MacOS

MacIntosh apps.

x86

Linux

Linux apps

x86

Windows

Windows apps.

4EECS 768 Virtual Machines

Interfaces – Advantages

• Allows de-coupling of computer design tasks
– each component provides an abstraction of itself to the

outside world

• Work on different components can progress
independently

• Helps manage system complexity

5EECS 768 Virtual Machines

Interface – Disadvantages

• Software compiled for one ISA will not run on
hardware with a different ISA
– powerPC binaries on an x86 machine ?

• Even if ISA's are same Oses may differ
– MS–Windows applications Sun Solaris ?

MacOS

MacIntosh apps

x86 x86

Windows apps.

Linux

6EECS 768 Virtual Machines

Interface – Disadvantages (2)

• Binaries may not be optimized for the platform
they run on
– Intel Pentium binaries on AMD Athlon ?

• Innovation may be inhibited by a fixed ISA
– hard to change instruction sets

• Application software cannot directly exploit
microprocessor implementation features
– software supposed to be implementation-neutral !

7EECS 768 Virtual Machines

Virtualization

• Removes some constraints imposed by system
interfaces, and increases flexibility
– improves availability of application software
– removes the assumption of a single management

regime, improving security and failure isolation

• Provide a different view to a particular computer
resource
– not necessarily a simpler view

8EECS 768 Virtual Machines

Virtualization (2)

• Virtualization constructs an isomorphism that
maps a virtual guest system to a real host.

Si S

Si' Sj'

Guest

Host

V(Si) V(S j)

e(Si)

e'(Si')

j

9EECS 768 Virtual Machines

Virtualization (3)

• Virtualization Vs. abstraction
– virtualization does not necessarily hide details

file
file

virtualization

10EECS 768 Virtual Machines

Virtual Machines

• Concept of virtualization applied to the entire
machine.

• A virtual machine is implemented by adding a
layer of software to a real machine to support
the desired virtual machine’s architecture.

• Virtualization
– mapping of virtual resources or state to real

resources
– use of real machine instructions to carry out actions

specified by the virtual machine instructions

11EECS 768 Virtual Machines

Some Benefits of VMs

• Flexibility
• Portability
• Isolation
• Security

12EECS 768 Virtual Machines

Computer System Architecture

• Architecture – functionality and appearance of a
computer system, but not the details of its
implementation

• Implementation – the actual embodiment of an
architecture

13EECS 768 Virtual Machines

Computer Architecture (2)

• Computer systems are
built of levels of
abstraction
– hierarchical abstraction
– well-defined interfaces

I/O devices
and

Networking

Controllers

System Interconnect
(bus)

Controllers

Memory
Translation

Execution Hardware

Drivers
Memory
Manager

Scheduler

Operating System

Libraries

Application
Programs

Main
Memory

Software

Hardware

14EECS 768 Virtual Machines

The ISA Interface

• Interface between
hardware and software

• Important for
– OS developer

I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries

15EECS 768 Virtual Machines

The ABI Interface

• Application Binary
Interface (ABI)
– user ISA + system calls

• Important for
– compiler writers

I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries

16EECS 768 Virtual Machines

The API Interface

• Application
Programming
Interface (API)
– user ISA +

library calls

• Important for
– application

programmers

I/O devices

and

Networking

System Interconnect

(bus)

Memory

Translation

Execution Hardware

Application

Programs

Main

Memory

Operating System

Libraries

17EECS 768 Virtual Machines

Major Program Interfaces

• ISA – supports all conventional software

• ABI – supports application software only

System Calls

User ISASystem ISA
ISA

Application Software

Operating System

System Calls

User ISASystem ISA
ABI

Application Software

Operating System

18EECS 768 Virtual Machines

Process Virtual Machines

• Process virtual machine is capable of
supporting an individual process
– different guest and host ISA
– couple at ABI level via runtime system

Virtualizing
Software

Application Process

Machine

OS

Hardware

Guest

Runtime

Host

Application Process

Virtual
Machine

19EECS 768 Virtual Machines

Process Virtual Machines (2)

• Constructed at ABI level

• Runtime manages guest process

• Runtime communicates with
host OS

• Guest processes may
intermingle with host processes

• As a practical matter, binaries
built for same OS

• Dynamic optimizers are a
special case

• Examples: IA-32 EL, FX!32,
Dynamo

HOST OS

Disk

file sharing

network communication

guest
process

create

host
process

guest
process

runtime
runtime

guest
process

runtime

host
process

20EECS 768 Virtual Machines

System Virtual Machines

• System Virtual Machine capable of supporting
an OS with potentially many user processes
– couple at ISA level
– eg., IBM VM/360, VMWare, Transmeta Crusoe

Hardware
"Machine"

OS

Applications

Virtualizing
Software

Virtual
Machine

OS

Applications

Guest

VMM

Host

21EECS 768 Virtual Machines

PVM – Multiprogramming

• PVM provided by a multi-process OS for each
concurrently executing application.

• Combination of the OS system call interface,
and the user-level ISA.

• Each process is given the illusion of having the
complete machine to itself.

22EECS 768 Virtual Machines

PVM – Emulators

• Execute binaries compiled to a different
instruction set than that executed by the host’s
hardware.

• Interpretation
– low startup overhead
– high steady-state per instruction emulation overhead

23EECS 768 Virtual Machines

PVM – Dynamic Translators

• Run-time translation of blocks of source
instructions to equivalent target instructions.
– high start-up translation overhead
– fast steady-state execution

• Uses a code cache to
store translated blocks
of code for reuse.

• e.g., Digital’s FX!32
system, Aries system,
Intel IA-32 EL system

HP PA

 UNIX

HP Apps

24EECS 768 Virtual Machines

PVM – Same ISA Binary Optimizers

• Same source and target ISAs.
• Main task is the optimization of the source

binary
– ABI level optimization
– may also collect performance profiles
– may also enhance security

• e.g., Dynamo system, developed at Hewlett-
Packard.

25EECS 768 Virtual Machines

PVM – High Level Language VM

• A HLL is designed for VM execution
– minimize hardware-specific and OS-specific

features that could compromise portability

HLL Program

Intermediate Code

Memory Image

Object Code
(ISA)

Compiler front-end

Compiler back-end

Loader

HLL
Program

Portable Code
(Virtual ISA)

Host Instructions

Virt. Mem. Image

Compiler

VM loader

VM Interpreter/Translator

Traditional HLL VM

26EECS 768 Virtual Machines

PVM – High Level Language VM

• Binary class files are distributed
– ISA part of class file (no real implementation)

• OS interaction via API
• e.g., Java, Microsoft CLI

Sparc
Workstation

Java Binary Classes

x86
PC

Apple
Mac

VM
implementation

VM
implementation

VM
implementation

Java VM
Architecture

27EECS 768 Virtual Machines

Linux
process

Classic System Virtual Machine

• Original meaning of the term virtual machine
– all guest and host software use the same ISA
– VMM runs on bare hardware (most privileged mode)
– VMM intercepts and implements all the privileged

operations for the guest OS.
Win

process

HOST PLATFORM

virtual
network communication

Guest OS (Windows)

Win
process

Win
process

Guest OS2 (Linux)

VMM

Linux
process

Linux
process

28EECS 768 Virtual Machines

Hosted System Virtual Machine

• Virtualizing software is built on top of an
existing host OS.

• Advantages
– installation is like installing application programs
– host OS provides device driver support

• Drawbacks
– less efficient

29EECS 768 Virtual Machines

Whole System VMs

• Different ISA for guest and host systems.
– both application and OS code require emulation

• Implemented by placing the VMM and the
guest software on top of a conventional host OS
running on the hardware

• e.g., Virtual PC

30EECS 768 Virtual Machines

Codesigned Virtual Machines

• VMs designed to enable innovative ISAs and/or
hardware implementations for improved
performance, power efficiency, etc.

• Similar hardware virtualization is common for
microprocessors, such as Pentium IV.

• Software VM is part of the hardware design
– applications/OS never directly execute native ISA

instructions

• e.g., Transmeta Crusoe processor

31EECS 768 Virtual Machines

VM Taxonomy

Multiprogrammed

Systems

HLL VM
Java VM
MS CLI

Codesigned
VM

Transmeta
Crusoe

same ISA
different

ISA

Process VMs System VMs

Whole System
VM

Virtual PC for Mac

different

ISA
same ISA

Classic System
 VM

IBM VM/370

Hosted VM
VMware

Dynamic

Binary
Optimizers

Dynamo

Dynamic
Translators
IA-32EL, FX!32

	Introduction to Virtual Machines
	Abstraction
	Interfaces
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Virtualization
	Slide 9
	Virtual Machines
	Some Benefits of VMs
	Computer System Architectures
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Process Virtual Machine
	Slide 19
	System Virtual Machine
	PVM – Multiprogramming
	PVM – Emulators
	PVM – Dynamic Translators
	PVM – Same ISA Binary Optimizers
	PVM – High Level Language VM
	Slide 26
	Classic System Virtual Machine
	Hosted System Virtual Machine
	Whole System VMs
	Codesigned Virtual Machines
	VM Taxonomy

