
EECS 768 Virtual Machines 1

Emulation – Outline

• Emulation
• Interpretation

– basic, threaded, directed threaded
– other issues

• Binary translation
– code discovery, code location
– other issues

• Control Transfer Optimizations
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Key VM Technologies

• Emulation – binary in one ISA is executed in 
processor supporting a different ISA

• Dynamic Optimization – binary is improved for 
higher performance 
– may be done as part of emulation
– may optimize same ISA (no emulation needed)

HP PA ISA

HP UX

HP Apps.

Optimization

Alpha

Windows

X86 apps

Emulation
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Emulation Vs. Simulation
• Emulation

– method for enabling a (sub)system to present the same interface and 
characteristics as another

– ways of implementing emulation
• interpretation:  relatively inefficient instruction-at-a-time

• binary translation:  block-at-a-time optimized for repeated

– e.g.,  the execution of programs compiled for instruction set A on a 
machine that executes instruction set B. 

• Simulation
– method for modeling a (sub)system’s operation

– objective is to study the process; not just to imitate the function

– typically emulation is part of the simulation process
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Definitions

• Guest
– environment being 

supported by 
underlying platform

• Host
– underlying platform 

that provides guest 
environment

Guest

Host

supported by
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Definitions (2)

• Source ISA or binary
– original instruction set or binary
– the ISA to be emulated

• Target ISA or binary
– ISA of the host processor
– underlying ISA

• Source/Target refer to ISAs
• Guest/Host refer to platforms

Source

Target

emulated by
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Emulation

• Required for implementing many VMs.
• Process of implementing the interface and 

functionality of one (sub)system on a 
(sub)system having a different interface and 
functionality
– terminal emulators, such as for VT100, xterm, putty

• Instruction set emulation
– binaries in source instruction set can be executed on 

machine implementing target instruction set
– e.g., IA-32 execution layer
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Interpretation Vs. Translation

• Interpretation
– simple and easy to implement, portable
– low performance
– threaded interpretation

• Binary translation
– complex implementation
– high initial translation cost, small execution cost
– selective compilation

• We focus on user-level instruction set emulation of 
program binaries.
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Interpreter State

• An interpreter needs to 
maintain the complete 
architected state of the 
machine implementing 
the source ISA
– registers
– memory

• code
• data
• stack

Code

Data

Stack

Program Counter

Condition Codes

Reg 0

Reg 1

Reg n-1

.

.

.

Interpreter Code
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Decode – Dispatch Interpreter
• Decode and dispatch interpreter

– step through the source program one instruction at a time

– decode the current instruction

– dispatch to corresponding interpreter routine

– very high interpretation cost

while (!halt && !interrupt) {
inst = code[PC];
opcode = extract(inst,31,6);
switch(opcode) {
    case LoadWordAndZero: LoadWordAndZero(inst);
    case ALU: ALU(inst);
    case Branch: Branch(inst);
    . . .}

}
Instruction function list
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Decode – Dispatch Interpreter (2)

• Instruction function: Load

LoadWordAndZero(inst){
RT = extract(inst,25,5);
RA = extract(inst,20,5);
displacement = extract(inst,15,16);
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32)>> 32;
PC = PC + 4;

}
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Decode – Dispatch Interpreter (3)

• Instruction function: ALU

ALU(inst){
RT = extract(inst,25,5);
RA = extract(inst,20,5);
RB = extract(inst, 15,5);
source1 = regs[RA];
source2 = regs[RB];
extended_opcode = extract(inst,10,10);
switch(extended_opcode) {

case Add: Add(inst);
case AddCarrying: AddCarrying(inst);
case AddExtended: AddExtended(inst);
. . .}

PC = PC + 4;
}
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Decode – Dispatch Efficiency

• Decode-Dispatch Loop
– mostly serial code
– case statement (hard-to-predict indirect jump)
– call to function routine
– return

• Executing an add instruction
– approximately 20 target instructions
– several loads/stores and shift/mask steps

• Hand-coding can lead to better performance
– example: DEC/Compaq FX!32
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Indirect Threaded Interpretation

• High number of branches in decode-dispatch 
interpretation reduces performance
– overhead of 5 branches per instruction

• Threaded interpretation improves efficiency by 
reducing branch overhead
– append dispatch code with each interpretation 

routine
– removes 3 branches
– threads together function routines
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Indirect Threaded Interpretation (2)

LoadWordAndZero:
RT = extract(inst,25,5);
RA = extract(inst,20,5);
displacement = extract(inst,15,16);
if (RA == 0) source = 0;
else source = regs(RA);
address = source + displacement;
regs(RT) = (data(address)<< 32) >> 32;
PC = PC +4;
If (halt || interrupt) goto exit;
inst = code[PC];
opcode = extract(inst,31,6)
extended_opcode = extract(inst,10,10);
routine = dispatch[opcode,extended_opcode];
goto *routine;
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Indirect Threaded Interpretation (3)

Add:
RT = extract(inst,25,5);
RA = extract(inst,20,5);
RB = extract(inst,15,5);
source1 = regs(RA);
source2 = regs[RB];
sum = source1 + source2 ;
regs[RT] = sum;
PC = PC + 4;
If (halt || interrupt) goto exit;
inst = code[PC];
opcode = extract(inst,31,6);
extended_opcode = extract(inst,10,10);
routine = dispatch[opcode,extended_opcode];
goto *routine;
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Indirect Threaded Interpretation (4)

• Dispatch occurs indirectly through a table
– interpretation routines can be modified and relocated 

independently

• Advantages
– binary intermediate code still portable
– improves efficiency over basic interpretation

• Disadvantages
– code replication increases interpreter size
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Indirect Threaded Interpretation (5)

source code

dispatch

loop

interpreter

routines

"data"

accesses

Decode-dispatch

source code
interpreter
routines

Threaded
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Predecoding

• Parse each instruction into a pre-defined 
structure to facilitate interpretation
– separate opcode, operands, etc.
– reduces shifts / masks significantly
– more useful for CICS ISAs

lwz  r1, 8(r2)
add  r3, r3,r1
stw  r3, 0(r4)

07
1 2 08

(load word and zero)

08
3 1 03

37
3 4 00

(add)

(store word)
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Predecoding (2)
struct instruction {
   unsigned long op;
   unsigned char dest, src1, src2;
} code [CODE_SIZE];

Load Word and Zero:
RT = code[TPC].dest;
RA = code[TPC].src1;
displacement = code[TPC].src2;  
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32) >> 32;
SPC = SPC + 4; TPC = TPC + 1;
If (halt || interrupt) goto exit;

   opcode = code[TPC].op
routine = dispatch[opcode];
goto *routine;
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Direct Threaded Interpretation

• Allow even higher efficiency by
– removing the memory access to the centralized table
– requires predecoding 
– dependent on locations of interpreter routines

• loses portability

001048d0
1 2 08

(load word and zero)

00104800
3 1 03

00104910
3 4 00

(add)

(store word)
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Direct Threaded Interpretation (2)

• Predecode the source binary into an 
intermediate structure

• Replace the opcode in the intermediate form 
with the address of the interpreter routine

• Remove the memory lookup of the dispatch 
table

• Limits portability since exact locations of the 
interpreter routines are needed
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Direct Threaded Interpretation (3)

Load Word and Zero:
RT = code[TPC].dest;
RA = code[TPC].src1;
displacement = code[TPC].src2;  
if (RA == 0) source = 0;
else source = regs[RA];
address = source + displacement;
regs[RT] = (data[address]<< 32) >> 32;
SPC = SPC + 4;
TPC = TPC + 1;
If (halt || interrupt) goto exit;
routine = code[TPC].op;
goto *routine;
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Direct Threaded Interpretation (4)

source code

pre-
decoder

interpreter
routines

intermediate
code
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Interpreter Control Flow

General
Decode

(fill-in instruction
structure)

Dispatch

Inst. 1
specialized

routine

Inst. 2
specialized

routine

Inst. n
specialized

routine

. . .

• Decode for CISC ISA
• Individual routines 

for each instruction
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Interpreter Control Flow (2)

• For CISC ISAs
– multiple byte opcode
– make

common
cases
fast

Dispatch
on

first byte

Simple
Inst. 1

specialized
routine

Simple
Inst. m

specialized
routine

Complex
Inst. m+1

specialized
routine

Shared
Routines

Complex
Inst. n

specialized
routine

Prefix
set flags

... ...
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Binary Translation
• Translate source binary program to target binary before 

execution
– is the logical conclusion of predecoding
– get rid of parsing and jumps altogether
– allows optimizations on the native code
– achieves higher performance than interpretation
– needs mapping of source state onto the host state 

(state mapping)
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Binary Translation (2)

x86 Source Binary

addl %edx,4(%eax)
movl 4(%eax),%edx
add %eax,4

Translate to PowerPC Target

r1 points to x86 register context block
r2 points to x86 memory image
r3 contains x86 ISA PC value
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Binary Translation (3)
lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax 
lwzx r5,r2,r5 ;load operand from memory
lwz   r4,12(r1)  ;load %edx from register block
add   r5,r4,r5 ;perform add
stw   r5,12(r1) ;put result into %edx  
addi r3,r3,3 ;update PC (3 bytes)

lwz r4,0(r1) ;load %eax from register block
addi r5,r4,4 ;add 4 to %eax
lwz   r4,12(r1)  ;load %edx from register block
stwx r4,r2,r5 ;store %edx value into memory 
addi r3,r3,3 ;update PC (3 bytes)

lwz r4,0(r1) ;load %eax from register block
addi r4,r4,4 ;add immediate
stw r4,0(r1) ;place result back into %eax
addi r3,r3,3 ;update PC (3 bytes)
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Binary Translation (4)

source code

binary
translator

binary translated
target code
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State Mapping
• Maintaining the state of the source machine on the host 

(target) machine.
– state includes source registers and memory contents
– source registers can be held in host registers or in host 

memory
– reduces loads/stores significantly
– easier if target registers > source registers
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Register Mapping
• Map source registers to 

target registers
– spill registers if needed

• if target registers < 
source registers
– map some to memory
– map on per-block basis

• Reduces load/store 
significantly
– improves performance

p r o g r a m  c o u n t e r

s t a c k  p o i n t e r

s o u r c e  I S A t a r g e t  I S A

R 3

R 2

r e g  1

r e g  2

r e g  n

R 2

R 6

R N + 4

S o u r c e  M e m o r y
I m a g e

S o u r c e  R e g i s t e r
B l o c k

R 1

R 5
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Register Mapping (2)

r1 points to x86 register context block
r2 points to x86 memory image
r3 contains x86 ISA PC value
r4 holds x86 register %eax
r7 holds x86 register %edx

etc.

addi r16,r4,4 ;add 4 to %eax 
lwzx r17,r2,r16 ;load operand from memory
add   r7,r17,r7 ;perform add of %edx
addi r16,r4,4 ;add 4 to %eax
stwx r7,r2,r16 ;store %edx value into memory 

 
addi r4,r4,4 ;increment %eax
addi r3,r3,9 ;update PC (9 bytes)
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Predecoding 
Vs. 

Binary Translation

• Requirement of interpretation routines during 
predecoding.

• After binary translation, code can be directly 
executed.
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Code Discovery Problem

• May be difficult to statically translate or 
predecode the entire source program

• Consider x86 code

                      mov  %ch,0  ?? 

31 c0 8b b5 00 00 03 08 8b bd 00 00 03 00 

      movl  %esi, 0x08030000(%ebp)    ??
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Code Discovery Problem (2)

• Contributors to code discovery problem 
– variable-length (CISC) instructions
– indirect jumps
– data interspersed with code
– padding instructions to align branch targets

source ISA
instructions

inst. 1 inst. 2

inst. 3 jump

data

inst. 5 inst. 6
uncond. brnch

inst. 8jump indirect to???

data in instruction
stream

pad for instruction
alignment

reg.

pad
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Code Location Problem

• Mapping of the source program counter to the 
destination PC for indirect jumps
– indirect jump addresses in the translated code still 

refer to source addresses for indirect jumps

x86 source code 
movl %eax, 4(%esp)  ;load jump address from memory
jmp %eax    ;jump indirect through %eax

PowerPC target code 
addi r16,r11,4    ;compute x86 address 
lwzx r4,r2,r16    ;get x86 jump address 

   ;  from x86 memory image
mtctr r4       ;move to count register
bctr    ;jump indirect through ctr
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Simplified Solutions

• Fixed-width RISC ISA are always aligned on 
fixed boundaries

• Use special instruction sets (Java)
– no jumps/branches to arbitrary locations
– no data or pads mixed with instructions
– all code can then be discovered

• Use incremental dynamic translation
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Incremental Code Translation

• First interpret
– perform code discovery as a by-product

• Translate code
– incrementally, as it is discovered

– place translated code in code cache

– use lookup table to save source to target PC mappings

• Emulation process
– execute translated block 

– lookup next source PC in lookup table
• if translated, jump to target PC

• else, interpret and translate
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Incremental Code Translation (2)

Emulation
Manager

source
binary

Translation
Memory

SPC to TPC
Lookup
Table

hit

miss

translatorInterpreter



EECS 768 Virtual Machines 40

Dynamic Basic Block

• Unit of translation during dynamic translation.
• Leaders identify starts of static basic blocks

– first program instruction
– instruction following a branch or jump
– target of a branch or jump

• Runtime control flow identify dynamic blocks
– instruction following a taken branch or jump at 

runtime
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Dynamic Basic Block (2)

block 1

block 2

block 3

block 4

add...
load...
store ...

loop: load ...
add .....
store
brcond  skip
load...
sub...

skip: add...
store
brcond  loop
add...
load...
store...
jump indirect
...
...

block 5

add...
load...
store ...

loop: load ...
add .....
store
brcond  skip
load...
sub...

skip: add...
store
brcond  loop

loop: load ...
add .....
store
brcond  skip

skip: add...
store
brcond  loop

...

Static
Basic Blocks

block 1

block 2

block 3

block 4

Dynamic
Basic Blocks
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Flow of Control

• Even after all blocks are translated, control 
flows between translated blocks and emulation 
manager.

• EM connects the translated blocks during 
execution.

• Optimizations can reduce the overhead of going 
through the EM between every pair of 
translation blocks.
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Flow of Control (2)

translation
block

Emulation
Manager

translation
block

translation
block
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Tracking the Source PC

• Update SPC as part of 
translated code
– place SPC in stub

• General approach
– translator returns to EM 

via branch-and-link (BL)
– SPC placed in stub 

immediately after BL
– EM uses link register to 

find SPC and hash to 
next target code block

Code
Block

Branch and Link to EM
Next Source PC

Emulation
Manager

Hash
Table

Code
Block
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Emulation Manager Flowchart
S t a r t  w i t h

S P C

L o o k u p
S P C  - >  T P C
i n  M a p  T a b l e

H i t  i n  T a b l e ?

B r a n c h  t o  T P C
a n d

E x e c u t e  T r a n s l a t e d
B l o c k

G e t  S P C
f o r  n e x t  B l o c k

U s e  S P C  t o  R e a d
I n s t s .  f r o m  S o u r c e

M e m o r y  I m a g e
- - - - - - - - - - - - - - - - - - - -

I n t e r p r e t ,  T r a n s l a t e
a n d  P l a c e  i n t o

T r a n l s a t i o n  M e m o r y

W r i t e   n e w
S P C  - >  T P C

m a p p i n g  i n t o  T a b l e

N o

Y e s
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Translation Chaining

• Translation blocks are linked into chains
• If the successor block has not yet being 

translated
– code is inserted to jump to the EM
– later, after jumping to the EM, if the EM finds that 

the successor block has being translated, then the 
jump is modified to instead point directly to the 
successor
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Translation Chaining (2)

translation
block

VMM

translation
block

translation
block

translation
block

VMM

translation
block

translation
block

translation
block

Without Chaining With Chaining
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Translation Chaining (3)

• Creating a link:

JAL TM

next SPC

Predecessor

Successor

get next
SPC

Set up
chain

Lookup
Successor Jump TPC

12

3

4

5
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Translation Chaining (4)

9AC0: lwz r16,0(r4) ;load value from memory
add r7,r7,r16 ;accumulate sum
stw r7,0(r5) ;store to memory
addic. r5,r5,-1 ;decrement loop count, set cr0
beq cr0,pc+12 ;branch if loop exit
bl F000 ;branch & link to EM
4FDC ;save source PC in link register

9AE4: b 9c08 ;branch along chain
51C8 ;save source PC in link register

9C08: stw r7,0(r6) ;store last value of %edx
xor r7,r7,r7 ;clear %edx
bl F000 ;branch & link to EM
6200 ;save source PC in link register

PowerPC Translation
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Software Indirect Jump Prediction

• For blocks ending with an indirect jump
– chaining cannot be used as destination can change
– SPC–TPC  map table lookup is expensive

• indirect jump locations seldom change
– use profiling to find the common jump addresses
– inline frequently used SPC addresses; most frequent 

SPC destination addresses given first

If Rx == addr_1 goto target_1
Else if Rx == addr_2 goto target_2
Else if Rx == addr_3 goto target_3
Else hash_lookup(Rx) ; do it the slow way
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Dynamic Translation Issues

• Tracking the source PC
– SPC used by the emulation manager and interpreter

• Handle self-modifying code
– programs modifying (perform stores) code at runtime

• Handle self-referencing code
– programs perform loads from the source code

• Provide precise traps
– provide precise source state at traps and exceptions
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Same – ISA Emulation

• Same source and target ISAs
• Applications

– simulation
– OS call emulation
– program shepherding
– performance optimization
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Instruction Set Issues
• Register architectures

– register mappings, reservation of special registers
• Condition codes

– lazy evaluation as needed
• Data formats and arithmetic

– floating point
– decimal
– MMX

• Address resolution
– byte vs word addressing

• Data Alignment
– natural vs arbitrary

• Byte order
– big/little endian
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Register Architectures

• GPRs of the target ISA are used for
– holding source ISA GPR
– holding source ISA special-purpose registers
– point to register context block and memory image
– holding intermediate emulator values

• Issues
– target ISA registers < source ISA registers
– prioritizing the use of target ISA registers
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Condition Codes

• Condition codes are not used uniformly
– IA-32 ISA sets CC implicitly
– SPARC and PowerPC set CC explicitly
– MIPS ISA does not use CC

• Neither ISA uses CC
– nothing to do

• Source ISA does not use CC, target ISA does
– easy; additional ins. to generate CC values
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Condition Codes (cont…)

• Source ISA has explicit CC, target ISA no CC
– trivial emulation of CC required

• Source ISA has implicit CC, target ISA no CC
– very difficult and time consuming to emulate
– CC emulation may be more expensive than 

instruction emulation
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Condition Codes (cont…)

• Lazy evaluation
– CC are seldom used
– only generate CC if required
– store the operands and the operation that set each 

condition code

• Optimizations can also be performed to analyze 
code to detect cases where CC generated will 
never be used
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Lazy Condition Code Evaluation

add  %ecx,%ebx
jmp  label1

      . . .
label1:  jz     target

R4 ↔ eax PPC to
R5 ↔ ebx x86 register
R6 ↔ ecx mappings
.
.
R24 ↔ scratch register used by emulation code
R25 ↔ condition code operand 1  ;registers
R26 ↔ condition code operand 2  ;used for
R27 ↔ condition code operation ;lazy condition

;emulation code 
R28 ↔ jump table base address
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Lazy Condition Code Evaluation (2)

mr r25,r6 ;save operands
mr r26,r5 ;and opcode for
li r27,“add” ;lazy condition code emulation  
add r6,r6,r5 ;translation of add
b  label1

...
label1:

bl genZF ;branch and link genZF code
beq cr0,target ;branch on condition flag

...
genZF:

add r29,r28,r27 ;add “opcode” to jump table base 
mtctr r29 ;copy to counter register
bctr ;branch via jump table  

... ...
“add”: add. r24,r25,r26    ;perform PowerPC add, set cr0
       blr    ;return
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Data Formats and Arithmetic

• Maintain compatibility of data transformations.
• Data formats are arithmetic operations are 

standardized
– two’s complement representation
– IEEE floating point standard
– basic logical/arithmetic operations are mostly present

• Exceptions:
– IA32 FP uses 80-bit intermediate results
– PowerPC and HP PA have multiply-and-add (FMAC) 

which has a higher precision on intermediate values
– integer divide vs. using FP divide to approximate 

• ISAs may have different immediate lengths
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Memory Address Resolution

• ISAs can access data items of different sizes
– load / stores of bytes, halfwords, full words, as 

opposes to only bytes and words

• Emulating a less powerful ISA
– no issue

• Emulating a more powerful ISA
– loads: load entire word, mask un-needed bits
– stores: load entire word, insert data, store word
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Memory Data Alignment

• Aligned memory access
– word accesses performed with two low order bits 

00, halfword access must have lowest bit 0, etc.

• Target ISA does not allow unaligned access
– break up all accesses into byte accesses
– ISAs provide supplementary instructions to simplify 

unaligned accesses
– unaligned access traps, and then can be handled
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Byte Order

• Ordering of bytes within a word may differ
– little endian and big endian

• Target code must perform byte ordering
• Guest data image is generally maintained in the 

same byte order as assumed by the source ISA
• Emulation software modifies addresses when 

bytes within words are addressed
– can be very inefficient

• Some target ISAs may support both byte orders
– e.g., MIPS, IA-64
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