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Dynamic Binary Optimization

● Introduction
● Application profiling
● Optimizing translation blocks
● Compatibility
● Code reordering
● Other code optimizations
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Optimization Overview

● Identify frequently executed hot code regions
● basic blocks
● paths – indicate control flow
● edges – approximation to paths

● Dynamic profiling
● count execution frequencies
● software or hardware implemented

● Form large translation blocks
● traces and superblocks

● Schedule and optimize large blocks
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Optimization Based On Profiling

Basic Block A
. . .
. . .

R3   …

R7   ...

R1   R2 + R3
BEQ L1 if R3 ==0

L1:  R1   0
          …
          ...

Basic Block C

Basic Block B
. . .

R6   R1 + R6
…
...

Compensation code

R1   R2 + R3

Basic Block A
. . .
. . .

R3   …

R7   ...

BEQ L1 if R3 ==0

L1:  R1   0
          …
          ...

Basic Block C

Basic Block B
. . .

R6   R1 + R6
…
...



EECS 768 Virtual Machines 4

Optimization Based On Profiling (2)

Basic Block A
. . .
. . .

R3   …

R7   ...

R1   R2 + R3

BEQ L1 if R3 ==0

L1:  R1   0

          …
          ...

Basic Block C

Basic Block B
. . .

R6   R1 + R6

…
...

Superblock

. . .

. . .

R3   …

R7   ...

BNE L2 if R3 !=0

       R1   0

          …
          ...

Basic Block B
L2:  . . .

      R6   R1 + R6

      …
      ...
     

Compensation code

R1   R2 + R3
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Program Behavior

● Many aspects of a program's behavior are 
predictable
● branches, data values

● Backward branch primarily taken
● Forward branch mostly not taken

 R3 ← 100
loop: R1 ← mem(R2)  ; load from memory

Br found if R1 == -1 ; look for -1
R2 ← R2 + 4
R3 ← R3 -1
Br loop if R3 != 0 ; loop closing branch
.
.

found:
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Branch Behavior

● Conditional branch predominantly decided one way
● either taken or not taken
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Branch Behavior (2)

● Most branches decided the same way as on 
previous execution
● backward conditional branches are mostly taken
● forward conditional branches taken less often
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Other Program Behavior

● Some indirect jumps have a single target
• others have several targets (e.g. returns)

● Predictability extends to data values
• many instructions always produce the same result
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Profiling

● Collect statistics about a program as it runs
• branches (taken, not taken)
• jump targets
• data values

● Predictability allows these statistics to be used for 
optimizations in the future

● Profiling in a VM differs from traditional profiling 
used for compiler feedback
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Conventional (Offline) Profiling

● Multiple passes through compiler
● Done at program development time

• profile overhead is a small issue
● Can be based on global analysis
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VM-Based (Online) Profiling

● Profile overhead is very important
• profile time part of total execution time

● Limited view of program (no a priori global view)
• profile probes cannot be carefully placed
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Types of Profiles

● Block or node profiles
• identify hot code blocks; fewer nodes than edges

● Edge profiles
• more precise idea of program flow
• block profile can be derived from edge profile
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Collecting Profiles

● Instrumentation-based
• software probes

 slows down program more
 requires less total time than sampling

• hardware probes
 less overhead than software
 less well-supported in processors
 typically event counters

● Sampling based
• interrupt at random intervals and take sample

 slows down program less
 requires longer time to get same amount of data

• not useful during interpretation
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Profiling During Interpretation

Instruction function list
.
branch_conditional(inst) { 
  BO = extract(inst,25,5);
  BI = extract(inst,20,5);
  displacement = extract(inst,15,14) * 4;
  .
  .
// code to compute whether branch should be taken
  .
  .
  profile_addr = lookup(PC);
  if (branch_taken)

profile_cnt(profile_addr, taken)++;
PC = PC + displacement;

  Else
profile_cnt(profile_addr, nottaken)++;
PC = PC + 4;

}

Branch PC

taken
countPC

not taken
count

HASH
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Profiling Translated Code

● Software instrumentation in stub code

Translated 
Basic
Block

Fall-thru
stub

Branch target
stub

Increment edge 
counter (i)

If (counter (i) > 
trigger) then 
invoke optimizer

Else branch to 
fall-thru basic 
block

Increment edge 
counter (j)

If (counter (j) > 
trigger) then 
invoke optimizer

Else branch to 
target basic 
block
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Sampling

● Set interval counter
● Interrupt when counter hits zero
● Sample PC at that point
● Gives block profile
● Could be modified to give edge profile

Zero Detect

Instruction AddressInterval Counter
decrement for each

instruction

Program Counter

Load PC

TRAPInitialize Counter Sample PC
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Improving Code Locality

A

B

E

A

B

E

● Provide more optimization 
opportunities.

● Spatial locality
● consecutive memory 

accesses are adjacent

● Temporal locality
● same memory access is 

repeated in near future

● Reasons for spatial and 
temporal locality
● loops and sequential 

program flow
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Improving Locality: Example

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A
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G
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Improving Locality: Example (2)

● Little locality (spatial or temporal) in cache line that 
spans blocks E and F

● F seldom used
• wasted I-cache space and I-fetch bandwidth

● Heavily used discontiguous code blocks
• e.g., C and D
• still wastes I-fetch bandwidth

E FF F
Br uncond
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Improving Locality: Rearrange Code

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A

B

C

D

E

F

G

Br cond1 == false

A

Br cond3 == true

D

E

Br cond2 == false

Br uncond

B

C

Br cond4 == true

G

F

Br uncond

Br uncond
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Improving Locality: Procedure Inlining

Call proc xyz

Proc xyz

Return

Call proc xyz

A

K

L

B

X

.

.

.
Y

Z

A

K

L

B

.

.

.

Y

X

X

Z

● Inlining – duplicate 
procedure body at call-site

● Partial inlining
● follow dominant flow of 

control
● not practical to find full 

procedure during dynamic 
incremental code discovery

● Disadvantages
● increases code size
● increases register pressure
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Improving Locality: Traces

● Divide program into chunks
● may contain multiple blocks

● Greedy Method
• suitable for on-the-fly translation
• start at hottest block not in trace
• follow hottest edges
• stop when trace reaches a 
certain size

• stop when a block already in a 
trace is reached

Trace 1

Trace 3

Trace 2
30 70

68
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Improving Locality: Traces (2)

● No redundancy
• may reduce I-cache pressure
• good for spatial locality

● Join points sometimes inihibit optimizations.
● Typically not used in optimizing VMs.
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Improving Locality: Superblocks

● Superblock – One entry, multiple exits
● May contain redundant blocks (tail duplication)
● More commonly used by dynamic optimizers

● better branch prediction
● less constraints on optimizations
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Superblocks: Example

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A

B

C

D

E

F

G
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Br cond1 == false

A

Br cond3 == true

D

E

Br cond2 == false

B

C

Br cond4 == true

G

F

Br uncond

Br cond4 == true

G

G

Br uncond

Br cond4 == true
Br uncond



EECS 768 Virtual Machines 26

Optimization Strategy

A

B

C

A

B

C

opt.
A
B
C

comp

comp

A
B
C

Collect basic
blocks using
profile
information

Convert to
intermediate
form; place
in buffer

Schedule and
optimize

Add compensation
code; place in code
cache

Intermediate
form

Generate
target code

Optimized
 target code

Original
source code
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Optimization and Compatibility

● Requirements for compatibility
● isomorphism of user/privilege mode control transfer points
● isomorphism of guest state at the control transfer points

● Optimizations can affect the visibility of traps
● reordering instructions may affect where traps occur
● adding/eliminating instructions may affect if traps occur

● Trap compatibility
● trap during native execution of source instruction also 

occurs during emulation of corresponding target instruction
● trap observed during emulation should also occur in the 

corresponding source instruction
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Optimization and Compatibility (2)

● Trap compatibility
        Source
…
r4 ← r6 + 1
r1 ← r2 + r3  → trap?
r1 ← r4 + r5
r6 ← r1 * r7

       Target
…
R4 ← R6 + 1      Remove
R1 ← R4 + R5      dead
R6 ← R1 * R7    assignment

● Memory and register state compatibility
● consistent program state on guest and native platform at 

each control transfer point

        Source
…
r1 ← r2 + r3
r9 ← r1 + r5  reschedule
r6 ← r1 * r7
r3 ← r6 + 1
… 

        Target 
…
R1 ← R2 + R3
R6 ← R1 * R7
R9 ← R1 + R5 → trap?
R3 ← R6 + 1
… 

     Target with
   saved reg. state 
…
R1 ← R2 + R3
S1 ← R1 * R7
R9 ← R1 + R5
R6 ← S1 
R3 ← S1 + 1
… 
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Code Reordering

● Important aspect of several optimizations
● especially for pipelined RICS, and VLIW processors
● reduce pipeline stalls and functional unit latencies

● Primitive instruction reordering issues
● consider reordering pairs of instructions
● divide instructions into basic categories
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Instruction Categories

● reg updates – instructions 
updating registers

● memory updates – 
instructions updating 
memory

● branch instructions – 
transfer of control 
instructions

● join point – points where 
jump/branch enter code 
sequence (only for traces)

. . .
R1  mem(R6)   reg
R2   mem(R6 +4)   reg
R3   R1 + 1   reg
R4   R1 << 2   reg
Br exit; if R7 == 0   br
R7   R7 + 1   reg
mem (R6)   R3   mem
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Moving Instructions Below Branches

● Duplicate compensation code at the exit point.
● Pretty straightforward.
● Works for registers as well as memory state.

Br

reg

Br

reg reg
(compensation)

Br

mem

Br

mem mem
(compensation)

 …
R1 ← mem(R6)
R2 ← mem(R6+4)
R3 ← R1 + 1
R4 ← R1 << 2
Br exit if R7 == 0
R7 ← R7 + 1
mem(R6) ← R3

 …
R1 ← mem(R6)
R2 ← mem(R6+4)
R3 ← R1 + 1
Br exit if R7 == 0
R4 ← R1 << 2
R7 ← R7 + 1
mem(R6) ← R3

R4 ← R1 << 2
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Moving Instructions Above Branches

● Use checkpoint for moving reg instructions
● calculate reg update in a temporary register
● if branch taken, real register is unmodified
● if instruction traps, all register state unmodified

Br

reg (R)

Br

reg (T)

R T

 …
R2 ← R1 << 2
Br exit if R8 == 0
R6 ← R7 * R2
mem(R6) ← R3
R6 ← R2 + 2

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
R6 ← T1
mem(T1) ← R3
R6 ← R2 + 2

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
mem(T1) ← R3
R6 ← R2 + 2
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Moving Instructions Above Branches

● Moving stores above branches breaks memory state 
compatibility
● what if exit branch is taken ?
● difficult to replicate memory state!

Br

mem

X

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
mem(T1) ← R3
R6 ← R2 + 2
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Moving Code Above Join Points

● Similar to previous case of branches
● Straightforward, compensation is via duplication

join point

reg

reg

join point

reg
(compensation)

join point

mem

mem

join point

mem
(compensation)

…
R1 ← R1 + 1
R7 ← mem(R6)
R7 ← R7 + 1
...

…
R1 ← R1 + 1
R7 ← mem(R6)
R7 ← R7 + 1
...

R7 ← mem(R6)
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Moving Code Below Join Point

● Should not be done in most cases.
● No way to compensate if the join is taken.

join point

reg

join point

mem
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Movement in Straight Line Code

● Can be done via checkpointing registers

reg(R)

reg

R T

reg

reg(T)

reg(R)

mem

R T

mem

reg(T)

…
R1 ← R1 * 3
mem(R6) ← R1
R7 ← R7 << 3
R9 ← R7 + R2
...

…
R1 ← R1 * 3
T1 ← R7 << 3
mem(R6) ← R1
R7 ← T1
R9 ← T1 + R2
...
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Movement in Straight Line Code

● Hoisting stores breaks memory state compatibility
● unless there is a way to back up store instructions
● expensive

mem

X reg

mem

X mem
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Instruction Reordering – Summary

        
first

second

reg mem br join

reg extend live range
of reg instruction

extend live range
of reg instruction

extend live range
of reg instruction

add 
compensation
code at entrance

mem not allowed not allowed not allowed add 
compensation
code at entrance

br add
compensation
code at 
branch exit

add compensation 
code 
at branch exit

Not allowed 
(changes 
control flow)

Not allowed 
(changes 
control flow)

join Not allowed (can 
only be done 
in rare cases)

Not allowed (can 
only be done 
in rare cases)

Not allowed 
(changes 
control flow)

no effect
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Optimizations

● Basic local optimizations
● applied within translation blocks
● can even optimize statically optimized code further
● constant propagation, constant folding, strength 

reduction, dead-assignment elimination, cse, register 
assignment, etc.

● compatibility issues verified on a case-by-case basis

● Inter-superblock optimizations
● go across basic blocks

● ISA-specific optimizations
● if conversion, instruction alignment
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Static Vs Dynamic Optimizations

● Advantages of dynamic optimizations
● availability of runtime profile information (specialization)
● ability to see the whole program post-link-time
● ability to detect and optimize program phases

● Disadvantages
● compilation time adds to total execution time

– apply low-overhead conservative optimizations
– only apply local optimizations

● high level semantic information may not be available
– exception, HLL (Java) Vms
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