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Introduction to Virtual Machines

• Introduction
• Abstraction and interfaces
• Virtualization
• Computer system architecture
• Process virtual machines
• System virtual machines
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Abstraction

• Mechanism to manage complexity in computer 
systems.

• Mechanism consists of
– partition the design of a system into levels
– allow higher levels to ignore the implementation 

details of lower levels

• In computer systems, lower levels are 
implemented in hardware, and higher levels in 
software.
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Interfaces

• An interface defines the communication 
boundary between two entities
– hierarchical relationship
– linear relationship

• Software can run on any machine supporting a 
compatible interface
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Interfaces – Advantages

• Allows de-coupling of computer design tasks
– each component provides an abstraction of itself to the 

outside world

• Work on different components can progress 
independently 

• Helps manage system complexity
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Interface – Disadvantages

• Software compiled for one ISA will not run on 
hardware with a different ISA
– powerPC binaries on an x86 machine ?

• Even if ISA's are same Oses may differ
– MS–Windows applications Sun Solaris ?
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Interface – Disadvantages (2)

• Binaries may not be optimized for the platform 
they run on 
– Intel Pentium binaries on AMD Athlon ?

• Innovation may be inhibited by a fixed ISA
– hard to change instruction sets

• Application software cannot directly exploit 
microprocessor implementation features
– software supposed to be implementation-neutral !
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Virtualization

• Removes some constraints imposed by system 
interfaces, and increases flexibility
– improves availability of application software
– removes the assumption of a single management 

regime, improving security and failure isolation

• Provide a different view to a particular computer 
resource
– not necessarily a simpler view
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Virtualization (2)

• Virtualization constructs an isomorphism that 
maps a virtual guest system to a real host.
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Virtualization (3)

• Virtualization Vs. abstraction
– virtualization does not necessarily hide details

file
file

virtualization
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Virtual Machines

• Concept of virtualization applied to the entire 
machine.

• A virtual machine is implemented by adding a 
layer of software to a real machine to support 
the desired virtual machine’s architecture.

• Virtualization
– mapping of virtual resources or state to real 

resources
– use of real machine instructions to carry out actions 

specified by the virtual machine instructions
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Some Benefits of VMs

• Flexibility
• Portability
• Isolation
• Security
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Computer System Architecture

• Architecture – functionality and appearance of a 
computer system, but not the details of its 
implementation

• Implementation – the actual embodiment of an 
architecture
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Computer Architecture (2)

• Computer systems are 
built of levels of 
abstraction
– hierarchical abstraction
– well-defined interfaces
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The ISA Interface

• Interface between 
hardware and software

• Important for 
– OS developer
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The ABI Interface

• Application Binary 
Interface (ABI)
– user ISA + system calls

• Important for
– compiler writers
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The API Interface

• Application 
Programming 
Interface (API)
– user ISA +

library calls

• Important for
– application 

programmers
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Major Program Interfaces

• ISA – supports all conventional software

• ABI – supports application software only
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Process Virtual Machines

• Process virtual machine is capable of 
supporting an individual process
– different guest and host ISA
– couple at ABI level via runtime system
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Process Virtual Machines (2)

• Constructed at ABI level

• Runtime manages guest process

• Runtime communicates with 
host OS

• Guest processes may 
intermingle with host processes

• As a practical matter, binaries 
built for same OS

• Dynamic optimizers are a 
special case

• Examples: IA-32 EL, FX!32, 
Dynamo
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System Virtual Machines

• System Virtual Machine capable of supporting 
an OS with potentially many user processes
– couple at ISA level
– eg., IBM VM/360, VMWare, Transmeta Crusoe
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PVM – Multiprogramming

• PVM provided by a multi-process OS for each 
concurrently executing application.

• Combination of the OS system call interface, 
and the user-level ISA.

• Each process is given the illusion of having the 
complete machine to itself.
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PVM – Emulators

• Execute binaries compiled to a different 
instruction set than that executed by the host’s 
hardware.

• Interpretation
– low startup overhead
– high steady-state per instruction emulation overhead
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PVM – Dynamic Translators

• Run-time translation of blocks of source 
instructions to equivalent target instructions.
– high start-up translation overhead
– fast steady-state execution

• Uses a code cache to 
store translated blocks 
of code for reuse.

• e.g., Digital’s FX!32 
system, Aries system, 
Intel IA-32 EL system

HP PA

 UNIX

HP Apps
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PVM – Same ISA Binary Optimizers

• Same source and target ISAs.
• Main task is the optimization of the source 

binary
– ABI level optimization
– may also collect performance profiles
– may also enhance security

• e.g., Dynamo system, developed at Hewlett-
Packard.
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PVM – High Level Language VM

• A HLL is designed for VM execution
– minimize hardware-specific and OS-specific 

features that could compromise portability
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PVM – High Level Language VM

• Binary class files are distributed
– ISA part of class file (no real implementation)

• OS interaction via API
• e.g., Java, Microsoft CLI
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Linux
process

Classic System Virtual Machine

• Original meaning of the term virtual machine
– all guest and host software use the same ISA
– VMM runs on bare hardware (most privileged mode)
– VMM intercepts and implements all the privileged 

operations for the guest OS.
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Hosted System Virtual Machine

• Virtualizing software is built on top of an 
existing host OS.

• Advantages
– installation is like installing application programs
– host OS provides device driver support

• Drawbacks
– less efficient
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Whole System VMs

• Different ISA for guest and host systems.
– both application and OS code require emulation

• Implemented by placing the VMM and the 
guest software on top of a conventional host OS 
running on the hardware

• e.g., Virtual PC
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Codesigned Virtual Machines

• VMs designed to enable innovative ISAs and/or 
hardware implementations for improved 
performance, power efficiency, etc.

• Similar hardware virtualization is common for 
microprocessors, such as Pentium IV.

• Software VM is part of the hardware design
– applications/OS never directly execute native ISA 

instructions

• e.g., Transmeta Crusoe processor
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VM Taxonomy
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