
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 17:617–637
Published online 22 February 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.852

The Open Runtime Platform:
a flexible high-performance
managed runtime environment‡

Michal Cierniak1,∗,†, Marsha Eng2, Neal Glew2, Brian Lewis2

and James Stichnoth2

1Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052, U.S.A.
2Microprocessor Technology Laboratory, Intel Corporation, 2200 Mission College Boulevard,
Santa Clara, CA, U.S.A.

SUMMARY

The Open Runtime Platform (ORP) is a high-performance managed runtime environment (MRTE) that
features exact generational garbage collection, fast thread synchronization, and multiple coexisting just-
in-time compilers (JITs). ORP was designed for flexibility in order to support experiments in dynamic
compilation, garbage collection, synchronization, and other technologies. It can be built to run either
Java or Common Language Infrastructure (CLI) applications, to run under the Windows or Linux
operating systems, and to run on the IA-32 or Itanium processor family (IPF) architectures. Achieving
high performance in a MRTE presents many challenges, particularly when flexibility is a major goal.
First, to enable the use of different garbage collectors and JITs, each component must be isolated from the
rest of the environment through a well-defined software interface. Without careful attention, this isolation
could easily harm performance. Second, MRTEs have correctness and safety requirements that traditional
languages such as C++ lack. These requirements, including null pointer checks, array bounds checks, and
type checks, impose additional runtime overhead. Finally, the dynamic nature of MRTEs makes some
traditional compiler optimizations, such as devirtualization of method calls, more difficult to implement
or more limited in applicability. To get full performance, JITs and the core virtual machine (VM) must
cooperate to reduce or eliminate (where possible) these MRTE-specific overheads. In this paper, we describe
the structure of ORP in detail, paying particular attention to how it supports flexibility while preserving
high performance. We describe the interfaces between the garbage collector, the JIT, and the core VM; how
these interfaces enable multiple garbage collectors and JITs without sacrificing performance; and how they
allow the JIT and the core VM to reduce or eliminate MRTE-specific performance issues. Copyright c©
2005 John Wiley & Sons, Ltd.

KEY WORDS: MRTE; Java; CLI; virtual machine; interface design

∗Correspondence to: Michal Cierniak, Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052, U.S.A.
†E-mail: michaljc@microsoft.com
‡An earlier version of this paper was published online [1].

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 15 January 2003

Revised 25 August 2003
Accepted 14 October 2003

618 M. CIERNIAK ET AL.

INTRODUCTION

Modern languages such as Java and C# execute in a managed runtime environment that provides
automatic memory management, type management, threads and synchronization, and dynamic loading
facilities. These environments differ in a number of ways from traditional languages like C, C++,
and Fortran, and thus provide a challenge both for language implementers and for the developers of
high-performance microprocessors. This paper concentrates on language implementation challenges
by describing a particular MRTE implementation developed at Intel.

Intel’s Microprocessor Technology Laboratory (MTL) has developed a managed runtime
environment (MRTE) implementation called Open Runtime Platform (ORP). ORP was designed
to support experimentation with different technologies in just-in-time compilers (JITs), garbage
collection (GC), multithreading, and synchronization. Over the past five years, researchers at Intel
and elsewhere have used ORP to conduct a number of MRTE implementation experiments [1–8].
At least three different garbage collectors and eight different JITs have been developed and integrated
with ORP.

Three characteristics of MRTEs provide the key challenges to their implementation. First, MRTEs
dynamically load and execute code that is delivered in a portable format. This means that code
must be converted into native instructions through interpretation or compilation. As a result, MRTE
implementations typically include at least one JIT (and often several), and often an interpreter
as well. In addition to the challenges of just-in-time compilation, dynamic loading adversely
affects important object-oriented optimizations like devirtualization, which reduces the overhead
of virtual method calls. Second, MRTEs provide automatic memory management and thus require
a garbage collector. Since different applications may impose very different requirements on the
garbage collector (e.g. raw throughput versus GC pause time constraints), garbage collector design
becomes a significant challenge. Third, MRTEs are multi-threaded, providing facilities for the creation
and management of threads, and facilities such as locks and monitors for synchronizing thread
execution.

The design of efficient locking schemes, given the modern memory hierarchies and bus protocols
of microprocessors, is a significant challenge. In addition, the garbage collector must be designed for
multiple threads and may very well need to be parallel itself.

In order to provide the flexibility needed for JIT and garbage collector experiments, we designed
interfaces to cleanly separate the JIT and garbage collector parts of ORP from each other and from the
core virtual machine (VM) (see Figure 1). Evaluating these experiments requires performance studies,
which can be meaningful only if the interfaces impose insignificant overhead. As a result, one of the
key contributions of ORP is the design of clean interfaces for JITs and garbage collectors that does not
sacrifice performance.

The MRTE implementation challenges described above may require cooperation between different
components to achieve a good result. For example, devirtualization optimizations may require
cooperation between JITs that do the optimization and the core VM that manages the class hierarchy.
We had to balance the need for clean interfaces to support flexibility with the need for cooperation to
overcome performance hurdles.

In the next section we elaborate on the nature of MRTEs and the challenges they provide to
implementers. Then we describe ORP in detail, paying close attention to the design of interfaces that
are clean and also lead to high performance.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 619

Core VM

JIT GC

VM-JIT
intf

VM-common intf VM-GC
intf

JIT-runtime intf

JITed
code

Figure 1. Block diagram of ORP.

MANAGED RUNTIME ENVIRONMENTS

In 1995, the Java programming language and the Java Virtual Machine [10] emerged as the first
mainstream MRTE. In 2000, Java was joined by Common Language Infrastructure (CLI) [11], and
associated languages like C# [12], as the second major MRTE in the market. Both MRTEs have
significant differences over C++ compilers and runtimes; yet they are similar to each other in most
important ways. In this section, we describe the terminology and key features that distinguish MRTEs
from traditional C++ systems, in particular those that may require new optimization techniques to gain
full performance.

Key features

MRTEs dynamically load and execute code. The code and other related data are loaded from class
files, which can be read from disk, read from a network stream, or synthesized in memory by a running
application. Concrete methods include bytecodes that specify what to do when that method is invoked.
These bytecodes are machine independent, and are at a slightly higher level of abstraction than native
instructions. As a result, MRTEs require some means to convert bytecodes into native instructions:
an interpreter or a JIT.

MRTEs manage type information, that is, they store information about all the classes, fields, and
methods that they have loaded, and also about other types that they define or derive automatically,
such as primitive and array types. MRTEs provide reflection facilities that allow application code to
enumerate and inspect all this information about types, fields, and methods.

MRTEs provide automatic memory management. There is a region of memory belonging to the
MRTE called the heap. If the heap is full, the MRTE tries to reclaim the space of objects no longer
in use, a process known as garbage collection (GC). The part of the MRTE that manages the heap,
allocates objects, and performs GC is known as the garbage collector.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

620 M. CIERNIAK ET AL.

To perform a GC, a garbage collector must first find all direct references to objects from the currently
executing program; these references are called roots, or the root set, and the process of finding them all
is called root-set enumeration. Within one stack frame, each native instruction might have a different
set of roots on the stack and in physical registers; for this purpose, a JIT usually maintains a GC map to
provide the mapping between individual instructions and roots. Next, the garbage collector must find
all objects reachable from the root set; this is called marking or scanning. Finally, the garbage collector
reclaims the remaining, unreachable, objects.

Generational garbage collectors attempt to improve GC efficiency by only scanning a portion
of the heap during a collection. Doing so requires additional support from the rest of the MRTE,
particularly the JITs: a write barrier must be called whenever a reference type pointer in the heap is
modified.

MRTEs provide exceptions to deal with errors and unusual circumstances. Exceptions can be thrown
either explicitly via a ‘throw’ bytecode, or implicitly by the MRTE itself as a result of an illegal action
such as a null pointer dereference. Each bytecode in a method has an associated list of exception
handlers. When an exception is thrown, the JVM must examine each stack frame in turn, until it finds
a matching exception handler among the list of associated exception handlers. This requires stack
unwinding, the ability to examine stack frames and remove them from the stack one by one. Note that
stack unwinding is also needed to implement security policies and root-set enumeration.

Most of the significant differences between CLI and Java are due to additional features in CLI.
CLI has a richer set of types than Java. Key among these are value types, which resemble C structures
and are especially useful for implementing lightweight types such as complex numbers. CLI also
supports managed pointers that have many uses, including the implementation of call-by-reference
parameters. Since these may point into the interior of heap objects, they may require special support
from garbage collectors. CLI also includes several features that are especially helpful when interfacing
with legacy libraries. Its platform library invocation service automates much of the work to call
native library routines. CLI, unlike Java, also allows objects to be pinned to ensure they will not be
relocated.

Optimization challenges

MRTEs (particularly Java systems) gained an early reputation for not performing as well as traditional
languages like C or C++. In part, this reputation arose because the first implementations only
interpreted the bytecodes. When JITs were introduced as a way to achieve better performance than
interpretation, they were thought of as not optimizing code, but rather as quick producers of native
code, with quick startup and response times being the driving requirements. Over time, JIT code quality
has increased, due to more mature JIT technology, dynamic recompilation techniques, and a relaxation
of the fast startup requirement, particularly for longer-running, server-type applications.

Despite the general maturation of JIT technology, there still remain some fundamental issues that
separate a MRTE JIT from a traditional C++ compiler. One set of issues is the lack of whole-program
analysis in a MRTE. Classes can be dynamically loaded into the system at any time, and new classes
may invalidate assumptions made during earlier compilations of methods. When making decisions
about devirtualization, inlining, and direct call conversion, JITs must take into account the possibility
that a target method may be overridden in the future (even if at compile time there is only one
possible target), and that a target class may be subclassed (even if the class is currently not extended).

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 621

This generally results in extra overhead for method dispatch or inlining than would typically be present
in a C++ system.

Another set of issues is the safety checks required by MRTE semantics. For example, every array
access must test whether the array index falls within the bounds of the array. Every type cast must
test whether it is a valid cast. Every object dereference must test whether the reference is null. C and
C++ lack these runtime requirements, so as to achieve competitive performance, JITs must employ
additional techniques to minimize the overhead.

Further performance challenges relate to the garbage collector. Some batch-style applications may
demand the highest possible throughput, while other interactive applications may require short GC
pause times, possibly at the cost of some throughput. Such requirements have a profound impact on
the design of the garbage collector. In addition, since the garbage collector is responsible for mapping
objects into specific heap locations, it may also need to detect relationships between objects and ensure
that related objects are collocated in memory, in order to maximize memory hierarchy locality.

Some of these JIT-related overheads can be reduced through compiler techniques alone.
Others require some level of cooperation with the core VM. Throughout this paper, we identify such
techniques and how they are implemented in ORP.

OVERVIEW OF ORP

ORP is a high-performance MRTE that features exact generational GC, fast thread synchronization,
and multiple JITs, including highly optimizing JITs. All code is compiled by these compilers: there is
no interpreter. ORP supports two different MRTE platforms, Java [10] and CLI [11].

Basic structure

ORP is divided into three components: the core VM, JITs, and the garbage collector. The core VM
is responsible for class loading, including storing information about the classes, fields, and methods
loaded. The core VM is also responsible for coordinating the compilation of methods to managed code,
root-set enumeration during GC, and exception throwing. In addition, the core VM contains the thread
and synchronization subsystem, although we are planning to split this into a separate component in a
future version of ORP. JITs are responsible for compiling methods into native instructions. The garbage
collector is responsible for managing the heap, allocating objects, and reclaiming garbage when the
heap is full.

ORP is written in about 150 000 lines of C++ and a small amount of assembly code (this includes the
core VM code, and excludes the JIT and garbage collector code). It compiles under Microsoft Visual
C++ 6.0§ and GNU g++, and it runs under Windows (NT/2000/XP§), Linux§, and FreeBSD§. ORP
supports both IA-32 [13] and Itanium processor family (IPF) [14] CPU architectures. ORP uses the
GNU Classpath library [15], an open source implementation of the Java class libraries, and OCL [16],
an open source implementation of the CLI libraries that is ECMA-335 [11] compliant.

§Other brands and names are the property of their respective owners.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

622 M. CIERNIAK ET AL.

����������	

�����

����������	

�����

������������
��������������

����������������

������	�������	�

���� ��	�
���������

���� ��	�
���������

��������	

�����

��������	

�����

����������
��������

����������
��������

Figure 2. Structure of dynamic recompilation.

ORP was originally designed with two JITs for Java. The Simple Code Generator (known as
the O1 JIT [2]) produces code directly from the JVM bytecodes [10] without applying complex
optimizations. Its optimizations include strength reduction, load-after-store elimination, and simple
versions of common-subexpression elimination (CSE), eliminating array-bounds checks, and register
allocation.

The Optimizing Compiler (known as the O3 JIT) converts JVM bytecodes to an intermediate
representation (IR) that can be used for more aggressive optimizations. Besides the optimizations
performed by the O1 JIT, O3 applies inlining, global optimizations (e.g. copy propagation, dead-code
elimination, loop transformations, and constant folding), as well as more complete implementations of
CSE and elimination of array-bounds checks.

As shown in Figure 2, ORP can run in a mode that uses both the O1 and O3 JITs. In this mode, when
a method is invoked for the first time, ORP uses O1 to compile the method in a way that instruments
the generated code with counters that are incremented on every method call and on every back edge of
a loop. When a counter reaches a predetermined threshold, ORP invokes O3 to recompile the method.
The dynamic recompilation approach allows ORP to avoid the cost of expensive optimizations, while
applying those optimizations to the methods where the payoff is likely to be high. It also provides the
O3 JIT with profiling information that can help guide the optimizations.

ORP also supports a very simple JIT for CLI (currently only on the IA-32 platform), known as the
O0 JIT. It does no optimizations and was designed for simplicity and to ease debugging. For each
CLI bytecode instruction, it generates a sequence of machine instructions that is fixed for each set of
operand types.

StarJIT [17] is a new JIT designed to plug into ORP. It supports Java and CLI, and it produces
aggressively optimized code for IA-32 and IPF. It translates JVM and CLI bytecodes into a single
common intermediate representation on which the rest of StarJIT operates. StarJIT includes an
SSA-based optimizer and supports profile-based optimizations as well as dynamic optimizations that
are based on continuous profiling and monitoring during program execution.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 623

ORP has supported many different GC implementations over its lifetime, including a simple stop-
the-world collector, an implementation of the Train Algorithm [18], and a concurrent collector [5].
There is support in the VM and JIT interfaces for moving collectors (in which objects can be relocated
over their lifetimes), and for generational collectors (which require write barrier support from JITs and
the core VM). ORP also supports dynamic linking of the GC module, making it possible to select a
specific GC implementation via a command-line option.

Common support for Java and CLI

CLI and Java are semantically similar enough that most of ORP’s implementation is common to both
runtimes. Both Java and CLI require approximately the same support for class loading, exception
handling, threads, reflection, runtime, and low-level (non-library specific) native methods. Of course,
CLI uses a different object file format than Java, so the object file loaders are different. Similarly,
the class libraries for the two runtimes are different and require a different set of native method
implementations. CLI’s bytecode instructions are different, so there are differences in the JITs.
However, these differences are relatively minor, and most of the code in the StarJIT is common.
In general, the significant differences between CLI and Java are due to additional features in CLI.
This means if a MRTE (or JIT) supports CLI, it is relatively straightforward to add support for Java.

ORP has relatively few Java-specific or CLI-specific source files beyond those that load classes
and those that implement the native methods required by the different CLI and Java class libraries.
The MRTE-specific source changes are mostly in short sequences of code that are conditionally
compiled when ORP is built. We are currently refactoring ORP to share even more code, which will
significantly reduce the need for conditionally-compiled code sequences. For example, to indicate an
attempt to cast an object to a class of which it is not an instance, a Java MRTE must throw an instance
of java.lang.ClassCastException, whereas a CLI MRTE must throw System.InvalidCastException.
Refactoring this part of ORP’s implementation simply involves raising the exception stored in a
variable that is initialized to the appropriate value.

THE CORE VM

The core VM is responsible for the overall coordination of the activities of ORP. It is responsible
for class loading: it stores information about every class, field, and method loaded. The class data
structure includes the virtual-method table (vtable) for the class (which is shared by all instances
of that class), attributes of the class (public, final, abstract, the element type for an array class,
etc.), information about inner classes, references to static initializers, and references to finalizers.
The field data structure includes reflection information such as name, type, and containing class, as
well as internal ORP information such as the field’s offset from the base of the object (for instance
fields) or the field’s address in memory (for static fields). The method data structure contains similar
information.

These data structures are hidden from components outside the core VM, but the core VM exposes
their contents through functions in the VM interface. For example, when a JIT compiles an access to
an instance field, it calls the VM interface function for obtaining the field’s offset, and it uses the result
to generate the appropriate load instruction.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

624 M. CIERNIAK ET AL.

There is one data structure that is shared across all ORP components, including JITs and garbage
collectors, which describes the basic layout of objects. Every object in the heap, including arrays,
begins with the following two fields:

typedef struct Managed_Object {
VTable *vt;
uint32 obj_info;

} Managed_Object;

No other fields of the Managed Object data structure are exposed outside the core VM. The first field
is a pointer to the object’s vtable. There is one vtable for each class¶, and it stores enough class-specific
information to perform common operations like virtual-method dispatch. The vtable is also used during
GC, where it may supply information such as the size of the object and the offset of each reference
stored in the instance. The second field, obj info, is 32 bits wide on both IA-32 and IPF architectures,
and it is used in synchronization and garbage collection. This field also stores the instance’s default
hashcode. Class-specific instance fields immediately follow these two fields.

Garbage collectors and JITs also share knowledge about the representation of array instances.
The specific offsets at which the array length and the first element are stored are determined by the
core VM and are available to the garbage collector and JITs via the VM interface.

Another small but important piece of shared information is the following. The garbage collector is
expressly allowed to use a portion of the vtables to cache frequently used information to avoid runtime
overhead. This cached information is private to the garbage collector and is not accessed by other ORP
components. Apart from the basic assumptions about object layout and this vtable cache, all interaction
between major ORP components is achieved through function calls.

The VM interface also includes functions that support managed code, JITs, and the garbage collector.
These functions are described as part of the discussion of the specific components, which we turn to
next.

THE JIT INTERFACE

JITs are responsible for compiling bytecodes into native managed code, and for providing information
about stack frames that can be used to do root-set enumeration, exception propagation, and security
checks.

Compilation overview

When the core VM loads a class, new and overridden methods are not immediately compiled. Instead,
the core VM initializes the vtable entry for each of these methods to point to a small custom stub

¶Because there is a one-to-one correspondence between a Class structure and a vtable, it would be possible to unify them into
a single data structure. We chose to separate them to make sure that offsets to entries in the VTable that are used for method
dispatch are small, and that instructions generated for virtual method dispatch can be encoded with shorter sequences. Also, the
information in vtables is accessed more frequently, so collocating them improves spatial locality and reduces data translation
lookaside buffer (DTLB) misses.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 625

that causes the method to be compiled upon its first invocation. After a JIT compiles the method, the
core VM iterates over all vtables containing an entry for that method, and it replaces the pointer to the
original stub with a pointer to the newly compiled code.

ORP allows many JITs to coexist within it. Each JIT interacts with the core VM through the JIT
interface, which is described in more detail below, and must provide an implementation of the JIT side
of this interface. The interface is almost completely CPU independent (the only exception being the
data structures used to model the set of physical registers used for stack unwinding and root-set
enumeration), and it is used by both our IA-32 JITs and our IPF JITs. JITs can be either linked statically
or loaded dynamically from a dynamic library.

As previously mentioned in the ORP overview, managed code may include instrumentation that
causes it to be recompiled after a certain number of invocations. Another option is to have a background
thread that supports recompiling methods concurrently with the rest of the program execution.

Native methods are also ‘compiled’ in the following sense. When a native method is invoked for
the first time, the core VM generates a custom wrapper for that native method, and installs it in the
appropriate vtables. The purpose of the wrapper is to resolve the different calling conventions used by
managed and native code.

Interface description

The JIT interface consists of a set of functions that every JIT is required to export and a set of functions
that the core VM exports. One obvious function in the JIT interface instructs the JIT to compile a
method. The JIT interface also includes some not-so-obvious JIT-exported functions that implement
functionality that is traditionally thought of as being part of the core VM. These include functions to
unwind a stack frame and to enumerate all roots in a stack frame. Stack unwinding is required for
exception handling, GC, and security. To allow exact GC, the JIT interface provides a mechanism
to enumerate exactly the roots of a stack frame. Given an instruction address, the JIT consults the
GC map for that method and constructs the root set for the frame. This is in contrast to some other
JIT interfaces such as the Sun JDK 1.0.2‖ JIT interface [19] that assumes conservative scanning of
the stack. Of course, if a conservative collector were used with ORP, this mechanism for root-set
enumeration would never be used.

There are two basic solutions to providing stack unwinding and root-set enumeration from the stack.

1. A white-box approach in which the core VM and all JITs agree on a common format for GC
maps. At compile time, JITs create GC maps along with native code, and then the core VM can
unwind and enumerate without any further help from the JITs.

2. A black-box approach in which each JIT can store GC maps in an arbitrary format understood
only by that JIT. Whenever the core VM unwinds the stack or enumerates roots, it calls back into
the appropriate JIT for the frame in question, and the JIT decodes its own GC map and performs
the operation.

ORP uses the latter scheme, the black-box approach. The advantage of ORP’s approach is simplicity
and flexibility in JIT design. For example, the O3 JIT supports GC at every native instruction [9],

‖Other brands and names are the property of their respective owners.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

626 M. CIERNIAK ET AL.

but the simpler O1 JIT only supports GC at call sites and backward branches. This is all possible
through the same JIT interface.

Support for multiple JITs

To support multiple JITs simultaneously, the core VM maintains an array of pointers to JIT objects that
represent each JIT. The standard ORP/Java/IA-32 configuration includes two statically linked JITs, O1
and O3. Additional JITs may be specified on the command line by supplying the name of a library
containing its implementation.

When a method is invoked for the first time, the custom stub transfers control to the core VM,
which tries each JIT in turn until one returns success. If no JIT succeeds, ORP terminates with a fatal
error.

Core VM support for JITs and managed code

The VM interface includes functions to allocate memory for code, data, and JIT-specific information.
The core VM allocates this memory, rather than JITs, which allows the space to be reclaimed when it is
no longer needed (however, ORP does not currently implement unloading or GC of methods). The VM
interface also includes functions to query the exception information provided in the application class
files and to set the exception information for managed code. The core VM uses this latter information
during exception propagation.

The core VM also provides runtime support functions for use by managed code. They provide
functionality such as throwing exceptions, subtype checks, complex arithmetic operations, and other
non-trivial operations.

Optimizations

As mentioned in the section on MRTEs, there are safety requirements and features such as dynamic
class loading that can affect the applicability or effectiveness of traditional compiler optimizations.
To get performance comparable to unsafe, static languages like C++, JITs must include optimizations
that reduce or eliminate safety overheads, and that can work effectively even in the presence of dynamic
loading. Some of these optimizations can be implemented entirely in the JITs, but some require
cooperation from the core VM. Here we outline some of the key problems and their solutions, along
with the additional interface functions that provide the needed cooperation.

Fast subtype checking

Both Java and CLI support single inheritance and, through interfaces, multiple supertypes. An instance
of a subtype can be used where an instance of the supertype is expected. Testing whether an object
is an instance of a specific supertype is frequent: many thousands of type tests might be done per
second during program execution. These type tests can be the result of explicit tests in application code
(e.g. Java’s checkcast bytecode) as well as implicit checks during array stores (e.g. Java’s aastore
bytecode). These array store checks verify that the types of objects being stored into arrays are
compatible with the element types of the arrays. Although checkcast, instanceof, and aastore take

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 627

up at most a couple of per cent of the execution time for our Java benchmarks, that is enough to justify
some inlining into managed code. The core VM provides an interface to allow JITs to perform a faster,
inlined type check under some conditions that are common in practice.

Direct-call conversion

In ORP, devirtualized calls are still by default indirect calls. Even though the target method may be
precisely known, it may not have been compiled yet, or it may be recompiled in the future. By using an
indirect call, the managed code for a method can easily be changed after the method is first compiled,
or after it is recompiled.

Unfortunately, indirect calls may require additional instructions (at least on IPF), and may put
additional pressure on the branch predictor. Thus it is important to be able to convert them into direct
calls. To allow this to happen, the core VM includes a callback mechanism to allow JITs to patch
direct calls when the targets change due to compilation or recompilation. Whenever a JIT produces a
direct call to a method, it calls a function to inform the core VM of this fact. If the target method is
(re)compiled, the core VM calls back into the JIT to patch and redirect the call.

Devirtualization and dynamic loading

The O3 JIT performs class-hierarchy analysis to determine if there is a single target for a virtual
method invocation. In such cases, the compiler generates code that takes advantage of that information
(e.g. direct calls or inlining) and registers that class-hierarchy assumption with the core VM. If the core
VM later detects that loading a class violates a registered class-hierarchy assumption, it calls back into
the JIT that registered the assumption, to instruct it to deoptimize the code to use the standard dispatch
mechanism for virtual methods. This is a variant of guarded devirtualization and does not require stack
frame patching (see [4] for more details). The following functions in the JIT interface are used in this
scheme:

• method is overridden(Method Handle m): this function checks if the method has been
overridden in any of the subclasses;

• method set inline assumption(Method Handle caller, Method Handle callee): this function
informs the core VM that the JIT has assumed that caller non-virtually calls the callee.

• method was overridden(Method Handle caller, Method Handle callee): the core VM calls this
function to notify the JIT that a new class that overrides the method callee has just been loaded.

This small set of methods, though somewhat specialized, was sufficient to allow JITs to
implement an important optimization without requiring detailed knowledge of the core VM’s internal
structures.

Fast constant-string instantiation

Loading constant strings is another common operation in Java applications. In our original JIT
interface, managed code had to call a runtime function to instantiate constant strings. We extended
the interface to reduce the constant-string instantiation at runtime to a single load, similar to a load of
a static field.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

628 M. CIERNIAK ET AL.

To use this optimization, JITs, at compile time, call the function class get const string intern addr().
This function interns the string, and returns the address of a location pointing to the interned string.
Note that the core VM reports this location as part of the root set during GC.

Because these string objects are created at compile time regardless of which control paths are
actually executed, there is the possibility that applying this optimization blindly to all managed code
will allocate a significant number of unnecessary string objects. Our experiments confirmed this:
performance of some applications degraded when JITs use fast constant strings. Fortunately, the simple
heuristic of not using fast strings in exception handlers avoids this problem.

Native-method support

ORP gives JITs wide latitude in defining how to lay out their stack frames, and in determining how
they use physical registers. As a consequence, JITs are responsible for unwinding their own stack
frames and enumerating their roots, and must implement functions for this that the core VM calls.
However, since a native platform compiler, not a JIT, compiles unmanaged native methods, the core
VM cannot assume any such cooperation. As a result, the core VM generates special wrapper code for
most native methods. These wrappers are called when control is transferred from managed to native
code. They record enough information on the stack and in thread-local storage to support unwinding
past native frames and enumerating Java Native Interface (JNI) references during GC. The wrappers
also include code to perform synchronization for native synchronized methods.

In ORP, managed code can interact with native code using one of four native interfaces:

• direct calls;
• Raw Native Interface∗∗ (RNI);
• Java Native Interface (JNI); and
• Platform Invoke (PInvoke).

CLI code uses PInvoke, and Java code uses RNI and JNI. For optimization purposes, native methods
may be called directly. RNI, JNI, and PInvoke require a customized wrapper as discussed above. In Java
most of the methods use JNI.

Interestingly, we also found JNI methods to be useful for implementing CLI’s internal call methods.
These are methods implemented by the MRTE itself that provide functionality that regular managed
code cannot provide, such as System.Object.MemberwiseClone.

Native interfaces comparison

JNI and PInvoke are the preferred interfaces and are the only native-method calling mechanisms
available to application programmers. However, a few native methods are called so frequently, and
their performance is so time-critical, that ORP internally uses either a direct call interface or RNI for
better performance.

∗∗ORP’s implementation of RNI is very close to but not identical to the original Raw Native Interface that is used in the Microsoft
Java SDK [20].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 629

The direct interface simply calls the native function without any wrapper to record the necessary
information about the transition from managed code to native code. The lack of a wrapper means that
ORP cannot unwind its stack frame. This means that the direct native interface can only be used for
methods that are guaranteed not to require GC, exception handling, or security support.

For the PInvoke, RNI, and JNI interfaces, ORP generates a specialized wrapper for each
method. This wrapper performs the exact amount of work needed based on the method’s signature.
This specialization approach reflects the general ORP philosophy of performing as much work as
possible at compile time, so that minimum work is required at runtime. The wrapper first saves enough
information to unwind the stack to the frame of the managed code of the method that called the native
function (described in more detail below), performs locking for synchronized methods, and then calls
the actual native method.

RNI and JNI are very similar; the only major difference between them is how references to managed
objects are handled. In RNI, references are passed to native code as raw pointers to the managed heap.
In JNI, all references are passed as handles. JNI handles incur additional overhead but they make
writing and debugging native methods much simpler.

CLI’s PInvoke is designed to simplify the use of existing libraries of native code. It supports the
look up by name of functions in specified dynamic link libraries (DLLs). It handles the details of
loading DLLs, invoking functions with various calling conventions, and marshalling arguments and
return values. PInvoke automatically translates (marshals) between the CLI and native representations
for several common data types including strings and one-dimensional arrays of a small set of types.

Stack unwinding for native methods

Unwinding a thread’s stack proceeds by first identifying, for each frame, whether it is managed or
native. If the frame is managed, the corresponding JIT is called to unwind the frame. Otherwise, the
core VM uses a last managed frame (LMF) list to find the managed frame nearest the native frame.
Each thread (in thread-local storage) has a pointer to the LMF list, which links together the stack
frames of the wrappers of native methods. Included in these wrapper stack frames and the LMF list is
enough information to find the managed frame immediately before the wrapper frame, as well as the
previous wrapper frame. Also included are the callee-saved registers and the instruction pointer needed
to unwind to the managed frame.

Figure 3 shows a thread stack just after a call to a native method. The thread-local LMF variable
points to the head of the LMF list. During unwinding, the LMF list is traversed as each native-
to-managed transition is encountered, and the wrapper information is used to unwind past native
frames.

JNI optimizations

The core VM generates specialized JNI wrappers to support the transition from managed to native code.
The straightforward implementation of these wrappers calls a function to allocate storage and initialize
JNI handles for each reference argument. However, most JNI methods have only a small number
of reference parameters. To take advantage of this fact, we use an inline sequence of instructions to
allocate and initialize the JNI handles directly. This can improve by several per cent the performance
of applications that make many JNI calls.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

630 M. CIERNIAK ET AL.

Managed frame

Stack
Bottom frame

Top frame

Wrapper

Native frame

Native frame

Wrapper

Native frame

Wrapper

Native frame

LMF pointer

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Stack
Bottom frame

Top frame

Wrapper

Native frame

Native frame

Wrapper

Native frame

Wrapper

Native frame

LMF pointer

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Managed frame

Figure 3. LMF list after the call to a native.

Flexibility versus performance

For JITs, the performance impact of using interfaces is minimal, since interface functions are called
infrequently during program execution. Naturally, the compilation interface is used once for every
method that is compiled (including the wrapper generation for native methods), but the number
of methods executed is typically orders of magnitude greater than the number compiled, and the
compilation cost far exceeds the interface cost. Depending on the application, the number of calls
related to exception unwinding and root-set enumeration may be much higher than the compilation-
related calls. Once again, though, the cost of performing these operations generally greatly exceeds the
cost of using the interface.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 631

THE GC INTERFACE

The main responsibility of the garbage collector is to allocate space for objects, manage the heap, and
perform GC. The GC interface defines how the garbage collector interacts with the core VM and the
JITs, and it is described in detail below. First we describe the typical GC process in ORP.

Overview of GC

Typically, when the heap is exhausted, GC proceeds by stopping all managed threads at GC-safe
points, determining the set of root references [21], performing the actual collection, and then resuming
the threads. A garbage collector relies upon the core VM to enumerate the root set. The core VM
enumerates the global references and thread-local references in the runtime data structures. Then it
enumerates each frame of each thread stack, and calls the JIT that produced the code for the frame to
enumerate the roots on that frame and to unwind to the previous frame.

The garbage collector is also responsible for allocating managed objects. As such, whenever the core
VM, managed code, or native methods need to allocate a new object, they call a function in the GC
interface. If the heap space is exhausted, the garbage collector stops all managed threads and performs
GC as described above.

A generational garbage collector also needs support from the core VM and from managed code to
execute a write barrier whenever a reference field of a managed object is changed. In particular, this
requires the JIT to insert calls to the write barrier function in the GC interface into managed code,
where appropriate.

Overview of the interface

Using an interface for GC potentially has a much greater performance impact than using a JIT interface,
since a large number of objects are created and garbage-collected during the lifetime of a typical MRTE
application. Calling a core VM function to access type information would slow down common GC
operations such as object scanning. A common solution to this problem is to expose core-VM data
structures to the garbage collector, but this exposure increases the dependency between the garbage
collector and the core VM.

The solution in ORP is to expose core-VM data structures only through a call interface (which
provides good separation between the core VM and the garbage collector), but to allow the garbage
collector to make certain assumptions and to have some space in vtables and thread local storage.
In our experience, these non-call parts have been a very important feature of the GC interface.
The following sections describe the explicit functions in the GC interface, as well as the implicit data
layout assumptions shared between the core VM and the garbage collector.

Data layout assumptions

Part of the GC interface consists of an implicit agreement between the core VM and the garbage
collector regarding the layout of certain data in memory. There are four classes of memory assumptions
in the interface.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

632 M. CIERNIAK ET AL.

First, the garbage collector assumes the layout of objects described previously, in terms of the
Managed Object data type. This allows it to load an object’s vtable without calling into the core
VM. In addition, it can use the object info field for certain purposes such as storing a forwarding
pointer while performing GC. However, this field is also used by the synchronization subsystem, so the
garbage collector must ensure it does not interfere with those uses.

Second, the core VM reserves space in each vtable for the garbage collector to cache type
information it needs during GC. This cached information is used in frequent operations such as
scanning, where calling the core VM would be too costly. When the core VM loads and prepares a
class, it calls the GC function gc class prepared so that the garbage collector can obtain information it
needs from the core VM through the VM interface and store it in the vtable.

Third, the core VM reserves space in thread-local storage for the garbage collector, and during
thread creation it calls gc thread init to allow the garbage collector to initialize this space. The garbage
collector typically stores a pointer to per-thread allocation areas in this space.

Fourth, the garbage collector assumes arrays are laid out in a certain way. It can call a VM function
to obtain the offset of the length field in an array object, and for each array type, the offset of the
first element of arrays of that type. It can further assume that the elements are laid out contiguously.
Using these assumptions, the garbage collector can enumerate all references in an array without further
interaction with the core VM. Note that the two offsets can be cached in vtables or other garbage
collector data structures.

Initialization

The GC interface contains a number of functions that are provided to initialize certain data structures
and state in the core VM and the garbage collector at specific points during execution. These points
include system startup, as well as when new classes are loaded and new application threads are created.

At the startup of ORP, the core VM and the JITs call the GC interface function gc requires barriers
to determine what kinds (if any) of write barriers the garbage collector requires. Write barriers are
used by some generational, partial collection, and concurrent GC techniques to track the root sets of
portions of the heap even in the presence of updates to those portions. If the garbage collector requires
write barriers, then JITs must generate calls to the GC function gc write barrier after code that stores
references into an object field.

As previously mentioned, the core VM calls gc class prepared upon loading a class, and
gc thread init upon creating a thread. Also, the core VM calls gc init to initialize the garbage collector,
gc orp initialized to tell the garbage collector that the core VM is sufficiently initialized that it can
enumerate roots, and thus that GC is allowed, and gc next command line argument to inform the
garbage collector of command line arguments.

Allocation

There are several functions related to allocating space for objects. The function gc malloc is the main
function, and it allocates space for an object given the size of the object and the object’s vtable.
There are other functions for special cases such as pinned objects. These allocation functions are
invoked by the core VM or by the managed code.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 633

Root-set enumeration

If the garbage collector decides to do GC, it first calls the VM function orp enumerate root set all
threads. The core VM is then responsible for stopping all threads and enumerating all roots. These roots
consist of global and thread-local object references. Global references are found in static fields of
classes, JNI global handles, interned constant strings, and other core VM data structures. Thread-local
references are found in managed stack frames, local JNI handles, and the per-thread data structures
maintained by the core VM. The core VM and the JITs communicate the roots to the garbage collector
by calling the function gc add root set entry(Managed Object**). Note that the parameter points to
the root, not the object the root points to, allowing the garbage collector to update the root if it moves
objects during GC.

After the core VM returns from orp enumerate root set all threads, the garbage collector has all the
roots and proceeds to collect objects no longer in use, possibly moving some of the live objects. Then it
calls the VM function orp resume threads after. The core VM resumes all threads; then the garbage
collector can proceed with the allocation request that triggered GC.

Flexibility versus performance

Relatively few interface functions need to be called during GC, largely as a result of the cached
type information. However, within managed code, there are potentially many GC interface crossings.
The majority of these are object allocation (both of objects and of arrays) and write barriers. The write
barrier sequence consists of just a few straight-line instructions with no control flow, and the extra
call and return instructions have not proven to be a performance issue in practice. For object and
array allocation, the extra call and return instructions are also not a significant source of overhead for
MRTE applications (but the same is not true in functional languages). However, if future benchmarks
warranted it, the JIT and GC interfaces could be extended to allow inlining of the fast-path of allocation
into managed code.

PERFORMANCE OF ORP

For our work to be relevant to other groups that we work with, and to Intel as a whole, ORP must
perform as well as commercial JVMs. As a result, we have put significant effort into designing
our interfaces to impose minimal overhead. The purpose of this section is not to provide any in-
depth analysis of ORP’s performance, but merely to show that ORP is comparable with commercial
JVMs on a set of standard benchmarks. A more extensive performance analysis appears in another
study [22].

Many commercial JVMs have been developed for the IA-32 platform. A few examples include
IBM JDK 1.3.1†† [23], Sun HotSpot JDK 1.4.0†† [24], and BEA JRockit JVM 1.3.1†† [25].

††Other brands and names are the property of their respective owners.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

634 M. CIERNIAK ET AL.

We compare ORP with Sun HotSpot JDK 1.4.0†† [24] for SPEC JVM98 [26]‡‡ which is a set of
benchmarks that are designed to reflect the workload on a client machine.

Performance comparison

The comparison appears in Figure 4. These numbers are taken on a 2.0 GHz dual-processor Pentium∗ 4
XeonTM machine without hyper-threading, with 1 GB of physical memory, and running RedHat Linux
7.2†. We set the initial and maximum heap sizes to the same value of 48 MB for both VMs by using
the –Xms and –Xmx command line options.

Performance numbers are presented in a relative fashion so that the performance of ORP is
normalized to 1, and numbers greater than 1 indicate better performance than ORP (the graph shows
the inverse of the execution time). ORP was run in its default configuration (all methods were compiled
by the O3 JIT), and the only parameter we modified was the heap size.

ORP performance compares well with Sun HotSpot on these benchmarks. We believe that this
performance comparison demonstrates that using interfaces can be consistent with good performance.

Performance breakdown

For ORP performance analysis and tuning, it is important to understand the breakdown of where time
is being spent in the system. We use the VTuneTM Performance Analyzer [27] to identify the hot
methods; ORP includes special support for registering dynamically-generated functions with VTune.

Figure 5 shows the breakdown of cycles among different logical components of ORP for the SPEC
JBB2000 benchmark [28]. These measurements were taken on a 2.0 GHz quad-processor Pentium 4
XeonTM‡ machine without hyper-threading, with 4 GB physical memory, and running the Microsoft
Windows 2000 Advanced Server operating system. We separate the execution into several groups.

• Core VM (C code). This represents the statically compiled C code of the core VM.
• Core VM (asm code). This represents the assembly code that is dynamically generated and

executed as part of the core VM functionality.
• GC. This represents both the allocation and the collection portions of the garbage collector, each

of which occupies roughly 50% of the time in the GC component.
• Java code (lib). This represents the JIT-generated code for the core Java classes, primarily ‘java.*’

methods.

‡‡As a research project, the information based on the components of SPEC JVM98 are published per the guidelines
listed in the SPEC JVM98 Run and Reporting rules section ‘4.1 Research Use’ (http://www.spec.org/jvm98/rules/runrules-
20000427.html#Research). We are unable to strictly follow the official run rules for these benchmarks because, for example, the
Java class library we use, GNU Classpath, does not support the Abstract Window Toolkit (AWT) and thus cannot run the applets
that are required for a fully compliant SPEC JVM98 run. We use unmodified benchmarks, which are run from the command line
due to inadequacies in the classpath’s AWT. As such these results do NOT represent SPEC JVM98 metrics but only run times
and are not directly comparable to any SPEC metrics. Enough information is being provided that would allow these results to be
reproduced if ORP were publicly released.
∗Pentium is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
†Other brands and names are the property of their respective owners.
‡Xeon is a trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 635

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
om

pr
es

s

Je
ss D
b

M
pe

ga
ud

io

M
tr

t

Ja
ck

Ja
va

c

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 O
R

P

ORP

Sun Hotspot
Client 1.4.0

Figure 4. Relative Performance to Sun HotSpot Client.

GC
7.9%

Java code (lib)
15.2%

Other
2.2%

Core VM (C
code)
2.7%

Core VM (asm
code)
23.5%

Java code (app)
48.5%

Figure 5. SPEC JBB2000 execution breakdown.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

636 M. CIERNIAK ET AL.

• Java code (app). This represents the JIT-generated code for the SPEC JBB2000 application
classes.

• Other. This is primarily time spent in the OS or in the CPU-idle loop.

In this benchmark, 26% of the execution time is spent in the core VM (C and assembly). This further
breaks down into 21% of total execution time in synchronization (monitorenter and monitorexit) code,
and 5% of total execution time spread widely among other core VM routines. The vast majority of the
synchronization time is spent in a single ‘lock cmpxchg’ instruction, and inlining the synchronization
code into the JIT-generated methods does not reduce the cost.

Ignoring the inherently expensive synchronization code, 5% of execution time is spent in the core
VM, 8% in the GC, and 64% in JIT-generated Java methods. Given the relatively small amount of time
spent in the VM and GC components, we believe that we have achieved our goal of maintaining high
performance while using strict interfaces.

CONCLUSION

Along with a general overview of ORP, we have described our use of strict interfaces between the core
VM and other components, in particular JITs and the garbage collector. These interfaces have allowed
us and others to construct new JITs and garbage collectors without having to understand or modify
the internal structure of the core VM or other components. Contrary to conventional wisdom, we are
able to provide this level of abstraction and yet still maintain high performance. The performance
cost of using interfaces is minor for the JITs, where interface crossings are infrequent. For the more
heavily crossed interface of the garbage collector, we maintain high performance by exposing a
small, heavily used portion of the Java object structure as part of the interface and allowing caching of
frequently used information. Our experience has shown that this approach is effective in terms of both
software engineering and performance.

Our experience with ORP’s component design has been positive and has encouraged us to
modularize our implementation further. We are currently developing interfaces for other MRTE
components such as ORP’s threading and synchronization subsystem, to simplify experimentation with
other runtime technologies.

ACKNOWLEDGEMENTS

This work would not be possible without contributions from the entire ORP development team. We also thank
ORP users outside of Intel for their contributions, and GNU Classpath developers for providing an open-source
class library for Java.

REFERENCES

1. Cierniak M, Eng M, Glew N, Lewis B, Stichnoth J. The Open Runtime Platform: A flexible high-performance managed
runtime environment. Intel Technology Journal 2003; 7(1).
Available at: http://developer.intel.com/technology/itj/2003/volume07issue01 [February 2003].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

THE OPEN RUNTIME PLATFORM 637

2. Adl-Tabatabai A-R, Cierniak M, Lueh G-Y, Parikh VM, Stichnoth JM. Fast, effective code generation in a just-in-time Java
compiler. ACM Conference on Programming Language Design and Implementation, Montreal, Canada, 1998. ACM Press:
New York, 1998; 280–290.

3. Cierniak M, Lewis BT, Stichnoth JM. Open runtime platform: Flexibility with performance using interfaces. Joint ACM
Java Grande—ISCOPE 2002 Conference, Seattle, WA, 2002. ACM Press: New York, 2002.

4. Cierniak M, Lueh G-Y, Stichnoth JM. Practicing JUDO: Java under dynamic optimizations. ACM Conference on
Programming Language Design and Implementation, Vancouver, BC, 2000. ACM Press: New York, 2000.

5. Hudson R, Moss JEB. Sapphire: Copying GC without stopping the world. Java Grande. ACM Press: New York, 2001.
6. Hudson R, Moss JEB, Sreenivas S, Washburn W. Cycles to recycle: Garbage collection on the IA-64. International

Symposium on Memory Management. ACM Press: New York, 2000.
7. Krintz C, Calder B. Using annotations to reduce dynamic optimization time. ACM Conference on Programming Language

Design and Implementation. ACM Press: New York, 2001.
8. Shpeisman T, Lueh G-Y, Adl-Tabatabai A-R. Just-in-time Java compilation for the Itanium processor. International

Conference on Parallel Architectures and Compilation Techniques (PACT’02), Charlottesville, VA, 2002. IEEE Computer
Society Press: Los Alamitos, CA, 2002.

9. Stichnoth JM, Lueh G-Y, Cierniak M. Support for garbage collection at every instruction in a Java compiler. ACM
Conference on Programming Language Design and Implementation, Atlanta, GA, 1999. ACM Press: New York, 1999;
118–127.

10. Lindholm T, Yellin F. The Java Virtual Machine Specification (2nd edn). Addison-Wesley, 1999.
11. Common Language Infrastructure, ECMA-335. ECMA, Geneva, Switzerland, 2002.
12. C# Language Specification, ECMA-334. ECMA, Geneva, Switzerland, 2002.
13. Intel Architecture Software Developer’s Manual. Intel Corporation, 1997.
14. IA-64 Architecture Software Developer’s Manual. Intel Corporation, 2000.
15. GNU Classpath. http://www.classpath.org.
16. Open CLI Library (OCL). Intel Corporation, 2002. http://sf.net/projects/ocl.
17. Adl-Tabatabai A-R, Bharadwaj J, Chen D-Y, Ghuloum A, Menon V, Murphy B, Serrano MJ, Shpeisman T. StarJIT:

A dynamic compiler for managed runtime environments. Intel Technology Journal 2003; 7:19–31.
18. Hudson R, Moss JEB. Incremental collection of mature objects. International Workshop on Memory Management, 1992.
19. The JIT Compiler Interface Specification. Sun Microsystems. http://java.sun.com/docs/jit interface.html.
20. Microsoft SDK for Java. Microsoft Corporation. http://www.microsoft.com/java/sdk.
21. Wilson PR. Uniprocessor garbage collection techniques. Technical Report, University of Texas, January 1994.

Available at: ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps.
22. Shudo K. Performance comparison of JITs. http://www.shudo.net/jit/perf. [January 2002].
23. Jikes Research Virtual Machine. IBM. http://www.research.ibm.com/jikes.
24. Java 2 Platform, Standard Edition (J2SE) v 1.4.1. Sun Microsystems, 2002.
25. WebLogic JRockit JVM Version 1.3.1. BEA, 2002. http://commerce.bea.com/downloads/weblogic jrockit.jsp.
26. SPEC JVM98. Standard Performance Evaluation Corporation. http://www.spec.org/jvm98.
27. VTuneTM Performance Analyzer. http://developer.intel.com/software/products/vtune/.
28. SPEC Java Business Benchmark 2000. Standard Performance Evaluation Corporation. http://www.spec.org/jbb2000.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:617–637

	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key features
	Optimization challenges

	OVERVIEW OF ORP
	Basic structure
	Common support for Java and CLI

	THE CORE VM
	THE JIT INTERFACE
	Compilation overview
	Interface description
	Support for multiple JITs
	Core VM support for JITs and managed code
	Optimizations
	Fast subtype checking
	Direct-call conversion
	Devirtualization and dynamic loading
	Fast constant-string instantiation

	Native-method support
	Native interfaces comparison
	Stack unwinding for native methods
	JNI optimizations

	Flexibility versus performance

	THE GC INTERFACE
	Overview of GC
	Overview of the interface
	Data layout assumptions
	Initialization
	Allocation
	Root-set enumeration
	Flexibility versus performance

	PERFORMANCE OF ORP
	Performance comparison
	Performance breakdown

	CONCLUSION

