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High-Level Language VM – Outline

• Introduction
• Virtualizing conventional ISA Vs. HLL VM ISA
• Pascal P-code virtual machine
• OO HLL virtual machines

– properties, architecture, terms
• Implementation of HLL virtual machine

– class loading, security, GC, JNI
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Introduction

• HLL PVM similar to a conventional PVM
– V-ISA not designed for a real hardware processor
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Virtualizing Conventional ISA Vs. 
High-Level-Language VM ISA

• Drawbacks of virtualizing a conventional ISA
– not developed for being virtualized!
– operating system dependencies
– issues with fixed-size address space, page-size
– memory address formation
– maintaining precise exceptions
– instruction set features
– instruction discovery during indirect jumps
– self-modifying and self-referencing code
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C-ISA Not for Being Virtualized

• Conventional ISA
– after the fact solution for portability

– no built-in ISA support for virtualization

• High-level language V-ISA
– VM based portability is a primary design goal

– generous use of metadata

– metadata allows better type-safe code 
verification, interoperability, and performance
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Operating System Dependencies

• Conventional ISA
– most difficult to emulate

– exact emulation may be impossible (different OS)

• High-level language V-ISA
– find a least common denominator set of 

functions

– programs interact with the library API
– library interface is higher level than conventional 

OS interface
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Memory Architecture 

• Conventional ISA
– fixed-size address spaces
– specific addresses visible to user programs

• High-level language V-ISA
– abstract memory model of indefinite size
– memory regions allocated based on need
– actual memory addresses are never visible
– out-of-memory error reported if process 

requests more that is available of platform
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Memory Address Formation

• Conventional ISA
– unrestricted address computation
– difficult to protect runtime from un-

authorized guest program accesses

• High-level-language V-ISA
– pointer arithmetic not permitted
– memory access only through explicit memory 

pointers
– static/dynamic type checking employed
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Precise Exceptions

• Conventional ISA
– many instructions trap, precise state needed
– global flags enable/disable exceptions

• High-level language V-ISA
– few instructions trap
– test for exception encoded in the program
– requirements for precise exceptions are 

relaxed
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Instruction Set Features

• Conventional ISA
– guest ISA registers > host registers is a 

problem
– ISAs with condition codes are difficult to 

emulate

• High-level language V-ISA
– stack-oriented 
– condition codes are avoided
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Instruction Discovery

• Conventional ISA
– indirect jumps to potentially arbitrary 

locations
– variable-length instruction, embedded data, 

padding

• High-level-language V-ISA
– restricted indirect jumps
– no mixing of code and data
– variable-length instructions permitted
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Self-Modifying/Referencing Code

• Conventional ISA
– pose problems for translated code

• High-level language V-ISA
– self-modifying and self-referencing code not 

permitted
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Pascal P-code

• Popularized the Pascal language
– simplified porting of a Pascal compiler

• Introduced several concepts used in HLL VMs
– stack-based instruction set
– memory architecture is implementation 

independent
– undefined stack and heap sizes
– standard libraries used to interface with the OS

• Objective was compiler portability (and application 
portability)
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Pascal P-Code (2)

• Protection via trusted interpreter.

• Advantages

– porting is simplified
• don't have to develop compilers for all 

platforms

– VM implementation is smaller/simpler than a 
compiler

– VM provides concise definition of semantics

• Disadvantages

– achieving OS independence reduces API 
functionality to least common denominator

– tendency to add platform-specific API extensions
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Object Oriented HLL Virtual Machines

• Used in a networked computing environment
• Important features of HLL VMs

– security and protection
• protect remote resources, local files, VM 

runtime
– robustness

• OOP model provides component-based 
programming, strong type-checking, and 
garbage collection

– networking
• incremental loading, and small code-size

– performance
• easy code discovery allows entire method 

compilation
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Terminology

• Java Virtual Machine Architecture  CLI
– analogous to an ISA

• Java Virtual Machine Implementation 
CLR
– analogous to a computer implementation

• Java bytecodes  Microsoft 
Intermediate   Language (MSIL), CIL, IL
– the instruction part of the ISA

• Java Platform  .NET framework
– ISA + Libraries; a higher level ABI



EECS 768 Virtual Machines 16

Modern HLL VM

• Compiler frontend produces binary files
– standard format common to all architectures

• Binary files contain both code and metadata
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Security

• A key aspect of modern 
network-oriented Vms

– “protection sandbox”

• Must protect:
– remote resources 

(files)
– local files
– runtime

• Java's first generation 
security method

–  still the default
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Protection Sandbox

• Remote resources
– protected by remote 

system

• Local resources
– protected by security 

manager

• VM software

– protected via 
static/dynamic 
checking
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Java 1.1 Security: Signing

• Identifies source of the input program
– can implement different security policies for 

programs from different vendors
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Java 2 Security: Stack Walking

• Inspect privileges of 
all methods on stack

– append method 
permissions

– method 4 
attempts to write 
file B via 
io.method5

– call fails since 
method2 does not 
have privileges

Method 1

Method 2

Method 3

Method 4

System

System

Untrusted

Untrusted

principal

Full

Full

Write A
only

Write B
only

permissions

Method 5
(in io API)

System Full

Check Method System Full

Inspect
Stack

operation
prohibited

X



EECS 768 Virtual Machines 21

Garbage Collection

• Issues with traditional malloc/free, 
new/delete
– explicit memory allocation places burden on 

programmer
– dangling pointer, double free errors

• Garbage collection
– objects with no references are garbage
– must be collected to free up memory

• for future object allocation
• OS limits memory use by a process

– eliminates programmer pointer errors
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Network Friendliness

• Support dynamic class loading on 
demand
– load classes only when needed
– spread loading over time

• Compact instruction encoding
– zero-address stack-based bytecode to reduce 

code size
– contain significant metadata

• maybe a slight code size win over RISC fixed-width 
ISAs
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Java ISA

• Formalized in classfile specification.
• Includes instruction definitions 

(bytecodes).
• Includes data definitions and 

interrelationships (metadata).
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Java Architected State

• Implied registers
– program counter, local variable pointer, operand 

stack pointer, current frame pointer, constant 
pool base

• Stack

– arguments, locals, and operands 

• Heap

– objects and arrays

– implementation-dependent object representation

• Class file content
– constant pool holds immediates (and other 

constant information)
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Data Items

• Types are defined in specification
– implementation free to choose 

representation
– reference (pointers) and primitive (byte, int, 

etc.) types

• Range of values that can be held are 
given
– e.g., byte is between -127 and +128
– data is located via

• references; as fields of objects in heap
• offsets using constant pool pointer, stack pointer 
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Data Accessing
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Instruction Set

• Bytecodes
– single byte opcode
– zero or more operands

• Can access operands 
from
– instruction
– current constant pool
– current frame local 

variables
– values on operand stack

opcode

opcode index

opcode index1 index2

opcode data

opcode data1 data2
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Instruction Types

• Pushing constants onto the stack 

• Moving local variable contents to and from the 
stack 

• Managing arrays 

• Generic stack instructions (dup, swap, pop & nop) 

• Arithmetic and logical instructions 

• Conversion instructions 

• Control transfer and function return 

• Manipulating object fields 

• Method invocation 

• Miscellaneous operations 

• Monitors 



EECS 768 Virtual Machines 29

Stack Tracking

• At any point in program operand stack 
has
– same number of operands
– of same types 
– and in same order
– regardless of the control path getting there !

• Helps with static type checking 
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Stack Tracking – Example

• Valid bytecode sequence:

iload A //push int. A from local mem.
iload B //push int. B from local mem.
If_cmpne 0  else // branch if B ne 0
iload C // push int. C from local mem.
goto endelse

else: iload F //push F
endelse: add // add from stack; result to stack

istore D // pop sum to D
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Stack Tracking – Example

• Invalid bytecode sequence
– stack at skip1 depends on control-flow path

iload B // push int. B from local mem.
If_cmpne 0  skip1 // branch if B ne 0
iload C // push int. C from local mem.

skip1: iload D // push D
iload E // push E
if_cmpne 0  skip2 // branch if E ne 0
add // add stack; result to stack

skip2: istore F // pop to F
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Exception Table

• Exceptions identified by table in class 
file
– address Range where checking is in effect
– target if exception is thrown

• operand stack is emptied

• If no table entry in current method
– pop stack frame and check calling method
– default handlers at main
From    To    Target Type
    8    12      96 Arithmetic Exception
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Binary Class Format

• Magic number and 
header

• Regions preceded by 
counts
– constant pool
– interfaces
– field information
– methods
– attributes

Magic Number
Version Information

Constant Pool

Const. Pool Size

Access Flags
This Class

Super Class

Interfaces

Interface Count

Field Information

Field count

Methods count

Methods

Attributes Count

Attributes
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Java Virtual Machine

• Abstract entity that gives meaning to 
class files 

• Has many concrete implementations 
– hardware
– interpreter
– JIT compiler

• Persistence
– an instance is created when an application 

starts
– terminates when the application finishes
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JVM Implementation

• A typical JVM implementation consists of
– class loader subsystem , memory subsystem, 

emulation/execution engine, garbage collector

method
area heap Java

stacks
native

method
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Memory

Class Loader
Subsystemclass files

native method
libraries
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instructions

Execution Engine
PCs
&
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regs

native
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interface

Garbage
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Class Loader

• Functions
– find the binary class
– convert class data into implementation-

dependent memory image
– verify correctness and consistency of the 

loaded classes
• Security checks

– checks class magic number
– component sizes are as indicated in class file
– checks number/types of arguments
– verify integrity of the bytecode program
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Protection Sandbox
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Protection Sandbox: 
Security Manager

• A trusted class containing check 
methods
– attached when Java program starts
– cannot be removed or changed

• User specifies checks to be made 
– files, types of access, etc.

• Operation
– native methods that involve resource 

accesses (e.g. I/O)  first call check method(s)
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Verification

• Class files are checked when loaded
– to ensure security and protection

• Internal Checks
– checks for magic number
– checks for truncation or extra bytes

• each component specifies a length

– make sure components are well-formed
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Verification (2)

• Bytecode checks
– check valid opcodes
– perform full path analysis

• regardless of path to an instruction contents of 
operand stack must have same number and types 
of items

• checks arguments of each bytecode
• check no local variables are accessed before 

assigned
• makes sure fields are assigned values of proper 

type
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Java Native Interface (JNI)

• Allows java code and native code to 
interoperate
– access legacy code, system calls from Java
– access Java API from native functions

• see figure on next slide
– each side compiles to its own binary format
– different java and native stacks maintained
– arguments can be passed; values/exceptions 

returned
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Java Native Interface (JNI)

Java HLL Program
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Garbage Collector

• Provides implicit heap object space 
reclamation policy.

• Collects objects that have all their 
references removed or destroyed.

• Invoked at regular intervals, or when 
low on memory.

• see figure on next slide
– root set point to objects in heap
– objects not reachable from root set are 

garbage
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Garbage Collector (2)
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Types of Collectors

• Reference count collectors
– keep a count of the number of references to 

each object

• Tracing collectors
– using the root set of references
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Mark and Sweep Collector

• Basic tracing collector
– start with root set of references
– trace and mark all reachable objects
– sweep through heap collecting marked 

objects

• Advantages
– does not require moving object/pointers

• Disadvantages
– garbage objects combined into a linked list

• leads to fragmentation
• segregated free-lists can be used
• consolidation of free space can improve efficiency
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Compacting Collector

• Make free space 
contiguous
– multiple passes 

through heap
– lot of object 

movement
• many pointer updates
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D

E

F

G

H

free
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B

C
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G

free
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Copying Collector

• Divide heap into 
halves
– collect when one 

half full
– copy into unused 

half during sweep 
phase

• Reduces passes 
through heap

• Wastes half the 
heap

A

B
C

D

E

F

G

H

free

unused A

B
C

E

G

free

unused
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Simplifying Pointer Updates

• Add level of 
indirection
– use handle pool
– object moves

update handle 
pool

• Makes every 
object access slow

Global Heap

object references
(e.g. on stack)

Handle Pool
Object Pool

A

B
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Generational Collectors

• Reduce number of objects moved 
during each collection cycle.

• Exploit the bi-modal distribution of 
object lifetimes.

• Divide heap into two sub-heaps
– nursery, for newly created objects
– tenured, for older objects

• Collect a smaller portion of the heap 
each time.
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Generational Collectors (2)

• Stop-the-world collectors
– time consuming, long pauses
– unsuitable for real-time applications



EECS 768 Virtual Machines 52

Concurrent Collectors (2)

.

.

.

Root Set
A B

DC

.

.

.

A B

DC

Root Set

• GC concurrently with application execution
– partially collected heap may be unstable (see 

figure)

– synchronization needed between the application 
(mutator) and the collector
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JVM Bytecode Emulation

• Interpretation
– simple, fast startup, slow steady-state

• Just-In-Time (JIT) compilation
– compile each method on first invocation
– simple optimizations, slow startup, fast 

steady-state

• Hot-spot compilation
– compile frequently executed code
– can apply more aggressive optimizations
– moderate startup, fast steady-state
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