
EECS 768 Virtual Machines 1

Dynamic Binary Optimization

● Introduction
● Application profiling
● Optimizing translation blocks
● Compatibility
● Code reordering
● Other code optimizations

EECS 768 Virtual Machines 2

Optimization Overview

● Identify frequently executed hot code regions
● basic blocks
● paths – indicate control flow
● edges – approximation to paths

● Dynamic profiling
● count execution frequencies
● software or hardware implemented

● Form large translation blocks
● traces and superblocks

● Schedule and optimize large blocks

EECS 768 Virtual Machines 3

Optimization Based On Profiling

Basic Block A
. . .
. . .

R3 …

R7 ...

R1 R2 + R3
BEQ L1 if R3 ==0

L1: R1 0
 …
 ...

Basic Block C

Basic Block B
. . .

R6 R1 + R6
…
...

Compensation code

R1 R2 + R3

Basic Block A
. . .
. . .

R3 …

R7 ...

BEQ L1 if R3 ==0

L1: R1 0
 …
 ...

Basic Block C

Basic Block B
. . .

R6 R1 + R6
…
...

EECS 768 Virtual Machines 4

Optimization Based On Profiling (2)

Basic Block A
. . .
. . .

R3 …

R7 ...

R1 R2 + R3

BEQ L1 if R3 ==0

L1: R1 0

 …
 ...

Basic Block C

Basic Block B
. . .

R6 R1 + R6

…
...

Superblock

. . .

. . .

R3 …

R7 ...

BNE L2 if R3 !=0

 R1 0

 …
 ...

Basic Block B
L2: . . .

 R6 R1 + R6

 …
 ...

Compensation code

R1 R2 + R3

EECS 768 Virtual Machines 5

Program Behavior

● Many aspects of a program's behavior are
predictable
● branches, data values

● Backward branch primarily taken
● Forward branch mostly not taken

 R3 ← 100
loop: R1 ← mem(R2) ; load from memory

Br found if R1 == -1 ; look for -1
R2 ← R2 + 4
R3 ← R3 -1
Br loop if R3 != 0 ; loop closing branch
.
.

found:

EECS 768 Virtual Machines 6

Branch Behavior

● Conditional branch predominantly decided one way
● either taken or not taken

0%

10%

20%

30%

40%

50%

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% >90%

Percent Taken

F
ra

ct
io

n
 o

f
S

ta
ti

c
C

o
n

d
it

io
n

al
 B

ra
n

ch
es

EECS 768 Virtual Machines 7

Branch Behavior (2)

● Most branches decided the same way as on
previous execution
● backward conditional branches are mostly taken
● forward conditional branches taken less often

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

17
6.

gc
c

18
1.

m
cf

19
7.

pa
rs

er

25
2.

eo
n

25
6.

bz
ip2

17
1.

sw
im

17
3.

ap
plu

17
7.

m
es

a

18
7.

fa
ce

re
c

18
9.

luc
as

P
e

rc
e

n
t

D
y

n
a

m
ic

 B
ra

n
c

h
e

s
 D

e
c

id
e

d
 S

a
m

e
 A

s
 P

re
v

io
u

s
 T

im
e

EECS 768 Virtual Machines 8

Other Program Behavior

● Some indirect jumps have a single target
• others have several targets (e.g. returns)

● Predictability extends to data values
• many instructions always produce the same result

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

All

Add/S
ub

Load

Logic
Shift Set

Instruction Type

F
ra

ct
io

n
 w

it
h

 C
o

n
st

an
t

V
a

lu
e

static

dynamic

EECS 768 Virtual Machines 9

Profiling

● Collect statistics about a program as it runs
• branches (taken, not taken)
• jump targets
• data values

● Predictability allows these statistics to be used for
optimizations in the future

● Profiling in a VM differs from traditional profiling
used for compiler feedback

EECS 768 Virtual Machines 10

Conventional (Offline) Profiling

● Multiple passes through compiler
● Done at program development time

• profile overhead is a small issue
● Can be based on global analysis

B C

D

E

F

A

Compiler
Front-end

HLL
Program

Instrumented
Code

Optimizing
Compiler

Test Data

Program
Execution

Compiler
Back-end

Program
Statistics

Optmized
Binary

intermediate
form

Instrumented
Code

EECS 768 Virtual Machines 11

VM-Based (Online) Profiling

● Profile overhead is very important
• profile time part of total execution time

● Limited view of program (no a priori global view)
• profile probes cannot be carefully placed

B

D

E

A

Interpreter
Program
Binary

Translator/
Optimizer

Program
Data

Partial
Program
Statistics

partially
"discovered"

code

EECS 768 Virtual Machines 12

Types of Profiles

● Block or node profiles
• identify hot code blocks; fewer nodes than edges

● Edge profiles
• more precise idea of program flow
• block profile can be derived from edge profile

50

48

38

15

2

13

10

17

15

12

B C

D

E

F

A

B C

D

E

F

A
65

50

48

17

25

15

EECS 768 Virtual Machines 13

Collecting Profiles

● Instrumentation-based
• software probes

 slows down program more
 requires less total time than sampling

• hardware probes
 less overhead than software
 less well-supported in processors
 typically event counters

● Sampling based
• interrupt at random intervals and take sample

 slows down program less
 requires longer time to get same amount of data

• not useful during interpretation

EECS 768 Virtual Machines 14

Profiling During Interpretation

Instruction function list
.
branch_conditional(inst) {
 BO = extract(inst,25,5);
 BI = extract(inst,20,5);
 displacement = extract(inst,15,14) * 4;
 .
 .
// code to compute whether branch should be taken
 .
 .
 profile_addr = lookup(PC);
 if (branch_taken)

profile_cnt(profile_addr, taken)++;
PC = PC + displacement;

 Else
profile_cnt(profile_addr, nottaken)++;
PC = PC + 4;

}

Branch PC

taken
countPC

not taken
count

HASH

EECS 768 Virtual Machines 15

Profiling Translated Code

● Software instrumentation in stub code

Translated
Basic
Block

Fall-thru
stub

Branch target
stub

Increment edge
counter (i)

If (counter (i) >
trigger) then
invoke optimizer

Else branch to
fall-thru basic
block

Increment edge
counter (j)

If (counter (j) >
trigger) then
invoke optimizer

Else branch to
target basic
block

EECS 768 Virtual Machines 16

Sampling

● Set interval counter
● Interrupt when counter hits zero
● Sample PC at that point
● Gives block profile
● Could be modified to give edge profile

Zero Detect

Instruction AddressInterval Counter
decrement for each

instruction

Program Counter

Load PC

TRAPInitialize Counter Sample PC

EECS 768 Virtual Machines 17

Improving Code Locality

A

B

E

A

B

E

● Provide more optimization
opportunities.

● Spatial locality
● consecutive memory

accesses are adjacent

● Temporal locality
● same memory access is

repeated in near future

● Reasons for spatial and
temporal locality
● loops and sequential

program flow

EECS 768 Virtual Machines 18

Improving Locality: Example

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A

B

C

D

E

F

G

30 70

68
2

97
15

29

B D

C

G

A

EF

1

1
29

68

1

3

EECS 768 Virtual Machines 19

Improving Locality: Example (2)

● Little locality (spatial or temporal) in cache line that
spans blocks E and F

● F seldom used
• wasted I-cache space and I-fetch bandwidth

● Heavily used discontiguous code blocks
• e.g., C and D
• still wastes I-fetch bandwidth

E FF F
Br uncond

EECS 768 Virtual Machines 20

Improving Locality: Rearrange Code

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A

B

C

D

E

F

G

Br cond1 == false

A

Br cond3 == true

D

E

Br cond2 == false

Br uncond

B

C

Br cond4 == true

G

F

Br uncond

Br uncond

EECS 768 Virtual Machines 21

Improving Locality: Procedure Inlining

Call proc xyz

Proc xyz

Return

Call proc xyz

A

K

L

B

X

.

.

.
Y

Z

A

K

L

B

.

.

.

Y

X

X

Z

● Inlining – duplicate
procedure body at call-site

● Partial inlining
● follow dominant flow of

control
● not practical to find full

procedure during dynamic
incremental code discovery

● Disadvantages
● increases code size
● increases register pressure

EECS 768 Virtual Machines 22

Improving Locality: Traces

● Divide program into chunks
● may contain multiple blocks

● Greedy Method
• suitable for on-the-fly translation
• start at hottest block not in trace
• follow hottest edges
• stop when trace reaches a
certain size

• stop when a block already in a
trace is reached

Trace 1

Trace 3

Trace 2
30 70

68

97

15

29

B D

C

G

A

EF

1

1
29

68

1

3

2

EECS 768 Virtual Machines 23

Improving Locality: Traces (2)

● No redundancy
• may reduce I-cache pressure
• good for spatial locality

● Join points sometimes inihibit optimizations.
● Typically not used in optimizing VMs.

EECS 768 Virtual Machines 24

Improving Locality: Superblocks

● Superblock – One entry, multiple exits
● May contain redundant blocks (tail duplication)
● More commonly used by dynamic optimizers

● better branch prediction
● less constraints on optimizations

15

B D

C

G

A

EF

15

B D

C

G

A

EF

GG

EECS 768 Virtual Machines 25

Superblocks: Example

Br cond1 == true

Br cond2 == false

Br uncond

Br cond3 == true

Br uncond

Br cond4 == true

A

B

C

D

E

F

G

30 70

68
2

97
15

29

B D

C

G

A

EF

1

1
29

68

1

3

Br cond1 == false

A

Br cond3 == true

D

E

Br cond2 == false

B

C

Br cond4 == true

G

F

Br uncond

Br cond4 == true

G

G

Br uncond

Br cond4 == true
Br uncond

EECS 768 Virtual Machines 26

Optimization Strategy

A

B

C

A

B

C

opt.
A
B
C

comp

comp

A
B
C

Collect basic
blocks using
profile
information

Convert to
intermediate
form; place
in buffer

Schedule and
optimize

Add compensation
code; place in code
cache

Intermediate
form

Generate
target code

Optimized
 target code

Original
source code

EECS 768 Virtual Machines 27

Optimization and Compatibility

● Requirements for compatibility
● isomorphism of user/privilege mode control transfer points
● isomorphism of guest state at the control transfer points

● Optimizations can affect the visibility of traps
● reordering instructions may affect where traps occur
● adding/eliminating instructions may affect if traps occur

● Trap compatibility
● trap during native execution of source instruction also

occurs during emulation of corresponding target instruction
● trap observed during emulation should also occur in the

corresponding source instruction

EECS 768 Virtual Machines 28

Optimization and Compatibility (2)

● Trap compatibility
 Source
…
r4 ← r6 + 1
r1 ← r2 + r3 → trap?
r1 ← r4 + r5
r6 ← r1 * r7

 Target
…
R4 ← R6 + 1 Remove
R1 ← R4 + R5 dead
R6 ← R1 * R7 assignment

● Memory and register state compatibility
● consistent program state on guest and native platform at

each control transfer point

 Source
…
r1 ← r2 + r3
r9 ← r1 + r5 reschedule
r6 ← r1 * r7
r3 ← r6 + 1
…

 Target
…
R1 ← R2 + R3
R6 ← R1 * R7
R9 ← R1 + R5 → trap?
R3 ← R6 + 1
…

 Target with
 saved reg. state
…
R1 ← R2 + R3
S1 ← R1 * R7
R9 ← R1 + R5
R6 ← S1
R3 ← S1 + 1
…

EECS 768 Virtual Machines 29

Code Reordering

● Important aspect of several optimizations
● especially for pipelined RICS, and VLIW processors
● reduce pipeline stalls and functional unit latencies

● Primitive instruction reordering issues
● consider reordering pairs of instructions
● divide instructions into basic categories

EECS 768 Virtual Machines 30

Instruction Categories

● reg updates – instructions
updating registers

● memory updates –
instructions updating
memory

● branch instructions –
transfer of control
instructions

● join point – points where
jump/branch enter code
sequence (only for traces)

. . .
R1  mem(R6) reg
R2  mem(R6 +4) reg
R3  R1 + 1 reg
R4  R1 << 2 reg
Br exit; if R7 == 0 br
R7  R7 + 1 reg
mem (R6)  R3 mem

EECS 768 Virtual Machines 31

Moving Instructions Below Branches

● Duplicate compensation code at the exit point.
● Pretty straightforward.
● Works for registers as well as memory state.

Br

reg

Br

reg reg
(compensation)

Br

mem

Br

mem mem
(compensation)

 …
R1 ← mem(R6)
R2 ← mem(R6+4)
R3 ← R1 + 1
R4 ← R1 << 2
Br exit if R7 == 0
R7 ← R7 + 1
mem(R6) ← R3

 …
R1 ← mem(R6)
R2 ← mem(R6+4)
R3 ← R1 + 1
Br exit if R7 == 0
R4 ← R1 << 2
R7 ← R7 + 1
mem(R6) ← R3

R4 ← R1 << 2

EECS 768 Virtual Machines 32

Moving Instructions Above Branches

● Use checkpoint for moving reg instructions
● calculate reg update in a temporary register
● if branch taken, real register is unmodified
● if instruction traps, all register state unmodified

Br

reg (R)

Br

reg (T)

R T

 …
R2 ← R1 << 2
Br exit if R8 == 0
R6 ← R7 * R2
mem(R6) ← R3
R6 ← R2 + 2

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
R6 ← T1
mem(T1) ← R3
R6 ← R2 + 2

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
mem(T1) ← R3
R6 ← R2 + 2

EECS 768 Virtual Machines 33

Moving Instructions Above Branches

● Moving stores above branches breaks memory state
compatibility
● what if exit branch is taken ?
● difficult to replicate memory state!

Br

mem

X

 …
R2 ← R1 << 2
T1 ← R7 * R2
Br exit if R8 == 0
mem(T1) ← R3
R6 ← R2 + 2

EECS 768 Virtual Machines 34

Moving Code Above Join Points

● Similar to previous case of branches
● Straightforward, compensation is via duplication

join point

reg

reg

join point

reg
(compensation)

join point

mem

mem

join point

mem
(compensation)

…
R1 ← R1 + 1
R7 ← mem(R6)
R7 ← R7 + 1
...

…
R1 ← R1 + 1
R7 ← mem(R6)
R7 ← R7 + 1
...

R7 ← mem(R6)

EECS 768 Virtual Machines 35

Moving Code Below Join Point

● Should not be done in most cases.
● No way to compensate if the join is taken.

join point

reg

join point

mem

EECS 768 Virtual Machines 36

Movement in Straight Line Code

● Can be done via checkpointing registers

reg(R)

reg

R T

reg

reg(T)

reg(R)

mem

R T

mem

reg(T)

…
R1 ← R1 * 3
mem(R6) ← R1
R7 ← R7 << 3
R9 ← R7 + R2
...

…
R1 ← R1 * 3
T1 ← R7 << 3
mem(R6) ← R1
R7 ← T1
R9 ← T1 + R2
...

EECS 768 Virtual Machines 37

Movement in Straight Line Code

● Hoisting stores breaks memory state compatibility
● unless there is a way to back up store instructions
● expensive

mem

X reg

mem

X mem

EECS 768 Virtual Machines 38

Instruction Reordering – Summary

first

second

reg mem br join

reg extend live range
of reg instruction

extend live range
of reg instruction

extend live range
of reg instruction

add
compensation
code at entrance

mem not allowed not allowed not allowed add
compensation
code at entrance

br add
compensation
code at
branch exit

add compensation
code
at branch exit

Not allowed
(changes
control flow)

Not allowed
(changes
control flow)

join Not allowed (can
only be done
in rare cases)

Not allowed (can
only be done
in rare cases)

Not allowed
(changes
control flow)

no effect

EECS 768 Virtual Machines 39

Optimizations

● Basic local optimizations
● applied within translation blocks
● can even optimize statically optimized code further
● constant propagation, constant folding, strength

reduction, dead-assignment elimination, cse, register
assignment, etc.

● compatibility issues verified on a case-by-case basis

● Inter-superblock optimizations
● go across basic blocks

● ISA-specific optimizations
● if conversion, instruction alignment

EECS 768 Virtual Machines 40

Static Vs Dynamic Optimizations

● Advantages of dynamic optimizations
● availability of runtime profile information (specialization)
● ability to see the whole program post-link-time
● ability to detect and optimize program phases

● Disadvantages
● compilation time adds to total execution time

– apply low-overhead conservative optimizations
– only apply local optimizations

● high level semantic information may not be available
– exception, HLL (Java) Vms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Profiling
	Conventional Profiling
	VM-Based Profiling
	Types of Profiles
	Collecting Profiles
	Profiling During Interpretation
	Profiling Translated Code
	Sampling
	Optimization: Improving Locality
	Improving Locality: Example
	Slide 19
	Improving Locality: Rearrange Code
	Improving Locality: Procedure Inlining
	Improving Locality: Traces
	Traces, contd.
	Improving Locality: Superblocks
	Example
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

