
EECS 768 Virtual Machines 1

Emulation – Outline

• Emulation
• Interpretation

– basic, threaded, directed threaded
– other issues

• Binary translation
– code discovery, code location
– other issues

• Control Transfer Optimizations

EECS 768 Virtual Machines 2

Key VM Technologies

• Emulation – binary in one ISA is executed in
processor supporting a different ISA

• Dynamic Optimization – binary is improved for
higher performance
– may be done as part of emulation
– may optimize same ISA (no emulation needed)

HP PA ISA

HP UX

HP Apps.

Optimization

Alpha

Windows

X86 apps

Emulation

EECS 768 Virtual Machines 3

Emulation Vs. Simulation
• Emulation

– method for enabling a (sub)system to present the same interface and
characteristics as another

– ways of implementing emulation
• interpretation: relatively inefficient instruction-at-a-time

• binary translation: block-at-a-time optimized for repeated

– e.g., the execution of programs compiled for instruction set A on a
machine that executes instruction set B.

• Simulation
– method for modeling a (sub)system’s operation

– objective is to study the process; not just to imitate the function

– typically emulation is part of the simulation process

EECS 768 Virtual Machines 4

Definitions

• Guest
– environment being

supported by
underlying platform

• Host
– underlying platform

that provides guest
environment

Guest

Host

supported by

EECS 768 Virtual Machines 5

Definitions (2)

• Source ISA or binary
– original instruction set or binary
– the ISA to be emulated

• Target ISA or binary
– ISA of the host processor
– underlying ISA

• Source/Target refer to ISAs
• Guest/Host refer to platforms

Source

Target

emulated by

EECS 768 Virtual Machines 6

Emulation

• Required for implementing many VMs.
• Process of implementing the interface and

functionality of one (sub)system on a
(sub)system having a different interface and
functionality
– terminal emulators, such as for VT100, xterm, putty

• Instruction set emulation
– binaries in source instruction set can be executed on

machine implementing target instruction set
– e.g., IA-32 execution layer

EECS 768 Virtual Machines 7

Interpretation Vs. Translation

• Interpretation
– simple and easy to implement, portable
– low performance
– threaded interpretation

• Binary translation
– complex implementation
– high initial translation cost, small execution cost
– selective compilation

• We focus on user-level instruction set emulation of
program binaries.

EECS 768 Virtual Machines 8

Interpreter State

• An interpreter needs to
maintain the complete
architected state of the
machine implementing
the source ISA
– registers
– memory

• code
• data
• stack

Code

Data

Stack

Program Counter

Condition Codes

Reg 0

Reg 1

Reg n-1

.

.

.

Interpreter Code

EECS 768 Virtual Machines 9

Decode – Dispatch Interpreter
• Decode and dispatch interpreter

– step through the source program one instruction at a time

– decode the current instruction

– dispatch to corresponding interpreter routine

– very high interpretation cost

while (!halt && !interrupt) {
inst = code[PC];
opcode = extract(inst,31,6);
switch(opcode) {
 case LoadWordAndZero: LoadWordAndZero(inst);
 case ALU: ALU(inst);
 case Branch: Branch(inst);
 . . .}

}
Instruction function list

EECS 768 Virtual Machines 10

Decode – Dispatch Interpreter (2)

• Instruction function: Load

LoadWordAndZero(inst){
RT = extract(inst,25,5);
RA = extract(inst,20,5);
displacement = extract(inst,15,16);
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32)>> 32;
PC = PC + 4;

}

EECS 768 Virtual Machines 11

Decode – Dispatch Interpreter (3)

• Instruction function: ALU

ALU(inst){
RT = extract(inst,25,5);
RA = extract(inst,20,5);
RB = extract(inst, 15,5);
source1 = regs[RA];
source2 = regs[RB];
extended_opcode = extract(inst,10,10);
switch(extended_opcode) {

case Add: Add(inst);
case AddCarrying: AddCarrying(inst);
case AddExtended: AddExtended(inst);
. . .}

PC = PC + 4;
}

EECS 768 Virtual Machines 12

Decode – Dispatch Efficiency

• Decode-Dispatch Loop
– mostly serial code
– case statement (hard-to-predict indirect jump)
– call to function routine
– return

• Executing an add instruction
– approximately 20 target instructions
– several loads/stores and shift/mask steps

• Hand-coding can lead to better performance
– example: DEC/Compaq FX!32

EECS 768 Virtual Machines 13

Indirect Threaded Interpretation

• High number of branches in decode-dispatch
interpretation reduces performance
– overhead of 5 branches per instruction

• Threaded interpretation improves efficiency by
reducing branch overhead
– append dispatch code with each interpretation

routine
– removes 3 branches
– threads together function routines

EECS 768 Virtual Machines 14

Indirect Threaded Interpretation (2)

LoadWordAndZero:
RT = extract(inst,25,5);
RA = extract(inst,20,5);
displacement = extract(inst,15,16);
if (RA == 0) source = 0;
else source = regs(RA);
address = source + displacement;
regs(RT) = (data(address)<< 32) >> 32;
PC = PC +4;
If (halt || interrupt) goto exit;
inst = code[PC];
opcode = extract(inst,31,6)
extended_opcode = extract(inst,10,10);
routine = dispatch[opcode,extended_opcode];
goto *routine;

EECS 768 Virtual Machines 15

Indirect Threaded Interpretation (3)

Add:
RT = extract(inst,25,5);
RA = extract(inst,20,5);
RB = extract(inst,15,5);
source1 = regs(RA);
source2 = regs[RB];
sum = source1 + source2 ;
regs[RT] = sum;
PC = PC + 4;
If (halt || interrupt) goto exit;
inst = code[PC];
opcode = extract(inst,31,6);
extended_opcode = extract(inst,10,10);
routine = dispatch[opcode,extended_opcode];
goto *routine;

EECS 768 Virtual Machines 16

Indirect Threaded Interpretation (4)

• Dispatch occurs indirectly through a table
– interpretation routines can be modified and relocated

independently

• Advantages
– binary intermediate code still portable
– improves efficiency over basic interpretation

• Disadvantages
– code replication increases interpreter size

EECS 768 Virtual Machines 17

Indirect Threaded Interpretation (5)

source code

dispatch

loop

interpreter

routines

"data"

accesses

Decode-dispatch

source code
interpreter
routines

Threaded

EECS 768 Virtual Machines 18

Predecoding

• Parse each instruction into a pre-defined
structure to facilitate interpretation
– separate opcode, operands, etc.
– reduces shifts / masks significantly
– more useful for CICS ISAs

lwz r1, 8(r2)
add r3, r3,r1
stw r3, 0(r4)

07
1 2 08

(load word and zero)

08
3 1 03

37
3 4 00

(add)

(store word)

EECS 768 Virtual Machines 19

Predecoding (2)
struct instruction {
 unsigned long op;
 unsigned char dest, src1, src2;
} code [CODE_SIZE];

Load Word and Zero:
RT = code[TPC].dest;
RA = code[TPC].src1;
displacement = code[TPC].src2;
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32) >> 32;
SPC = SPC + 4; TPC = TPC + 1;
If (halt || interrupt) goto exit;

 opcode = code[TPC].op
routine = dispatch[opcode];
goto *routine;

EECS 768 Virtual Machines 20

Direct Threaded Interpretation

• Allow even higher efficiency by
– removing the memory access to the centralized table
– requires predecoding
– dependent on locations of interpreter routines

• loses portability

001048d0
1 2 08

(load word and zero)

00104800
3 1 03

00104910
3 4 00

(add)

(store word)

EECS 768 Virtual Machines 21

Direct Threaded Interpretation (2)

• Predecode the source binary into an
intermediate structure

• Replace the opcode in the intermediate form
with the address of the interpreter routine

• Remove the memory lookup of the dispatch
table

• Limits portability since exact locations of the
interpreter routines are needed

EECS 768 Virtual Machines 22

Direct Threaded Interpretation (3)

Load Word and Zero:
RT = code[TPC].dest;
RA = code[TPC].src1;
displacement = code[TPC].src2;
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32) >> 32;
SPC = SPC + 4;
TPC = TPC + 1;
If (halt || interrupt) goto exit;
routine = code[TPC].op;
goto *routine;

EECS 768 Virtual Machines 23

Direct Threaded Interpretation (4)

source code

pre-
decoder

interpreter
routines

intermediate
code

EECS 768 Virtual Machines 24

Interpreter Control Flow

General
Decode

(fill-in instruction
structure)

Dispatch

Inst. 1
specialized

routine

Inst. 2
specialized

routine

Inst. n
specialized

routine

. . .

• Decode for CISC ISA
• Individual routines

for each instruction

EECS 768 Virtual Machines 25

Interpreter Control Flow (2)

• For CISC ISAs
– multiple byte opcode
– make

common
cases
fast

Dispatch
on

first byte

Simple
Inst. 1

specialized
routine

Simple
Inst. m

specialized
routine

Complex
Inst. m+1

specialized
routine

Shared
Routines

Complex
Inst. n

specialized
routine

Prefix
set flags

... ...

EECS 768 Virtual Machines 26

Binary Translation
• Translate source binary program to target binary before

execution
– is the logical conclusion of predecoding
– get rid of parsing and jumps altogether
– allows optimizations on the native code
– achieves higher performance than interpretation
– needs mapping of source state onto the host state

(state mapping)

EECS 768 Virtual Machines 27

Binary Translation (2)

x86 Source Binary

addl %edx,4(%eax)
movl 4(%eax),%edx
add %eax,4

Translate to PowerPC Target

r1 points to x86 register context block
r2 points to x86 memory image
r3 contains x86 ISA PC value

EECS 768 Virtual Machines 28

Binary Translation (3)
lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax
lwzx r5,r2,r5 ;load operand from memory
lwz r4,12(r1) ;load %edx from register block
add r5,r4,r5 ;perform add
stw r5,12(r1) ;put result into %edx
addi r3,r3,3 ;update PC (3 bytes)

lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax
lwz r4,12(r1) ;load %edx from register block
stwx r4,r2,r5 ;store %edx value into memory
addi r3,r3,3 ;update PC (3 bytes)

lwz r4,0(r1) ;load %eax from register block
addi r4,r4,4 ;add immediate
stw r4,0(r1) ;place result back into %eax
addi r3,r3,3 ;update PC (3 bytes)

EECS 768 Virtual Machines 29

Binary Translation (4)

source code

binary
translator

binary translated
target code

EECS 768 Virtual Machines 30

State Mapping
• Maintaining the state of the source machine on the host

(target) machine.
– state includes source registers and memory contents
– source registers can be held in host registers or in host

memory
– reduces loads/stores significantly
– easier if target registers > source registers

EECS 768 Virtual Machines 31

Register Mapping
• Map source registers to

target registers
– spill registers if needed

• if target registers <
source registers
– map some to memory
– map on per-block basis

• Reduces load/store
significantly
– improves performance

p r o g r a m c o u n t e r

s t a c k p o i n t e r

s o u r c e I S A t a r g e t I S A

R 3

R 2

r e g 1

r e g 2

r e g n

R 2

R 6

R N + 4

S o u r c e M e m o r y
I m a g e

S o u r c e R e g i s t e r
B l o c k

R 1

R 5

EECS 768 Virtual Machines 32

Register Mapping (2)

r1 points to x86 register context block
r2 points to x86 memory image
r3 contains x86 ISA PC value
r4 holds x86 register %eax
r7 holds x86 register %edx

etc.

addi r16,r4,4 ;add 4 to %eax
lwzx r17,r2,r16 ;load operand from memory
add r7,r17,r7 ;perform add of %edx
addi r16,r4,4 ;add 4 to %eax
stwx r7,r2,r16 ;store %edx value into memory

addi r4,r4,4 ;increment %eax
addi r3,r3,9 ;update PC (9 bytes)

EECS 768 Virtual Machines 33

Predecoding
Vs.

Binary Translation

• Requirement of interpretation routines during
predecoding.

• After binary translation, code can be directly
executed.

EECS 768 Virtual Machines 34

Code Discovery Problem

• May be difficult to statically translate or
predecode the entire source program

• Consider x86 code

 mov %ch,0 ??

31 c0 8b b5 00 00 03 08 8b bd 00 00 03 00

 movl %esi, 0x08030000(%ebp) ??

EECS 768 Virtual Machines 35

Code Discovery Problem (2)

• Contributors to code discovery problem
– variable-length (CISC) instructions
– indirect jumps
– data interspersed with code
– padding instructions to align branch targets

source ISA
instructions

inst. 1 inst. 2

inst. 3 jump

data

inst. 5 inst. 6
uncond. brnch

inst. 8jump indirect to???

data in instruction
stream

pad for instruction
alignment

reg.

pad

EECS 768 Virtual Machines 36

Code Location Problem

• Mapping of the source program counter to the
destination PC for indirect jumps
– indirect jump addresses in the translated code still

refer to source addresses for indirect jumps

x86 source code
movl %eax, 4(%esp) ;load jump address from memory
jmp %eax ;jump indirect through %eax

PowerPC target code
addi r16,r11,4 ;compute x86 address
lwzx r4,r2,r16 ;get x86 jump address

 ; from x86 memory image
mtctr r4 ;move to count register
bctr ;jump indirect through ctr

EECS 768 Virtual Machines 37

Simplified Solutions

• Fixed-width RISC ISA are always aligned on
fixed boundaries

• Use special instruction sets (Java)
– no jumps/branches to arbitrary locations
– no data or pads mixed with instructions
– all code can then be discovered

• Use incremental dynamic translation

EECS 768 Virtual Machines 38

Incremental Code Translation

• First interpret
– perform code discovery as a by-product

• Translate code
– incrementally, as it is discovered

– place translated code in code cache

– use lookup table to save source to target PC mappings

• Emulation process
– execute translated block

– lookup next source PC in lookup table
• if translated, jump to target PC

• else, interpret and translate

EECS 768 Virtual Machines 39

Incremental Code Translation (2)

Emulation
Manager

source
binary

Translation
Memory

SPC to TPC
Lookup
Table

hit

miss

translatorInterpreter

EECS 768 Virtual Machines 40

Dynamic Basic Block

• Unit of translation during dynamic translation.
• Leaders identify starts of static basic blocks

– first program instruction
– instruction following a branch or jump
– target of a branch or jump

• Runtime control flow identify dynamic blocks
– instruction following a taken branch or jump at

runtime

EECS 768 Virtual Machines 41

Dynamic Basic Block (2)

block 1

block 2

block 3

block 4

add...
load...
store ...

loop: load ...
add
store
brcond skip
load...
sub...

skip: add...
store
brcond loop
add...
load...
store...
jump indirect
...
...

block 5

add...
load...
store ...

loop: load ...
add
store
brcond skip
load...
sub...

skip: add...
store
brcond loop

loop: load ...
add
store
brcond skip

skip: add...
store
brcond loop

...

Static
Basic Blocks

block 1

block 2

block 3

block 4

Dynamic
Basic Blocks

EECS 768 Virtual Machines 42

Flow of Control

• Even after all blocks are translated, control
flows between translated blocks and emulation
manager.

• EM connects the translated blocks during
execution.

• Optimizations can reduce the overhead of going
through the EM between every pair of
translation blocks.

EECS 768 Virtual Machines 43

Flow of Control (2)

translation
block

Emulation
Manager

translation
block

translation
block

EECS 768 Virtual Machines 44

Tracking the Source PC

• Update SPC as part of
translated code
– place SPC in stub

• General approach
– translator returns to EM

via branch-and-link (BL)
– SPC placed in stub

immediately after BL
– EM uses link register to

find SPC and hash to
next target code block

Code
Block

Branch and Link to EM
Next Source PC

Emulation
Manager

Hash
Table

Code
Block

EECS 768 Virtual Machines 45

Emulation Manager Flowchart
S t a r t w i t h

S P C

L o o k u p
S P C - > T P C
i n M a p T a b l e

H i t i n T a b l e ?

B r a n c h t o T P C
a n d

E x e c u t e T r a n s l a t e d
B l o c k

G e t S P C
f o r n e x t B l o c k

U s e S P C t o R e a d
I n s t s . f r o m S o u r c e

M e m o r y I m a g e
- - - - - - - - - - - - - - - - - - - -

I n t e r p r e t , T r a n s l a t e
a n d P l a c e i n t o

T r a n l s a t i o n M e m o r y

W r i t e n e w
S P C - > T P C

m a p p i n g i n t o T a b l e

N o

Y e s

EECS 768 Virtual Machines 46

Translation Chaining

• Translation blocks are linked into chains
• If the successor block has not yet being

translated
– code is inserted to jump to the EM
– later, after jumping to the EM, if the EM finds that

the successor block has being translated, then the
jump is modified to instead point directly to the
successor

EECS 768 Virtual Machines 47

Translation Chaining (2)

translation
block

VMM

translation
block

translation
block

translation
block

VMM

translation
block

translation
block

translation
block

Without Chaining With Chaining

EECS 768 Virtual Machines 48

Translation Chaining (3)

• Creating a link:

JAL TM

next SPC

Predecessor

Successor

get next
SPC

Set up
chain

Lookup
Successor Jump TPC

12

3

4

5

EECS 768 Virtual Machines 49

Translation Chaining (4)

9AC0: lwz r16,0(r4) ;load value from memory
add r7,r7,r16 ;accumulate sum
stw r7,0(r5) ;store to memory
addic. r5,r5,-1 ;decrement loop count, set cr0
beq cr0,pc+12 ;branch if loop exit
bl F000 ;branch & link to EM
4FDC ;save source PC in link register

9AE4: b 9c08 ;branch along chain
51C8 ;save source PC in link register

9C08: stw r7,0(r6) ;store last value of %edx
xor r7,r7,r7 ;clear %edx
bl F000 ;branch & link to EM
6200 ;save source PC in link register

PowerPC Translation

EECS 768 Virtual Machines 50

Software Indirect Jump Prediction

• For blocks ending with an indirect jump
– chaining cannot be used as destination can change
– SPC–TPC map table lookup is expensive

• indirect jump locations seldom change
– use profiling to find the common jump addresses
– inline frequently used SPC addresses; most frequent

SPC destination addresses given first

If Rx == addr_1 goto target_1
Else if Rx == addr_2 goto target_2
Else if Rx == addr_3 goto target_3
Else hash_lookup(Rx) ; do it the slow way

EECS 768 Virtual Machines 51

Dynamic Translation Issues

• Tracking the source PC
– SPC used by the emulation manager and interpreter

• Handle self-modifying code
– programs modifying (perform stores) code at runtime

• Handle self-referencing code
– programs perform loads from the source code

• Provide precise traps
– provide precise source state at traps and exceptions

EECS 768 Virtual Machines 52

Same – ISA Emulation

• Same source and target ISAs
• Applications

– simulation
– OS call emulation
– program shepherding
– performance optimization

EECS 768 Virtual Machines 53

Instruction Set Issues
• Register architectures

– register mappings, reservation of special registers
• Condition codes

– lazy evaluation as needed
• Data formats and arithmetic

– floating point
– decimal
– MMX

• Address resolution
– byte vs word addressing

• Data Alignment
– natural vs arbitrary

• Byte order
– big/little endian

EECS 768 Virtual Machines 54

Register Architectures

• GPRs of the target ISA are used for
– holding source ISA GPR
– holding source ISA special-purpose registers
– point to register context block and memory image
– holding intermediate emulator values

• Issues
– target ISA registers < source ISA registers
– prioritizing the use of target ISA registers

EECS 768 Virtual Machines 55

Condition Codes

• Condition codes are not used uniformly
– IA-32 ISA sets CC implicitly
– SPARC and PowerPC set CC explicitly
– MIPS ISA does not use CC

• Neither ISA uses CC
– nothing to do

• Source ISA does not use CC, target ISA does
– easy; additional ins. to generate CC values

EECS 768 Virtual Machines 56

Condition Codes (cont…)

• Source ISA has explicit CC, target ISA no CC
– trivial emulation of CC required

• Source ISA has implicit CC, target ISA no CC
– very difficult and time consuming to emulate
– CC emulation may be more expensive than

instruction emulation

EECS 768 Virtual Machines 57

Condition Codes (cont…)

• Lazy evaluation
– CC are seldom used
– only generate CC if required
– store the operands and the operation that set each

condition code

• Optimizations can also be performed to analyze
code to detect cases where CC generated will
never be used

EECS 768 Virtual Machines 58

Lazy Condition Code Evaluation

add %ecx,%ebx
jmp label1

 . . .
label1: jz target

R4 ↔ eax PPC to
R5 ↔ ebx x86 register
R6 ↔ ecx mappings
.
.
R24 ↔ scratch register used by emulation code
R25 ↔ condition code operand 1 ;registers
R26 ↔ condition code operand 2 ;used for
R27 ↔ condition code operation ;lazy condition

;emulation code
R28 ↔ jump table base address

EECS 768 Virtual Machines 59

Lazy Condition Code Evaluation (2)

mr r25,r6 ;save operands
mr r26,r5 ;and opcode for
li r27,“add” ;lazy condition code emulation
add r6,r6,r5 ;translation of add
b label1

...
label1:

bl genZF ;branch and link genZF code
beq cr0,target ;branch on condition flag

...
genZF:

add r29,r28,r27 ;add “opcode” to jump table base
mtctr r29 ;copy to counter register
bctr ;branch via jump table

... ...
“add”: add. r24,r25,r26 ;perform PowerPC add, set cr0
 blr ;return

EECS 768 Virtual Machines 60

Data Formats and Arithmetic

• Maintain compatibility of data transformations.
• Data formats are arithmetic operations are

standardized
– two’s complement representation
– IEEE floating point standard
– basic logical/arithmetic operations are mostly present

• Exceptions:
– IA32 FP uses 80-bit intermediate results
– PowerPC and HP PA have multiply-and-add (FMAC)

which has a higher precision on intermediate values
– integer divide vs. using FP divide to approximate

• ISAs may have different immediate lengths

EECS 768 Virtual Machines 61

Memory Address Resolution

• ISAs can access data items of different sizes
– load / stores of bytes, halfwords, full words, as

opposes to only bytes and words

• Emulating a less powerful ISA
– no issue

• Emulating a more powerful ISA
– loads: load entire word, mask un-needed bits
– stores: load entire word, insert data, store word

EECS 768 Virtual Machines 62

Memory Data Alignment

• Aligned memory access
– word accesses performed with two low order bits

00, halfword access must have lowest bit 0, etc.

• Target ISA does not allow unaligned access
– break up all accesses into byte accesses
– ISAs provide supplementary instructions to simplify

unaligned accesses
– unaligned access traps, and then can be handled

EECS 768 Virtual Machines 63

Byte Order

• Ordering of bytes within a word may differ
– little endian and big endian

• Target code must perform byte ordering
• Guest data image is generally maintained in the

same byte order as assumed by the source ISA
• Emulation software modifies addresses when

bytes within words are addressed
– can be very inefficient

• Some target ISAs may support both byte orders
– e.g., MIPS, IA-64

	Emulation – Outline
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Emulation
	Emulation (cont…)
	Basic Interpretation
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Indirect Threaded Interpretation
	Slide 14
	Slide 15
	Indirect Threaded Interpretation (cont…)
	Slide 17
	Slide 18
	Slide 19
	Direct Threaded Interpretation
	Direct Threaded Interpretation (cont…)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Binary Translation
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Code Discovery Problem
	Slide 35
	Code Location Problem
	Slide 37
	Addressing Code Discovery / Location
	Slide 39
	Slide 40
	Slide 41
	Flow of Control
	Slide 43
	Slide 44
	Slide 45
	Translation Chaining
	Slide 47
	Slide 48
	Slide 49
	Software Indirect Jump Prediction
	Slide 51
	Same – ISA Emulation
	Instruction Set Issues
	Register Architectures
	Condition Codes
	Condition Codes (cont…)
	Slide 57
	Slide 58
	Slide 59
	Data Formats and Arithmetic
	Memory Address Resolution
	Memory Data Alignment
	Byte Order

