
EECS 768 Virtual Machines 1

High-Level Language VM – Outline

• Introduction
• Virtualizing conventional ISA Vs. HLL VM ISA
• Pascal P-code virtual machine
• OO HLL virtual machines

– properties, architecture, terms
• Implementation of HLL virtual machine

– class loading, security, GC, JNI

EECS 768 Virtual Machines 2

Introduction

• HLL PVM similar to a conventional PVM
– V-ISA not designed for a real hardware processor

HLL Program

Intermediate Code

Memory Image

Object Code
(ISA)

Compiler front-end

Compiler back-end

Loader

HLL Program

Portable Code
(Virtual ISA)

Host Instructions

Virt. Mem. Image

Compiler

VM loader

VM Interpreter/Translator

Traditional HLL VM

EECS 768 Virtual Machines 3

Virtualizing Conventional ISA Vs.
High-Level-Language VM ISA

• Drawbacks of virtualizing a conventional ISA
– not developed for being virtualized!
– operating system dependencies
– issues with fixed-size address space, page-size
– memory address formation
– maintaining precise exceptions
– instruction set features
– instruction discovery during indirect jumps
– self-modifying and self-referencing code

EECS 768 Virtual Machines 4

C-ISA Not for Being Virtualized

• Conventional ISA
– after the fact solution for portability

– no built-in ISA support for virtualization

• High-level language V-ISA
– VM based portability is a primary design goal

– generous use of metadata

– metadata allows better type-safe code
verification, interoperability, and performance

EECS 768 Virtual Machines 5

Operating System Dependencies

• Conventional ISA
– most difficult to emulate

– exact emulation may be impossible (different OS)

• High-level language V-ISA
– find a least common denominator set of

functions

– programs interact with the library API
– library interface is higher level than conventional

OS interface

EECS 768 Virtual Machines 6

Memory Architecture

• Conventional ISA
– fixed-size address spaces
– specific addresses visible to user programs

• High-level language V-ISA
– abstract memory model of indefinite size
– memory regions allocated based on need
– actual memory addresses are never visible
– out-of-memory error reported if process

requests more that is available of platform

EECS 768 Virtual Machines 7

Memory Address Formation

• Conventional ISA
– unrestricted address computation
– difficult to protect runtime from un-

authorized guest program accesses

• High-level-language V-ISA
– pointer arithmetic not permitted
– memory access only through explicit memory

pointers
– static/dynamic type checking employed

EECS 768 Virtual Machines 8

Precise Exceptions

• Conventional ISA
– many instructions trap, precise state needed
– global flags enable/disable exceptions

• High-level language V-ISA
– few instructions trap
– test for exception encoded in the program
– requirements for precise exceptions are

relaxed

EECS 768 Virtual Machines 9

Instruction Set Features

• Conventional ISA
– guest ISA registers > host registers is a

problem
– ISAs with condition codes are difficult to

emulate

• High-level language V-ISA
– stack-oriented
– condition codes are avoided

EECS 768 Virtual Machines 10

Instruction Discovery

• Conventional ISA
– indirect jumps to potentially arbitrary

locations
– variable-length instruction, embedded data,

padding

• High-level-language V-ISA
– restricted indirect jumps
– no mixing of code and data
– variable-length instructions permitted

EECS 768 Virtual Machines 11

Self-Modifying/Referencing Code

• Conventional ISA
– pose problems for translated code

• High-level language V-ISA
– self-modifying and self-referencing code not

permitted

EECS 768 Virtual Machines 12

Pascal P-code

• Popularized the Pascal language
– simplified porting of a Pascal compiler

• Introduced several concepts used in HLL VMs
– stack-based instruction set
– memory architecture is implementation

independent
– undefined stack and heap sizes
– standard libraries used to interface with the OS

• Objective was compiler portability (and application
portability)

EECS 768 Virtual Machines 13

Pascal P-Code (2)

• Protection via trusted interpreter.

• Advantages

– porting is simplified
• don't have to develop compilers for all

platforms

– VM implementation is smaller/simpler than a
compiler

– VM provides concise definition of semantics

• Disadvantages

– achieving OS independence reduces API
functionality to least common denominator

– tendency to add platform-specific API extensions

EECS 768 Virtual Machines 14

Object Oriented HLL Virtual Machines

• Used in a networked computing environment
• Important features of HLL VMs

– security and protection
• protect remote resources, local files, VM

runtime
– robustness

• OOP model provides component-based
programming, strong type-checking, and
garbage collection

– networking
• incremental loading, and small code-size

– performance
• easy code discovery allows entire method

compilation

EECS 768 Virtual Machines 15

Terminology

• Java Virtual Machine Architecture CLI
– analogous to an ISA

• Java Virtual Machine Implementation
CLR
– analogous to a computer implementation

• Java bytecodes Microsoft
Intermediate Language (MSIL), CIL, IL
– the instruction part of the ISA

• Java Platform .NET framework
– ISA + Libraries; a higher level ABI

EECS 768 Virtual Machines 16

Modern HLL VM

• Compiler frontend produces binary files
– standard format common to all architectures

• Binary files contain both code and metadata

Metadata

Code

Machine Independent
Program File

Loader

Virtual Machine
Implementation

Interpreter

Internal Data
Structures

Translator Native Code

EECS 768 Virtual Machines 17

Security

• A key aspect of modern
network-oriented Vms

– “protection sandbox”

• Must protect:
– remote resources

(files)
– local files
– runtime

• Java's first generation
security method

– still the default

Public File

Remote System

Other File

Local System

Accessible
Local File

application

VMM

Other
Local File

Network

User Process

Sandbox Boundary

EECS 768 Virtual Machines 18

Protection Sandbox

• Remote resources
– protected by remote

system

• Local resources
– protected by security

manager

• VM software

– protected via
static/dynamic
checking

class file

class file
class file

class file

Emulation Engine loader

native
method

native
method

lib.
method lib.

method

loaded
method

loaded
method

loaded
method

loaded
method

loaded
method

loaded
method

Network, File System

trusted
trusted

trusted

local
file

security
agent
trusted

local
file

standard
libraries

EECS 768 Virtual Machines 19

Java 1.1 Security: Signing

• Identifies source of the input program
– can implement different security policies for

programs from different vendors

Binary
Class

hash encrypt

Transmit

Binary
Class

Signed
Hash

hash

decrypt

private key public key

compare
match =>

signature OK

EECS 768 Virtual Machines 20

Java 2 Security: Stack Walking

• Inspect privileges of
all methods on stack

– append method
permissions

– method 4
attempts to write
file B via
io.method5

– call fails since
method2 does not
have privileges

Method 1

Method 2

Method 3

Method 4

System

System

Untrusted

Untrusted

principal

Full

Full

Write A
only

Write B
only

permissions

Method 5
(in io API)

System Full

Check Method System Full

Inspect
Stack

operation
prohibited

X

EECS 768 Virtual Machines 21

Garbage Collection

• Issues with traditional malloc/free,
new/delete
– explicit memory allocation places burden on

programmer
– dangling pointer, double free errors

• Garbage collection
– objects with no references are garbage
– must be collected to free up memory

• for future object allocation
• OS limits memory use by a process

– eliminates programmer pointer errors

EECS 768 Virtual Machines 22

Network Friendliness

• Support dynamic class loading on
demand
– load classes only when needed
– spread loading over time

• Compact instruction encoding
– zero-address stack-based bytecode to reduce

code size
– contain significant metadata

• maybe a slight code size win over RISC fixed-width
ISAs

EECS 768 Virtual Machines 23

Java ISA

• Formalized in classfile specification.
• Includes instruction definitions

(bytecodes).
• Includes data definitions and

interrelationships (metadata).

EECS 768 Virtual Machines 24

Java Architected State

• Implied registers
– program counter, local variable pointer, operand

stack pointer, current frame pointer, constant
pool base

• Stack

– arguments, locals, and operands

• Heap

– objects and arrays

– implementation-dependent object representation

• Class file content
– constant pool holds immediates (and other

constant information)

EECS 768 Virtual Machines 25

Data Items

• Types are defined in specification
– implementation free to choose

representation
– reference (pointers) and primitive (byte, int,

etc.) types

• Range of values that can be held are
given
– e.g., byte is between -127 and +128
– data is located via

• references; as fields of objects in heap
• offsets using constant pool pointer, stack pointer

EECS 768 Virtual Machines 26

Data Accessing

opcode
opcode operand operand

opcode operand

opcode

opcode operand operand

opcode operand
opcode

opcode operand

Operands

Locals

Object

Object

Object

index

implied

index

Array

implied

HEAP

Instruction stream

STACK FRAME

CONSTANT
POOL

index

EECS 768 Virtual Machines 27

Instruction Set

• Bytecodes
– single byte opcode
– zero or more operands

• Can access operands
from
– instruction
– current constant pool
– current frame local

variables
– values on operand stack

opcode

opcode index

opcode index1 index2

opcode data

opcode data1 data2

EECS 768 Virtual Machines 28

Instruction Types

• Pushing constants onto the stack

• Moving local variable contents to and from the
stack

• Managing arrays

• Generic stack instructions (dup, swap, pop & nop)

• Arithmetic and logical instructions

• Conversion instructions

• Control transfer and function return

• Manipulating object fields

• Method invocation

• Miscellaneous operations

• Monitors

EECS 768 Virtual Machines 29

Stack Tracking

• At any point in program operand stack
has
– same number of operands
– of same types
– and in same order
– regardless of the control path getting there !

• Helps with static type checking

EECS 768 Virtual Machines 30

Stack Tracking – Example

• Valid bytecode sequence:

iload A //push int. A from local mem.
iload B //push int. B from local mem.
If_cmpne 0 else // branch if B ne 0
iload C // push int. C from local mem.
goto endelse

else: iload F //push F
endelse: add // add from stack; result to stack

istore D // pop sum to D

EECS 768 Virtual Machines 31

Stack Tracking – Example

• Invalid bytecode sequence
– stack at skip1 depends on control-flow path

iload B // push int. B from local mem.
If_cmpne 0 skip1 // branch if B ne 0
iload C // push int. C from local mem.

skip1: iload D // push D
iload E // push E
if_cmpne 0 skip2 // branch if E ne 0
add // add stack; result to stack

skip2: istore F // pop to F

EECS 768 Virtual Machines 32

Exception Table

• Exceptions identified by table in class
file
– address Range where checking is in effect
– target if exception is thrown

• operand stack is emptied

• If no table entry in current method
– pop stack frame and check calling method
– default handlers at main
From To Target Type
 8 12 96 Arithmetic Exception

EECS 768 Virtual Machines 33

Binary Class Format

• Magic number and
header

• Regions preceded by
counts
– constant pool
– interfaces
– field information
– methods
– attributes

Magic Number
Version Information

Constant Pool

Const. Pool Size

Access Flags
This Class

Super Class

Interfaces

Interface Count

Field Information

Field count

Methods count

Methods

Attributes Count

Attributes

EECS 768 Virtual Machines 34

Java Virtual Machine

• Abstract entity that gives meaning to
class files

• Has many concrete implementations
– hardware
– interpreter
– JIT compiler

• Persistence
– an instance is created when an application

starts
– terminates when the application finishes

EECS 768 Virtual Machines 35

JVM Implementation

• A typical JVM implementation consists of
– class loader subsystem , memory subsystem,

emulation/execution engine, garbage collector

method
area heap Java

stacks
native

method
stacks

Memory

Class Loader
Subsystemclass files

native method
libraries

addresses data &
instructions

Execution Engine
PCs
&

implied
regs

native
method
interface

Garbage
Collector

EECS 768 Virtual Machines 36

Class Loader

• Functions
– find the binary class
– convert class data into implementation-

dependent memory image
– verify correctness and consistency of the

loaded classes
• Security checks

– checks class magic number
– component sizes are as indicated in class file
– checks number/types of arguments
– verify integrity of the bytecode program

EECS 768 Virtual Machines 37

Protection Sandbox
Global Memory

Objects with statically
defined(fixed)

types

Local StorageOperand Storage

Declared (fixed)
types

Tracked
types

Load: type determined
from reference/field type

Store: must be to
reference and field with

correct types

Move to local storage:
must be to a

location with correct type

Move to operand
 stroage: type

determined from local
storage type

ALU

tracked types

Array loads are
range checked

Array stores are
 range checked

EECS 768 Virtual Machines 38

Protection Sandbox:
Security Manager

• A trusted class containing check
methods
– attached when Java program starts
– cannot be removed or changed

• User specifies checks to be made
– files, types of access, etc.

• Operation
– native methods that involve resource

accesses (e.g. I/O) first call check method(s)

EECS 768 Virtual Machines 39

Verification

• Class files are checked when loaded
– to ensure security and protection

• Internal Checks
– checks for magic number
– checks for truncation or extra bytes

• each component specifies a length

– make sure components are well-formed

EECS 768 Virtual Machines 40

Verification (2)

• Bytecode checks
– check valid opcodes
– perform full path analysis

• regardless of path to an instruction contents of
operand stack must have same number and types
of items

• checks arguments of each bytecode
• check no local variables are accessed before

assigned
• makes sure fields are assigned values of proper

type

EECS 768 Virtual Machines 41

Java Native Interface (JNI)

• Allows java code and native code to
interoperate
– access legacy code, system calls from Java
– access Java API from native functions

• see figure on next slide
– each side compiles to its own binary format
– different java and native stacks maintained
– arguments can be passed; values/exceptions

returned

EECS 768 Virtual Machines 42

Java Native Interface (JNI)

Java HLL Program

Compile
and

Load

Bytecode

Methods

object
object

array

getfield/
putfield

C Program

Compile
and

Load

Native Machine Code

invoke native method

Native Data Structures

load/store

Java Side Native Side

JNI
get/put

EECS 768 Virtual Machines 43

Garbage Collector

• Provides implicit heap object space
reclamation policy.

• Collects objects that have all their
references removed or destroyed.

• Invoked at regular intervals, or when
low on memory.

• see figure on next slide
– root set point to objects in heap
– objects not reachable from root set are

garbage

EECS 768 Virtual Machines 44

Garbage Collector (2)

.

.

.

Root Set

Global Heap

A B

DC

E F

HG

EECS 768 Virtual Machines 45

Types of Collectors

• Reference count collectors
– keep a count of the number of references to

each object

• Tracing collectors
– using the root set of references

EECS 768 Virtual Machines 46

Mark and Sweep Collector

• Basic tracing collector
– start with root set of references
– trace and mark all reachable objects
– sweep through heap collecting marked

objects

• Advantages
– does not require moving object/pointers

• Disadvantages
– garbage objects combined into a linked list

• leads to fragmentation
• segregated free-lists can be used
• consolidation of free space can improve efficiency

EECS 768 Virtual Machines 47

Compacting Collector

• Make free space
contiguous
– multiple passes

through heap
– lot of object

movement
• many pointer updates

A

B

C

D

E

F

G

H

free

A

B

C

E

G

free

EECS 768 Virtual Machines 48

Copying Collector

• Divide heap into
halves
– collect when one

half full
– copy into unused

half during sweep
phase

• Reduces passes
through heap

• Wastes half the
heap

A

B
C

D

E

F

G

H

free

unused A

B
C

E

G

free

unused

EECS 768 Virtual Machines 49

Simplifying Pointer Updates

• Add level of
indirection
– use handle pool
– object moves

update handle
pool

• Makes every
object access slow

Global Heap

object references
(e.g. on stack)

Handle Pool
Object Pool

A

B

EECS 768 Virtual Machines 50

Generational Collectors

• Reduce number of objects moved
during each collection cycle.

• Exploit the bi-modal distribution of
object lifetimes.

• Divide heap into two sub-heaps
– nursery, for newly created objects
– tenured, for older objects

• Collect a smaller portion of the heap
each time.

EECS 768 Virtual Machines 51

Generational Collectors (2)

• Stop-the-world collectors
– time consuming, long pauses
– unsuitable for real-time applications

EECS 768 Virtual Machines 52

Concurrent Collectors (2)

.

.

.

Root Set
A B

DC

.

.

.

A B

DC

Root Set

• GC concurrently with application execution
– partially collected heap may be unstable (see

figure)

– synchronization needed between the application
(mutator) and the collector

EECS 768 Virtual Machines 53

JVM Bytecode Emulation

• Interpretation
– simple, fast startup, slow steady-state

• Just-In-Time (JIT) compilation
– compile each method on first invocation
– simple optimizations, slow startup, fast

steady-state

• Hot-spot compilation
– compile frequently executed code
– can apply more aggressive optimizations
– moderate startup, fast steady-state

	High-Level Language VM – Outline
	Introduction
	Virtualizing Conventional ISA Vs. High-Level-Language VM ISA
	C-ISA Not for Being Virtualized
	Operating System Dependencies
	Memory Architecture
	Memory Address Formation
	Precise Exceptions
	Instruction Set Features
	Instruction Discovery
	Self-Modifying/Referencing Code
	Pascal P-code
	Slide 13
	Object Oriented HLL Virtual Machines
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	JVM Implementation
	Class Loader
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Java Native Interface (JNI)
	Slide 42
	Garbage Collector
	Slide 44
	Types of Collectors
	Mark and Sweep Collector
	Slide 47
	Slide 48
	Slide 49
	Generational Collectors
	Concurrent Collectors
	Slide 52
	Slide 53

