
Optimizing an ANSI C Interpreter with Superoperators

Todd A. Proebsting’

University of Arizona

Abstract

This paper introduces superoperators, an opti-

mization technique for bytecoded interpreters.

Superoperators are virtual machine operations

automatically synthesized from smaller opera-

tions to avoid costly per-operation overheads.

Superoperators decrease executable size and can

double or triple the speed of interpreted pro-

grams. The paper describes a simple and effec-

tive heuristic for inferring powerful superopera-

tors from the usage patterns of simple operators.

The paper describes the design and implemen-

tation of a hybrid translator/interpreter that em-

ploys superoperators. From a specification of the

superoperators (either automatically inferred or

manually chosen), the system builds an efficient

implementation of the virtual machine in assem-

bly language. The system is easily retargetable

and currently runs on the MIPS R3000 and the

SPARC.

1 Introduction

Compilers typically translate source code into

machine language. Interpreter systems trans-

late source into code for an underlying virtual

*Address: Todd A. Proebsting, Department of Com-

puter Science, University of Arizona, Tucson, AZ 85721.

Internet: t odd@2cs. arizona. edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
andor specific permission.
POPL ’951/95 San Francisco CA USA
@ 1995 ACM 0-89791 -692-1/95/0001$3.50

machine (VM) and then interpret that code.

The extra layer of indirection in an interpreter

presents time/space tradeoffs. Interpreted code

is usually slower than compiled code, but it can

be smaller if the virtual machine operations are

properly encoded.

Interpreters are more flexible than compilers.

A compiler writer cannot change the target ma-

chine’s instruction set, but an interpreter writer

can customize the virtual machine, For instance,

a virtual machine can be augmented with special-

ized operations that will allow the interpreter to

produce smaller or faster code. Similarly, chang-

ing the interpreter implementation to monitor

program execution (e.g., for debugging or pro-

filing information) is usually easy.

This paper will describe the design and imple-

mentation of ht i, a hybrid translator/interpreter

system for ANSI C that has been targeted to

both the MIPS R3000 [KH92], and the SPARC

[Sun91]. ht i will introduce superoperators, a

novel optimization technique for customizing in-

terpreted code for space and time, Superopera-

tors automatically fold many atomic operations

into a more efficient compound operation in a

fashion similar to supercodinators in functional

language implementations [FH88]. Without su-

peroperators ht i executable are only 8-16 times

slower than unoptimized natively compiled code.

Superoperators can lower this to a factor of 3-9.

Furthermore, ht i can generate program-specific

superoperators automatically.

The hybrid translator, ht i, compiles C func-

tions into a tiny amount of assembly code for

function prologue and interpreted bytecode in-

structions for function bodies. The bytecodes

322

represent the operations of the interpreter’s vir-

tual machine. By mixing assembly code and

bytecodes, hti maintains all native code calling

conventions; ht i object files can be freely mixed

with compiled object files.

The interpreter is implemented in assembly

language for efficiency, Both the translator, ht i,

and the interpreter are quickly retargeted with a

small machine specification.

2 Translator Output

ht i uses lCC’S front end to translate ANSI C

programs into its intermediate representation

(IR) [FH91b, FH91a]. lCC’S IR consists of ex-

pression trees over a simple 109-operator lan-

guage. For example, the tree for 2+3 would be

ADD I (CNSTI, CNSTI), where ADD I represents in-

teger addition (ADD+ I), and the GNSTI’s repre-

sent integer constants. The actual values of the

CNSTI’s are IR node attributes.

ht i’s virtual machine instructions are byte-

codes (with any necessary immediate values).

The interpreter uses an evaluation stack to eval-

uate all expressions. In the simplest ht i virtual

machines, there is a one-to-one correspondence

between VM bytecodes and lcc IR operators

(superoperators will change this). Translation is

a left-to-right postfix emission of the bytecodes.

Any necessary node attributes are emitted im-

mediately after the corresponding bytecode. For

this VM, the translation of 2+3 would be similar

to the following:

byte 36 # CNSTI

. word 2 # immediate value

byte 36 # CNSTI

. word 3 # immediate value

byte 8 # ADDI

The interpreter implements operations via a

jump-table indexed by bytecodes. The inter-

preter reads the first CNSTI’S bytecode (36), and

jumps to CNSTI’s implementation. CNSTI code

reads the attribute value (2) and pushes it on

the stack. The interpreter similarly handles the

“3.” After reading the ADDI bytecode, the inter-

preter pops two integers off the evaluation stack,

and pushes their sum.

The evaluation stack for each translated pro-

cedure exists in its own activation record. Lo-

cal stacks allow programs to behave correctly

in the presence of interprocedural jumps (e.g.,

longjmp).

ht i produces an assembly file. Most of the file

consists of the bytecode translation of C func-

tion bodies, and data declarations. ht i does,

however, produce a tiny amount of assembly

language for function prologues. Prologue code

tells the interpreter how big the activation record

should be, where within it to locate the evalua-

tion stack, where to find the bytecode instruc-

tions, and ultimately for transferring control to

the interpreter. A prologue on the R3000 looks

like the following:

main:

li $24, 192 # put act ivat ion

record size in $24

li $8, 96 # put location of

evaluation stack in

la $25, $$11 # put location of

bytecode in $25

j .prologue.scalar # jump to interpreter

(-prologue_scalar unloads scalar arguments

onto the stack — the R3000 calling conventions

require a few different such prologue routines.

Once the arguments are on the stack, the inter-

preter is started.) Prologue code allows natively

compiled procedures to call interpreted proce-

dures without modification.

3 Superoperator Optimization

Compiler front ends, including ICC, produce

many IR trees that are very similar in struc-

ture. For instance, ADDP (INDIRP (x), CNSTI) is

the most common 3-node IR pattern produced

by lcc when it compiles itself. (x is a place-

holder for a subtree.) This pattern computes a

pointer value that is a constant offset from the

value pointed to by x (i.e., the l-value of x->b in

c).
With only simple VM operators, translating

ADDP (INDIRP (x) , CNSTI) requires emitting three

bytecodes and the CNSTI’S attribute. Interpret-

ing those instructions requires

$8

323

1.

2.

3.

Reading the INDIRP bytecode, popping x’s

value off the stack, fetching and pushing the

referenced value,

Reading the CNSTI bytecode and attribute,

and pushing the attribute,

Reading the ADDP bytecode, popping the two

just-pushed values, computing and pushing

their sum.

If the pattern ADDP (INDIRP (x) , CNSTI) were

a single operation that takes a single operand, x,

the interpreter avoids 2 bytecode reads, 2 pushes,

and 2 pops. This new operator would have one

attribute — the value of the embedded CNSTI.

These synthetic operators are called superopera-

tors.

Superoperators make interpreters faster by

eliminating pushes, pops, and bytecode reads.

Furthermore, superoperators decrease code size

by eliminating bytecodes. The cost of a super-

operator is an additional bytecode, and a cor-

respondingly larger interpreter. Experiments in

j8 show that carefully chosen superoperators re-

sult in smaller and significantly faster interpreted

code.

3.1 Inferring Superoperators

Superoperators can be designed to optimize the

interpreter over a wide range of C programs, or

for a specific program. The lcc IR includes only

109 distinct operators, thus leaving 147 byte-

codes for superoperators. Furthermore, if the in-

terpreter is being built for a specific application,

it may be possible to remove many operations

from the VM if they are never generated in the

translation of the source program (e.g., floating

point operations), thereby allowing the creation

of even more superoperators.

The addition of superoperators increases the

size of the interpreter, but this can be offset

by the corresponding reduction of emitted byte-

codes. Specific superoperators may optimize for

space or time. Unfortunately, choosing the opti-

mal set of superoperators for space reduction is

NP-complete — External Macro Data Compres-

sion (SR22 [GJ79]) reduces to this problem. Sim-

ilarly, optimizing for execution time is equally

complex.

3.1.1 Inference Heuristic

ht i includes a heuristic method for inferring a

good set of superoperators. The heuristic reads

a file of IR trees, and then decides which ad-

jacent IR nodes should be merged to form new

superoperators. Each tree is weighted to guide

the heuristic. When optimizing for space, the

weight is the number of times each tree is emit-

ted by the front end of ICC. When optimizing

for time, the weight is each tree’s (expected) ex-

ecution frequency.

A simple greedy heuristic creates superopera-

tors. The heuristic exams all the input IR trees

to isolate all pairs of adjacent (parent/child)

nodes. Each pair’s weight is the sum of the

weights of the trees in which it appears. (If the

same pair appears N times in the same tree, that

tree’s weight is counted IV times.) The pair with

the greatest cumulative weight becomes the su-

peroperator formed by merging that pair. This

new superoperator then replaces all occurrences

of that pair in the input trees. For example, as-

sume that the input trees with weights are

I(A(Z, Y)) 10

A(Y, Y) 1

The original operators’s frequencies of use are

Y 12

z 10
I 10

A 11

The frequencies of the parent/child pairs are

I(A(*)) 10

A(Z, *) 10

A(*, Y) 11

A(Y, *) 1

Therefore, A (*, Y) would become a new superop-

erator, B. This new unary operator will replace

the occurrences of A(* ,Y) in the subject trees.
The resulting trees are

I(B(Z)) 10

B(Y) 1

324

The new frequencies of parent/child pairs are

I(B(*)) 10

B(Z) 10

B(Y) 1

Repeating the process, a new superoperator

would be created for either I (B (*)) or B(Z).

Ties are broken arbitrarily, so assume that B (Z)

becomes the new leaf operator, C. Note that C is

simply the composition of A (Z, Y). The rewritten

trees are

I(C) 10
B(Y) 1

The frequencies for the bytecodes is now

Y i

z o
I 10
A o
B 1

c 10

It is interesting to note that the B superoper-

ator is used only once now despite being present

in 11 trees earlier. Underutilized superoperators

inhibit the creation of subsequent superoperators

by using up bytecodes and hiding constituent

pieces from being incorporated into other su-

peroperators. Unfortunately, attempting to take

advantage of this observation by breaking apart

previously created, but underutilized superoper-

ators was complicated and ineffective.

Creating the superoperators B and C elimi-

nated the last uses of the operators A and Z, re-

spectively. The heuristic can take advantage of

this by reusing those operators’s bytecodes for

new superoperators. The process of synthesizing

superoperators repeats until exhausting all 256

bytecodes. The heuristic may, of course, merge

superoperators together.

The heuristic implementation requires only

204 lines of Icon [GG90]. The heuristic can be

configured to eliminate obsolete operators (i.e.,

reuse their bytecodes), or not, as superoperators

are created. Not eliminating obsolete operators

allows the resulting translator to process all pro-

grams, even though not specifically optimized for

them.

4 Translator Design

4.1 Bytecode Emitter

ht i translates lCC’S IR into bytecodes and at-

tributes. Bytecodes can represent simple IR op-

erators, or complex superoperator patterns. The

optimal translation of an IR tree into bytecodes

is automated via tree pattern matching using

burg [FHP92]. burg takes a cost-augmented set

of tree patterns, and creates an efficient pattern

matcher that finds the least-cost cover of a sub-

ject tree. Patterns describe the actions associ-

ated with bytecodes. Some sample patterns in

the burg specification, interp. gr, follow:

stk : ADDP (INDIRP (stk), CNSTI) =5(l);

stk : ADDP(stk, stk) =9(l);

stk : CNSTI = 36 (1) ;

stk : INDIRP(stk) = 77 (1) ;

The nonterminal stk represents a value that re-

sides on the stack. The integers after the =’s are

the burg rule numbers, and, are also the actual

bytecodes for each operation. Rule 9, for exam-

ple, is a VM instruction that pops two values

from the stack, adds them, and pushes the sum

onto the stack. The (1)‘s represent that each

pattern has been assigned a cost of 1. The pat-

tern matcher would choose to use rule 5 (at cost

1) over rules 9, 36, and 77 (at cost 3) whenever

possible.

The burg specification for a given VM is gen-

erated automatically from a list of superoperator

patterns. To change the superoperators of a VM
— and its associated translator and interpreter
— one simply adds or deletes patterns from this

list and then re-builds ht i. ht i can be built with

inferred, or hand-chosen superoperators.

4.2 Attribute Emitter

ht i must emit node attributes after appropri-

ate bytecodes. In the previous example, it

is necessary to emit the integer attribute of

the CNSTI node immediately after emitting the

bytecodes for rules 5 or 36. This is sim-

ple for single operators, but superoperators

325

may need to emit many attributes. The pat-

tern ADDI (MULI (x, CNSTI), CNSTI) requires two

emitted attributes — one for each CNSTI.

To build ht i, a specification associates at-

tributes with IR operators. A preprocessor

builds an attribute emitter for each superoper-

ator. The attribute specification for CNSTI is

reg: CNSTI = (1)

“emitsymbol (%P->syms [0] ->x. name, 4, 4) ; “

The pattern on the first line indicates that the

interpreter will compute the value of the CNSTI

into a register at cost 1. The second line indi-

cates that the translator emits a 4-byte value

that is 4-byte aligned. The preprocessor ex-

pands %P to point to the CNSTI node relative to

the root of the superoperator in which it exists.

W>syms [01 ->x. name is the emitted value. For

the simple operator, stk: CNSTI, the attribute

emitter executes the following call after emitting

the bytecode

emitsymbol(p->syms [0] ->x. name, 4, 4) ;

where P points to the CNSTI.

For stk: ADDP (INDIRP (STK), CNSTI), the at-

tribute emitter executes

emit symbol (p->ki.ds [i] ->syms [0] ->x. name,

4, 4);

where p->kids [1] points to the CNSTI relative

to the root of the pattern, ADDP.

A preprocessor creates a second burg spec-

ification, math. gr, from the emitter specifica-

tion. The emitter specification patterns form the

rules in math. gr. The math. gr-generated pat-

tern matcher processes trees that represent the

VM’S superoperators. For every emitter pattern

that matches in a superoperator tree, the asso-

ciated emitter action must be included in the

translator for that superoperator. This is done

automatically from the emitter specification and

the list of superoperator trees. (Single node VM

operators are always treated as degenerate su-

peroperators.) Automating the process of trans-

lating chosen superoperators to a new interpreter

is key to practically exploiting superoperator op-

timization.

5 Interpret r Generation

!
The interpreter ‘s implemented in assembly lan-

guage. 1Assembly language enables important

optimizations li~e keeping the evaluation stack

Jpointer and inte preter program counter in hard-

ware registers. ~uch of the interpreter is auto-

kmatically genera ed from a target machine spec-

‘

ification and the list of superoperators. The tar-

get machine spe ification maps IR nodes (or pat-

bterns of IR nod s) to assembly language. For

Jinstance, the m pping for ADDI on the R3000 is

reg: ADDI (reglreg) = (1)

“addu %Or, xlr, %2r\n”

J

This pattern i dicates that integer addition

(ADDI) can be omputed into a register if the

operands are in legisters. %Or, %lr, and x2r rep-

I

resent the regis ers for the left-hand side non-

terminal, the Ie ‘t-most right-hand side nonter-

minal, and the n xt right-hand side nonterminal,

respective y.

The machine pacification augments the emit-

ter specification described above — they share

the same patter s. Therefore, they can share the

same burg-generated pattern matcher. The pat-

tern matcher processes superoperator trees to de-

dtermine how to est translate each into machine

ncode. Below is a small specification to illustrate

the complete tra slation for an ADDI operator.

reg: ADDI(reg, reg) = (1)

1

“ addu % r, %lr, %2r\n”

reg: STK = (1)

“lu !lOr, XP4-4($19) \n”

stint: reg

\

=()

“sw %Or, %U4($19)\n”

STK is a terminal symbol representing a value on

the stack. The second rule is a pop from the eval-

uation stack int~ a register. ~P4 is a 4-byte pop,

Jand $19 is the e aluation stack pointer register.

The third rule is push onto the evaluation stack

from a register. I

I

,u4 is the 4-byte push.

To generate he machine code for a sim-

ple ADDI operati n, the interpreter-generator re-

duces the tree A ~DI (STK, STK) to the nontermi-

326 I

nal stint using the pattern matcher. The re-

sulting code requires two instances of the second

rule, and one each of the first and third rules:

lW $8, 0-4($19) #

#

lW $9, -4-4($19) #

#

addu $8, $8, $9 #

#

SW $8, -8($19) #

#

addu $19, -4 #

pop left operand

(reg: STK)

pop right operand

(reg: STK)

add them

(reg: ADDI(reg,reg))

push the result

(stint: reg)

adjust stack

The interpreter-generator automatically allo-

cates registers $8 and $9 and, generates codeto

adjust the evaluation stack pointer.

The interpreter-generator selects instructions

and allocates temporary registers for each super-

operator. In essence, creating an interpreter is

traditional code generation — except that it is

done for astatic set ofIRtreesbejore any source

codeis actually translated.

The emitter and machine specifications use the

same patterns, so only one file is actually main-

tained. The juxtaposition of the emitter code

and machine code makes their relationship ex-

plicit. Below is the complete R3000 specification

for CNSTI.

reg: CNSTI = (1)

“addu $17, 7;

srl $17, 2;

Sll $17, 2;

lW tiOr, -4($17)\n”

“emits ymbol(%P->syms[OI->x. name, 4, 4) ;“

Register $17 is the interpreter’s program counter

(pc). The first three instructions advance the pc

past the 4-byte immediate data and round the

address to a multiple of 4, (Because of assembler

and linker constraints on the R3000, all 4-byte

data must be word aligned.) The lW instruction

loads the immediate value into a register.

Machine/emitter specifications are not limited

to single-operator patterns. Complex IR tree

patterns may better express the relationship be-

tween target machine instructions and lCC’S IR.

For example, the R3000 lb instruction loads

and sign-extends a l-byte value into a 4-byte

register. This corresponds to the IR pattern,

CVCI(INDIRC(X)) . The specification for this

complex pattern follows.

reg: CVCI (INDIRC(reg)) = (1)

“lb %Or, O(%lr)\n”
II 11

The interpreter-generator may use this rule for

any superoperators that include

CVCI(INDIRC(X)) .

5.1 Additional IR Operator

To reduce the size of bytecode attributes, one

additional IR operator was added to 1 cc’s orig-

inal set: ADDRb. 1CC7S ADDRLP node represents

the offset of a local variable relative to the frame

pointer. ht i emits a 4-byte offset attribute for

ADDRLP. ADDRLb is simply an abbreviated ver-

sion of ADDRLP that requires only a l-byte off-

set. Machine-independent back end code does

this translation.

6 Implementation Details

Building an hti interpreter is a straightfor-

ward process. The following pieces are needed

to build ht i‘s translator and interpreter:

●

●

●

●

A target machine/emitter specification.

lcc back end code to handle data layout,

calling conventions, etc.

A library of interpreter routines for observ-

ing calling conventions.

Machine-dependent interpreter-generator

routines.

Figure 1 summarizes the sizes of the machine

dependent and independent parts of the system

(lCC’S front end is excluded).

The R3000-specific back end code and the

interpreter library are much bigger than the

SPARC’S because of the many irregular argu-

ment passing conventions observed by C code on

the R3000.

327

Function Language Sizes (in] ines)

Machine Independent R3000 SPARC

Target Specification grammar 351 3.54

lcc back end c 434 244 170

interpreter library asm 130 28

interpreter generator c 204 72 70

Figure 1: Implementation Details I

7 System Obstacles

Unfortunately, hti’sexecutables are slower and

bigger than they ought to be because oflimi-

tations of system softwareon both R3000 and

SPARC systems. The limitations arenotintrin-

sic to the architectures orhti; they are just the

results of inadequate software.

Neither machine’s assembler supports un-

aligned initialized data words or halfwords. This

can cause wasted space between a bytecode and

its (aligned) immediate data. Consequently, the

interpreter must execute additional instructions

to round its pc up to a 4-byte multiple be-

fore reading immediate 4-byte data. Initial tests

indicate that approximately 17’%0 of the bytes

emitted by ht i are wasted because of alignment

problems.1

The R3000 assembler restricts the ability to

emit position-relative initialized data. For in-

stance, the following is illegal on the R3000:

L99 :

. word 55

. word . -L99

Position relative data would allow ht i to im-

plement pc-relative jumps and branches. Pc-

relative jumps can use 2-byte immediate values

rather than 4-byte absolute addresses, thus sav-

ing space.

8 Experimental Results

ht i compiles C source into object code. Ob-

1 I understand that the latest release of the R3000 as-

sembler and linker supports unaligned initialized data,

and that the R3000 has instructions for reading unaligned

data. Unfortunately, I do not have access to these new

tools.

ject code for eac~ function consists of a native-

“!code prologue, WI h interpreted bytecodes for the

function body. Object files are linked together

with appropriate C libraries (e.g., libc. a) and

the interpreter. The executable may be com-

pared to natively compiled code for both size

and speed. The code size includes the function

prologues, byteco ales, and one copy of the inter-

preter. Interpreter comparisons will depend on

Lavailable superop raters.

Comparisons w~re made for three programs:

!

● burg: A W5 000-line tree pattern matcher

generator, p ocessing a 136-rule specifica-

tion.

o hti: The W1 3,000-line translator and sub-

ject of this p aper, translating a 1117-line C

file.

1

● loop: An e pty for loop that executes

10,000,000 ti es.

On the 33 MHz R3000, hti is compared to a

production qualit lcc compiler. Because 1 cc’s

[SPARC code genl rator is not available, ht i is

J

compared to ace, Sun’s ANSI C compiler, on

the 33 MHz Sun /490. Because ICC does little

global optimization n, acc is also run without op-

timization. hti is run both with and without

enabling the supe roperator optimization. Super-

operators are infe red based on a static count of

[

how many times each tree is emitted from the

front end for tha benchmark — hti+so repre-

~

sents these tests. The columns labelled ht i rep-

resent the interpr ter built with exactly one VM

operator for each IR operator.

Figures 2 and 3 ummarize the sizes of the code

segments for each benchmark. “code” is the to-

tal of bytecodes, 4‘unction prologues, and wasted

328 I

space. “waste” is the portion wasted due to

alignment restrictions. “interp” is the size of the

interpreter, (The sizes do not include linked sys-

tem library routines since all executable would

use the same routines.)

The interpreted executable are slightly larger

than the corresponding native code. The inter-

preted executable are large for a few reasons be-

sides the wasteful alignment restrictions already

mentioned. First, no changes were made to the

lCC’S IR except the addition of ADDRb, and lcc

creates wasteful IR nodes. For instance, lcc

produces a CVPU node to convert a pointer to

an unsigned integer, yet this a nop on both the

R3000 and SPARC. Removing this node from IR

trees would reduce the number of emitted byte-

codes. Additionally, lcc produces IR nodes that

require the same code sequences on most ma-

chines, like pointer and integer addition. Dis-

tinguishing these nodes hampers superoperator

inference, and superoperators save space. Unfor-

tunately, much of the space taken up by executa-

ble is for immediate values, not operator byte-

codes. To reduce this space would require either

encoding the sizes of the immediate data in new

operators (like ADDRb) or tagging the data with

size information, which would complicate fetch-

ing the data.

Fortunately, ht i produces extremely fast in-

terpreters. Figures 4 and 5 summarize the exe-

cution times for each benchmark,

lcc does much better than acc relative to in-

terpretation because it does modest global reg-

ister allocation, which acc and ht i do not do.

lCC’S code is 28.2 times faster than the inter-

preted code on loop because of register alloca-

tion. Excluding the biased loop results, inter-

preted code without superoperators is less than

16 times slower than native code — sometimes

significantly. Furthermore, superoperators con-

sistently increase the speed of the interpreted

code by 2-3 times.

These results can be improved with more en-

gineering and better software. Support for un-

aligned data would make all immediate data

reads faster. Inferring superoperators based

on profile information rather than static counts

would make them have a greater effect on execu-

tion efficiency.

If space were not a consideration, the in-

terpreter could be implemented in a directly

threaded fashion to decrease operator decode

time [Kli81]. The implementation of each VM

operator is unrelated to the encoding of the oper-

ators, so changing from the current indirect table

lookup to threading would not be difficult.

9 Limitations and Extensions

Almost certainly, each additional superoperator

contributes decreasing marginal returns. I made

no attempt to determine what the time and space

tradeoffs would be if the number of superopera-

tors were limited to some threshold like 10 or

20. I would conjecture that the returns for a

given application diminish very quickly and that

20 superoperators realize the bulk of the poten-

tial optimization. The valuable superoperators

for numerically intensive programs probably dif-

fer from those for pointer intensive programs. To

create a single VM capable of executing many

classes of programs efficiently, the 147 additional

bytecodes could be partitioned into superopera-

tors targeted to different representative classes of

applications.

This system’s effectiveness is limited by lCC’S

trees. The common G expression, x ? y, cannot

be expressed as a single tree by lCC. Therefore,

ht i cannot infer superoperators to optimize its

evaluation based on the IR trees generated by

the front end. Of course, any scheme based on

looking for common tree patterns will be limited

by the operators in the given intermediate lan-

guage.

ht i generates bytecodes as . dat a assembler

directives and function prologues as assembly

language instructions. Nothing about the tech-

niques described above is limited to such an im-

plementation. The bytecodes could have been

emitted into a simple array that would be im-

mediately interpreted, much like in a traditional

interpreter. This would require an additional

bytecode to represent the prologue of a function
— to mimic the currently executed assembly in-

structions. To make this work, the system would

have to resolve references within the bytecode,

329

R3000 Code Size Summary (in bytes)

Benchmark Translator

lCC ht i hti+so

code code interp waste cod~ interp waste

burg 56576 92448 4564 15895 7261P 12388 13862

ht i 230160 315040 4564 51868 289511 11296 64299

loop 48 52 4564 4 41 600 6

Figure 2: R3000 Benchmark Code Size$

SPARC Code Size Summary (in bytes)

Benchmark Translator

acc ht i hti+so

code code interp waste cod ? interp waste

burg 75248 84720 4080 13560 6399@ 11840 10862

ht i 271736 292568 4080 41423 25480~ 10512 37507

loop 80 56 4080 2 4P 312 4

Figure 3: SPARC Benchmark Code Siz~s

R3000 Execution Summary

Benchmark Times (in seconds) Ra’ ios

lCC ht i hti+so hti/lcc hti+so/ lCC hti/hti+so

burg 1.65 14.04 7.07 8.5 4.3 2.0

ht i 2.69 42.83 23.81 15.9 8.8 1.8

loop 1.53 43.12 13.88 28.2 9.1 3.1

Figure 4: R3000 Benchmark Code Speeds

SPAR(2 Execution Summarv I 1.
Benchmark Times (in seconds) Radios

acc ht i hti+so hti/acc I hti+so~acc I hti/hti+so

burg 1.78 18.52 8.37 10.4 4.7 2.2

ht i 4.39 58.24 28.73 13.3 6.5 2.0

loop 6.62 61.26 20.05 9.3 3.0 3.1, I

Figure 5: SPARC Benchmark Code Spee~s

330

which would require some additional machine-

independent effort. (The system linker/loader

resolves references in the currently generated as-

sembler.) Not emitting function prologues of ma-

chine instructions would make seamless calls be-

tween interpreted and compiled functions very

tricky, however.

10 Related Work

Many researchers have studied interpreters for

high-level languages. Some were concerned with

interpretation efficiency, and others with the di-

agnostic capabilities of interpretation.

Supercombinators optimize combinator-based

functional-language interpreters in a way sim-

ilar to how superoperators optimize ht i. Su-

percombinators are combinators that encompass

the functionality of many smaller combinators

[FH88]. By combining functionality into a sin-

gle combinator, the number of combinators to

describe an expression is reduced and the num-

ber of function applications necessary to evaluate

an expression is decreased. This is analogous to

reducing the number of bytecodes emitted and

fetched through superoperator optimization.

Pittman developed a hybrid interpreter and

native code system to balance the space/time

tradeoff between the two techniques [Pit87]. His

system provided hooks for escaping interpreted

code to execute time-critical code in assembly

language. Programmers coded directly in both

interpreted operations, or assembly.

Davidson and Gresch developed a C inter-

preter, Cint, that, like ht i, maintained C call-

ing conventions in order to link with native code

routines [DG87]. Cint was written entirely in C

for easy retargetability. Cint’s VM is similar to

ht i‘s — it includes a small stack-based operator

set. On a set of small benchmarks the interpreted

code was 12,4-42.6 times slower than native code

on a VAX-11/780, and 20.9-42.5 times slower on

a Sun-3/75. Executable sizes were not compared.

Kaufer, et. al., developed a diagnostic C inter-

preter environment, Saber-C, that performs ap-

proximately 70 run-time error checks [KLP88].

Saber-C’s interpreted code is roughly 200 times

slower than native code, which the authors at-

tribute to the run-time checks. The interpreter

implements a stack-based machine, and main-

tains calling conventions between native and in-

terpreted code. Unlike ht i interpreted functions

have two entry points: one for being called from

other interpreted functions, and another for na-

tive calls, with a machine-code prologue.

Similarly, Feuer developed a diagnostic C in-

terpreter, si, for debugging and diagnostic out-

put [Feu85]. si’s primary design goals were quick

translation and flexible diagnostics — time and

space efficiency were not reported.

Klint compares three ways to encode a pro-

gram for interpretation [Kli81]. The methods

are “Classical, “ “Direct Threaded” [Be173], and

“Indirect Threaded.” Classical — employed by

ht i and Cint — encodes operators as values

such that address of the corresponding inter-

preter code must be looked up in a table. Direct

Threaded encodes operations with the addresses

of the corresponding interpreter code. Indirect

Threaded encodes operations with pointers to

locations that hold the actual code addresses.

Klint concludes that the Classical method gives

the greatest compaction because it is possible to

use bytes to encode values (or even to use Huff-

mann encoding) to save space. However, the

Classical method requires more time for the table

lookup.

11 Discussion

ht i translates ANSI C into tight, efficient code

that includes a small amount of native code with

interpreted code. This hybrid approach allows

the object files to maintain all C calling con-

ventions so that they may be freely mixed with

natively compiled object files. The interpreted

object code is approximately the same size as

equivalent native code, and runs only 3-16 times

slower.

Much of the interpreter’s speed comes from

being implemented in assembly language. Re-

targeting the interpreter is simplified using

compiler-writing tools like burg and special-

purpose machine specifications. For the MIPS

R3000 and the SPARC, each machine required

fewer than 800 lines of machine-specific code to

331

be retargeted,

Superoperators, which are VM operations that

represent the aggregate functioning ofmany con-

nected simple operators, make the interpreted

code both smaller and faster. Tests indicate su-

peroperators can double or triple the speed of in-

terpreted code. Once specified by the interpreter

developer, new superoperators are automatically

incorporated into both the translator and the in-

terpreter. Furthermore, heuristics can automati-

cally isolate beneficial superoperators from static

or dynamic feedback information for a specific

program or for an entire suite of programs.

12 Acknowledgements

Chris Fraser provided useful input on this work.

References

[Be173]

[DG87]

[Feu85]

[FH88]

[FH91a]

[FH9. b]

James R. Bell. Threaded code. Corn-

rnunications of the ACM, 16(6) :370–

372, June 1973.

J. W. Davidson and J. V. Gresch. Cint:

A RISC interpreter for the C pro-

gramming language. In Proceedings oj

the SIGPLAN ’87 Symposium on In-

terpreters and Interpretive Techniques,

pages 189–198, June 1987.

Alan R, Feuer. si — an interpreter

for the C language. In Proceedings of

the 1985 Useniz Summer Conferencej

Portland, OR, June 1985.

Anthony J. Field and Peter G. Harri-

son. Functional Programming. Addison

Wesley, 1988.

Christopher W, Fraser and David R,

Hanson. A code generation interface

for ANSI C. Sofiware-Practice and

Experience, 21(9) :963–988, September

1991.

Christopher W. Fraser and David R.

Hanson. A retargetable compiler for

ANSI C. SIGPLAN Notices, 26(10),

October 1991.

[FHP92]

[GG90]

[GJ79]

[KH92]

[Kli81]

[KLP88]

[Pit87]

[Sun91]

Christo

Henry,

BURG

lection

Notices

Ralph I

weld .

guage.

M. R. C

puters ,

the Th(

H. Free

Gerry I

RISC A

Paul 1

niques.

rience,

Stephen

sha Pra

based I

the C h

1988 U;

Francis

T. Pitt:

preter/r

bined SI

Proceed

posium

tive Tet

1987.

Sun Mil

Archite~

)her W. Fraser, Robert R.

and Todd A. Proebsting.

— fast optimal instruction se-

and tree parsing. SIGPLAN

27(4):68–76, April 1992.

. Griswold “and Madge T. Gris-

The Icon Programming Lan-

‘rentice Hall, 1990.

arey and D. S. Johnson. Com-

nd Intractability: A Guide to

ory of NP- Completeness. W.

man and Company, 1979.

.ane and Joe Heinrich. MIPS

~chitecture. Prentice Hall, 1992.

lint. Interpretation tech-

Software-Practice and Ezpe-

1(10):963-973, October 1981.

Kaufer, Russell Lopez, and Se-

;ap. Saber-C: An interpreter-

rogramming environment for

nguage. In Proceedings of the

enix Summer Conferencej San

o, CA, June 1988.

Ian. Two-level hybrid integ-

rative code execution for com-

ace-time program efficiency. In

ngs of the SIGPLA N ’87 Sym-

on Interpreters and Interpre-

bniques, pages 150–152, June

rosystems, Inc. The SPARC

lure Manual (Version 8), 1991.

332

