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Abstract 
Virtualization provides levels of execution isolation and service 
partition that are desirable in many usage scenarios, but its associ-
ated overheads are a major impediment for wide deployment of 
virtualized environments. While the virtualization cost depends 
heavily on workloads, it has been demonstrated that the overhead 
is much higher with I/O intensive workloads compared to those 
which are compute-intensive. Unfortunately, the architectural 
reasons behind the I/O performance overheads are not well under-
stood. Early research in characterizing these penalties has shown 
that cache misses and TLB related overheads contribute to most 
of I/O virtualization cost. While most of these evaluations are 
done using measurements, in this paper we present an execution-
driven simulation based analysis methodology with symbol anno-
tation as a means of evaluating the performance of virtualized 
workloads. This methodology provides detailed information at the 
architectural level (with a focus on cache and TLB) and allows 
designers to evaluate potential hardware enhancements to reduce 
virtualization overhead. We apply this methodology to study the 
network I/O performance of Xen (as a case study) in a full system 
simulation environment, using detailed cache and TLB models to 
profile and characterize software and hardware hotspots. By ap-
plying symbol annotation to the instruction flow reported by the 
execution driven simulator we derive function level call flow 
information. We follow the anatomy of I/O processing in a virtu-
alized platform for network transmit and receive scenarios and 
demonstrate the impact of cache scaling and TLB size scaling on 
performance. 

Categories and Subject Descriptors    C.4 [Performance of Sys-
tems]:  Design studies, Measurement techniques, performance 
attributes. 

General Terms    Measurement, Performance 

Keywords   Simulation, Virtualization, Performance model, Xen, 
Virtual Machines 

1. Introduction 
In recent years, virtualization has re-emerged as a means to im-
prove the utilization of available compute resources and to en-
hance the overall system reliability [22]. While reliability and cost 

arguments motivate the use of virtualized systems, the overhead 
due to virtualization is a major obstacle for widespread adoption. 
It is well understood that compute-intensive workloads suffer low 
virtualization overheads compared to I/O-intensive workloads.  

In order to design I/O-efficient virtualized systems, it is a key 
challenge to understand how micro-architectural features impact 
the performance of I/O workloads in virtualized environments. 
Recent studies [4, 5] show that most of I/O overhead could be 
attributed to increased cache and TLB misses. While previous 
studies have relied on measurements to assess the performance 
impact of I/O virtualization of existing workloads and systems, it 
is important to understand architectural-level implications to 
guide the design of future platforms and the tuning of system 
software for virtualized environments. 

This paper addresses this problem and presents a simulation-based 
analysis methodology which extends a full system simulator with 
symbol annotation of the entire software stack in virtualized envi-
ronments – including the hypervisor, service and guest domains. 
The key contributions of this paper are twofold: first, we describe 
methodologies and issues involved in analyzing a virtualized 
workload on an existing simulator, including symbol annotation 
to differentiate the various components in the software stack; and 
second, we demonstrate the feasibility and initial results of using 
this extended simulation environment to evaluate the profile of 
cache and TLB misses in a representative I/O workload. Results 
from this case study shows that we can correlate simulated results 
with important events across these different components of the 
stack. To our knowledge, this is the first study using full-system 
simulation to estimate overheads and profile the anatomy of I/O 
processing in a virtualized system. Using full-system simulation, 
we profile the workload following the execution path of network 
packet handling inside the virtual environment. Furthermore, we 
perform architecture-level quantitative analyses using cache and 
TLB simulation models that are integrated with the execution-
driven simulation and symbol annotation framework. 

We chose to model cache and TLB in detail since the cost associ-
ated with these resources are considered to be high. By profiling 
the execution and collecting architectural data, we show the 
causes for cache misses as well as TLB misses. We also show the 
impact of cache size and TLB size on I/O performance by scaling 
these resources. In this paper we provide a detailed analysis of the 
current I/O VM architecture of a representative open-source 
VMM (Xen [20]), using the SoftSDV [26] execution-driven simu-
lator extended with symbol annotation support and a network I/O 
workload (iperf). We selected network I/O since inter-VM com-
munication and service VM architecture is integral part of the 
current IO virtualization architecture. Also, recent studies have 
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indicated that the I/O VM architecture becomes a performance 
bottleneck as we stress the network I/O throughput [4, 5].  

The rest of the paper is organized as follows. The motivation 
behind the current work is described in Section 2. Section 3 de-
scribes the simulation methodology, tools and symbol annota-
tions. Section 4 details the software and architectural anatomy of 
I/O processing by following the execution path through guest 
domain, hypervisor and the I/O VM domain. Also, we provide 
initial results of resource scaling in Section 4. Section 5 describes 
related work. We conclude with summary and future work in 
Section 6. 

2. Motivation and Background 
The present work is motivated by the fact that current system 
evaluation methodologies for classic and para-virtualized VMs 
are based on measurements of a deployed virtualized environment 
on a physical machine. Although such an approach gives good 
estimates of performance overheads for a given physical machine, 
it lacks flexibility in determining the resource scaling perform-
ance. In addition, it is difficult to replicate a measurement frame-
work on different system architectures. We suggest that it is im-
portant to move towards a full system simulation methodology 
because it is a flexible approach in studying different architec-
tures.  

Simulation-based approaches have been extensively used in com-
puter architecture to design and analyze the performance of up-
coming system architecture [21, 28, 29]. A simulation-based 
methodology for virtual environments is also important to guide 
the design and tuning of architectures for virtualized workloads, 
and to help software systems developers to identify and mitigate 
sources of overheads in their code. 

A driving application for simulation-driven analysis is I/O work-
loads. It is important to minimize performance overheads of I/O 
virtualization in order to enable efficient workload consolidation 
use models. For example, in a typical three tier data center envi-
ronment, Web servers providing the external interface are typi-
cally I/O-intensive; a low performing front end server could bring 
the overall data center performance down. It is also important to 
minimize performance overheads to enable emerging usage mod-
els of virtualization. New architecture features could also drive 
the virtualization evolution. For example, offloading the I/O ser-
vices to an isolated, specialized I/O domain and communicating 
to it through messages is motivated by similar arguments that 
have motivated micro-kernels [27]. Enabling a low latency, high 
bandwidth inter-domain communication mechanism between VM 
domains is one of the key architecture elements which could push 
this distributed services architecture evolution forward. 

2.1 Full System Simulator and Performance  
Full system simulators are often employed to evaluate design, 
development and testing on traditional hardware and software for 
upcoming architectures. There are several cycle-accurate simula-
tors that support the x86 instruction set architecture [18, 21]; in 
this paper we use the SoftSDV simulator [26] as a basis for the 
experiments. SoftSDV not only supports fast emulation with dy-
namic binary translation, but also allows proxy I/O devices to 
connect a simulation run with physical hardware devices. It also 
supports multiple sessions to be connected and synchronized 

through a virtual SoftSDV network. For cache and TLB modeling 
we integrated CASPER [24] – a functional simulator which offers 
rich set of performance metrics and protocols to determine cache 
hierarchical statistics.  

2.2 I/O Virtualization in Xen 
We briefly look at the various I/O architecture options and in 
particular the I/O VM model used in Xen 3.0. The design of I/O 
architecture in virtual systems is often driven by tradeoffs be-
tween fault tolerance and I/O performance. In this context, I/O 
architectures can be broadly divided into split I/O and direct I/O. 
Direct I/O is generally adopted in classical virtual machines like 
VMware to boost I/O performance where front end and backend 
drivers often communicate using system calls. Split I/O architec-
ture, adopted by para-virtualized machines, isolates backend driv-
ers in a separate VM to communicate with front end drivers 
through inter-process communication (IPC), resulting in an ap-
proach similar to those found in micro-kernels. 
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Figure 1: Full system simulation environment with Xen Execu-
tion includes (A) Xen Virtual Environment (B) SoftSDV Simula-
tor (C) Physical Machine. 
 
The Xen I/O architecture has evolved from hypervisor-contained 
device drivers (direct I/O) to a split I/O. The primary goal of the 
I/O service VM based Xen I/O architecture is to provide fault 
isolation from misbehaved device drivers. It also enables the use 
of unmodified device drivers. The Xen network I/O architecture is 
based on a communication mechanism to transfer information 
between guest and service VM (Figure 1, (A)). The guest do-
main’s front end driver communicates with backend drivers 
through IPC calls. The virtual and backend driver interfaces are 
connected by an I/O channel. This I/O channel implements a zero-
copy page remapping mechanism for transferring packets between 
multiple domains. We describe the IO VM architecture in detail 
when we present the life-of-packet analysis in Section 4.  

3. Analysis Methodology 
In this section, we present an overview of Xen as case study using 
full system simulation analysis methodology. We also show how 
we identified the flow of packets inside a multi-layer software 
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environment with multiple VMs and hypervisor along with micro-
architectural details of the processor events of interest. Figure 2 
summarizes the profiling methodology and the tools we used. The 
following sections describe the individual steps in detail; these 
include (1) virtualization workload (2) full system simulation (3) 
instruction trace (4) performance simulation with detailed cache 
and TLB simulation and (5) symbol annotation.  

3.1 Full System Simulation: Xen VMM as workload 
The first step in the methodology for getting a detailed under-
standing of the workload is to run a virtualized environment, un-
modified, within a full system execution driven simulator. In the 
analysis presented in this paper, the Xen virtualized environment 
includes the Xen hypervisor, the service domain (Dom0) with its 
O/S kernel and applications, and a guest, “user” domain (DomU) 
with its O/S kernel and applications (Figure 1). In order to ana-
lyze a network-intensive I/O workload, the iperf benchmark ap-
plication is executed in DomU. 
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Figure 2: Execution Driven Simulation & Symbol annotated 
profiling methodology – (1) Virtual workload (2) Execution 
driven simulation (3) Instruction trace form functional model (4) 
Hardware events such as cache hit (5)  EIP Symbol  annotation. 
 
This environment allows us to tap into the instruction flow to 
study the execution flow and to plug in detailed performance 
models to characterize architectural overheads. As explained in 
Section 2.1, the DomU guest uses a front end driver to communi-
cate with a backend driver inside Dom0, which controls the I/O 
devices. We synchronized two separate simulation sessions to 
create a virtual networked environment for I/O evaluation. The 
execution-driven simulation environment combines functional 
and performance models of the platform. For this study, we chose 
to abstract the processor performance model and focus on accu-
rate cache and TLB models to enable the coverage of a long pe-
riod in the workload (approximately 1.2 billion instructions).  

3.2 Instruction trace 
Functional simulation provides stateless execution of systems 
instructions; no state is maintained for TLB and cache access. The 
SoftSDV functional simulator loads and executes the Xen hyper-
visor and guest images. When iperf executes and communicates 
with the I/O services in Dom0, the instructions issued by the hy-
pervisor, DomU and Dom0 are decoded and executed by the func-
tional model. This enables tracing of the flow of execution at the 

instruction level for the entire workload execution which serves as 
a starting point for the analysis. The instruction trace can then be 
parsed to identify important events such as context switches and 
function calls. For example, we mapped the next instruction after 
the CALL instruction to the symbols collected from hypervisor, 
application and drivers to obtain a sequence of functions in execu-
tion. 

3.3 Symbol Annotation 
In Linux, symbols for the kernel (and, similarly for applications 
and drivers) can be located in compile-time files (such as sys-
tem.map for kernel). Symbols for running process can be col-
lected from proc kernel data structures. In order for us to gain 
more insight into the packet flow and software modules inside the 
virtualization software layers, we also added symbol information 
to the execution flow. Symbols were collected from the Xen hy-
pervisor and guest operating system, and we also added symbols 
from applications and drivers to complete the instruction trace 
annotation. The annotation process matches the simulated instruc-
tion pointer (EIP in x86) with such symbols, allowing the tagging 
of regions of the instruction trace (and associated statistics) with 
code executed by the different components of the virtualized envi-
ronment. For example, this methodology has allowed us to follow 
the life of a network packet inside the Xen virtualized environ-
ment, which is described in Section 4. An example execution flow 
after symbol annotation is given in Figure 3. These decoded in-
structions from the functional model are then provided to the per-
formance model which simulates the architectural resources and 
timing for the instructions executed.  

3.4 Performance Statistics 
We collect instruction flow and associated performance statistics 
from cache and TLB models to identify performance hotspots. We 
can leverage detailed models of cache and TLB to characterize 
the impact of cache and TLB size on the I/O virtualization per-
formance. Results from the resource scaling studies for the Xen 
virtualized environment are provided in Section 4.2. A simulated 
platform also provides us with the capability of changing the un-
derlying hardware architecture to evaluate architecture enhance-
ments and their impact on workload performance. An example of 
the execution flow with performance details is given in Figure 4. 

 

EIP Function Nam e M odule
ff110760 stop_tim er [hypervisor]
ff1103c0 rem ove_entry [hypervisor]
ff123c90 sm p_send_event_check_m ask [hypervisor]
ff110650 set_tim er [hypervisor]
ff110540 add_entry [hypervisor]
ff110370 up_heap [hypervisor]
ff124570 update_dom _tim e [hypervisor]
ff117820 context_sw itch [hypervisor]
ff117690 __context_switch [hypervisor]
ff11d820 write_ptbase [hypervisor]
ff127810 __copy_to_user_ll [hypervisor]
ff10f980 do_softirq [hypervisor]
ff124280 get_s_tim e [hypervisor]
ff114120 reprogram _tim er [hypervisor]
ff124280 get_s_tim e [hypervisor]
ff1493d5 create_bounce_fram e [hypervisor]
c023da30 evtchn_do_upcall [kernel]
c0106b60 do_IRQ [kernel]
c0142d30 __do_IRQ [kernel]  

Figure 3: Annotated instruction flow. 
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ff110760 stop_timer [hypervisor] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ff1103c0 remove_entry [hypervisor] 37 2 2 0 0 0 39 25 14 7 7 2 0 0 0 0 0 2 2 0 0 0 14 0 25 0
ff123c90 smp_send_event_check_mask [hypervisor] 17 0 0 0 0 0 17 12 5 2 3 0 0 0 0 0 0 0 0 0 0 0 5 0 12 0
ff110650 set_timer [hypervisor] 35 1 1 0 0 0 36 18 18 8 10 1 0 0 0 0 0 1 1 0 0 0 18 0 18 0
ff110540 add_entry [hypervisor] 49 1 1 0 0 0 50 32 18 9 9 1 0 0 0 0 0 1 1 0 0 0 18 0 32 0
ff110370 up_heap [hypervisor] 37 1 1 0 0 0 38 22 16 5 11 1 0 0 0 0 0 1 1 0 0 0 16 0 22 0
ff124570 update_dom_time [hypervisor] 99 3 3 0 0 0 102 58 44 27 17 3 0 0 0 0 0 3 3 0 0 0 44 0 58 0
ff117820 context_switch [hypervisor] 17 2 2 0 0 0 19 11 8 5 3 2 0 0 0 0 0 2 2 0 0 0 8 0 11 0
ff117690 __context_switch [hypervisor] 40 2 2 0 0 0 42 29 13 7 6 2 0 0 0 0 0 2 2 0 0 0 13 0 29 0
ff11d820 write_ptbase [hypervisor] 23 0 0 0 0 0 23 11 12 8 4 0 0 0 0 0 0 0 0 0 0 0 12 0 11 0
ff127810 __copy_to_user_ll [hypervisor] 32 0 0 0 0 0 32 21 11 6 5 0 0 0 0 0 0 0 0 0 0 0 11 0 21 0
ff10f980 do_softirq [hypervisor] 34 2 2 0 0 0 36 26 10 7 3 2 0 0 0 0 0 2 2 0 0 0 9 1 24 2
ff124280 get_s_time [hypervisor] 56 0 0 0 0 0 56 35 21 9 12 0 0 0 0 0 0 0 0 0 0 0 20 1 33 2
ff114120 reprogram_timer [hypervisor] 39 2 2 0 0 0 41 27 14 10 4 2 0 0 0 0 0 2 2 0 0 0 12 2 27 0
ff124280 get_s_time [hypervisor] 16 1 1 0 0 0 17 11 6 2 4 1 0 0 0 0 0 1 1 0 0 0 6 0 10 1
ff1493d5 create_bounce_frame [hypervisor] 36 2 2 0 0 0 38 24 14 9 5 2 0 0 0 0 0 2 2 0 0 0 13 1 24 0
c023da30 evtchn_do_upcall [kernel] 59 2 2 0 0 0 61 20 41 29 12 2 0 0 0 0 0 2 2 0 0 0 41 0 19 1
c0106b60 do_IRQ [kernel] 69 5 4 1 1 0 74 52 22 12 10 5 0 0 0 0 0 5 4 1 1 0 17 5 51 1
c0142d30 __do_IRQ [kernel] 10 1 1 0 0 0 11 7 4 2 2 1 0 0 0 0 0 1 1 0 0 0 4 0 6 1  

Figure 4: Performance information added to annotated instruction flow. 
 

3.5 Environment Setup for Virtualized Workloads 
The setup and priming of a workload within a simulation envi-
ronment can be time-consuming. To facilitate the setup for simu-
lation of the virtualized environment, we first create a raw virtual 
disk which is then ported to the simulator.We chose to apply 
physical-to-virtual disk conversion as generally it is time consum-
ing to test and commit changes in a simulated medium; creating a 
disk image outside the simulator facilitates the setup and testing 
of the workload. Also, for current architectures, decoupling simu-
lation from testing images gives us the flexibility to test O/S or 
application modifications and execution on a physical machine. 
For example, even though we executed iperf for the experimental 
evaluation, the above methodology provides flexibility to support 
any application. To convert a physical disk into a virtual disk, we 
modified the physical disk partition table to create a miniature 
replica of the physical disk using the Linux dd utility. 

Also, to reduce booting time of the installed O/S, we customized a 
stripped-down version of the physical image by removing unnec-
essary boot time processes. For guest Xen images, we created a 
blank virtual disk and populated it with minimal RPM installation 
packages primarily to facilitate iperf run and networking with 
Dom0. 

The CASPER cache model exports APIs to print or collect the 
instruction traces during a simulation run.  As shown in Figure 5, 
an instruction parser is used to parse different instruction events 
such as INT (interrupts, system calls), MOV CR3 (address space 
switch), and CALL (function call). These traces were dumped 
into a file with run-time virtual address information, as well as 
cache and TLB statistics. SoftSDV system call (SSC) utilities 
facilitate transfer of data between host and simulated guest. 

These utilities are important as we gathered run time symbols of 
kernels and application from the proc kernel data structure to 
transfer to the host system (for example, /proc/kallsyms for kernel 
symbols). For iperf runtime symbols, we mapped process ID with 
corresponding process ID in proc directory. These run-time sym-
bols, in addition to compile-time symbols from kernel, hypervi-

sor, drivers and iperf, provide mapping information between func-
tions and virtual addresses. 
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Figure 5: Performance simulation model is used to collect in-
struction traces of virtualized workload. SoftSDV CPU controller 
controls execution in performance or functional mode.  Instruc-
tion traces are parsed and mapped with symbol dumps to create 
IO call graph 
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We annotated symbols to keep track of the source of a function 
call invocation. Note that there can be duplicate symbols when we 
sum up all collected symbols into a file. We removed these dupli-
cates and formatted the data collected from proc structures to 
represent data in a useful way. In some cases, it was necessary to 
manually resolve ambiguities in virtual address spaces through 
checkpoint at virtual address during re-run of a simulated 
SoftSDV session. Linux utilities such as nm and objdump are 
often used to collect symbols from compile time symbol tables. In 
general, any application can be compiled to provide symbol table 
information. In C++ applications (such as iperf), function name 
mangling in object code is used to provide distinct name for func-
tions that share the same name. Essentially, it adds some random-
ness at prefix and suffix of the function name. We used the de-
mangle option of the nm utility to obtain the correct function for 
iperf application. Xen kernel and hypervisor symbols are col-
lected from /boot/System.map-2.6.13-xen and $INSTALL/ 
xen/xen-syms. We compared and visualized instruction trace and 
symbol dump into user-friendly format to obtain call graphs and 
statistical information such as cache and TLB misses per function 
invocation. 

 
EIP Function Instr count
c02aeb50 do_sock_write 0
c02b2720 lock_sock 78
c0331a00 _spin_lock_bh 85
c02f2590 tcp_current_mss 154
c01e5560 copy_from_user 255
c01e54b0 __copy_from_user_ll 277
c023fa00 __alloc_skb 505
c02b3380 alloc_skb_from_cache 527
c0164d90 kmem_cache_alloc 543
c0164d90 kmem_cache_alloc 591
c01e5560 copy_from_user 1552
c01e54b0 __copy_from_user_ll 1574
c023fa00 __alloc_skb 2029
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c0331b40 _spin_lock 2170
c01647a0 cache_grow 2217
c0331b40 _spin_lock 2245
c01646e0 kmem_flagcheck 2277
c0163860 kmem_getpages 2290
c01499c0 __alloc_pages 2309
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c01497f0 zone_watermark_ok 3611
c0149550 buffered_rmqueue 3662
c014a140 _page_state_offset 3728
c0148f80 prep_new_page 3754
c01517d0 page_address 3832
c014a170 mod_page_state_offset 3864
c01645f0 alloc_slabmgmt 3923
c0164d90 kmem_cache_alloc 3937
c0164760 set_slab_attr 3999
c0164660 cache_init_objs 4028
c0331b40 _spin_lock 4085
c0331b40 _spin_lock 4140
c0164710 slab_get_obj 4184
c0164710 slab_get_obj 4210
c02b7230 sk_stream_mem_schedule 7810
c01e5560 copy_from_user 9175
c01e54b0 __copy_from_user_ll 9197
c02f2ed0 __tcp_push_pending_frames 9382
c02f2c10 tcp_write_xmit 9396
c02f2750 tcp_init_tso_segs 9417
c02b2780 release_sock 9478

Module
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U

EIP Function Instr count
c02aeb50 do_sock_write 0
c02b2720 lock_sock 78
c0331a00 _spin_lock_bh 85
c02f2590 tcp_current_mss 154
c01e5560 copy_from_user 255
c01e54b0 __copy_from_user_ll 277
c023fa00 __alloc_skb 505
c02b3380 alloc_skb_from_cache 527
c0164d90 kmem_cache_alloc 543
c0164d90 kmem_cache_alloc 591
c01e5560 copy_from_user 1552
c01e54b0 __copy_from_user_ll 1574
c023fa00 __alloc_skb 2029
c02b3380 alloc_skb_from_cache 2051
c0164d90 kmem_cache_alloc 2067
c0164d90 kmem_cache_alloc 2115
c01649b0 cache_alloc_refill 2136
c0331b40 _spin_lock 2170
c01647a0 cache_grow 2217
c0331b40 _spin_lock 2245
c01646e0 kmem_flagcheck 2277
c0163860 kmem_getpages 2290
c01499c0 __alloc_pages 2309
c01498d0 get_page_from_freelist 3581
c01497f0 zone_watermark_ok 3611
c0149550 buffered_rmqueue 3662
c014a140 _page_state_offset 3728
c0148f80 prep_new_page 3754
c01517d0 page_address 3832
c014a170 mod_page_state_offset 3864
c01645f0 alloc_slabmgmt 3923
c0164d90 kmem_cache_alloc 3937
c0164760 set_slab_attr 3999
c0164660 cache_init_objs 4028
c0331b40 _spin_lock 4085
c0331b40 _spin_lock 4140
c0164710 slab_get_obj 4184
c0164710 slab_get_obj 4210
c02b7230 sk_stream_mem_schedule 7810
c01e5560 copy_from_user 9175
c01e54b0 __copy_from_user_ll 9197
c02f2ed0 __tcp_push_pending_frames 9382
c02f2c10 tcp_write_xmit 9396
c02f2750 tcp_init_tso_segs 9417
c02b2780 release_sock 9478
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Figure 7: Dom-U call graph: Socket allocation, user-kernel data 
copy and finally TCP transmit write (period (a) in Figure 6).  

4. Experiments and Simulation Results 
We conducted experiments in two parts. First, we collected im-
portant events such as the occurrence of CALL instructions to 
determine the flow of a virtual Ethernet packet. Secondly, we 
executed the iperf application to generate both transmit and re-
ceive workloads to perform cache scaling studies. Figure 5 shows 
the simulation framework implementation to obtain call graph 
information and perform cache scaling studies.  As shown in Fig-
ure 5, the CPU controller layer in SoftSDV integrates with a per-
formance or functional model. 

The platform configuration for this study is set to a single proces-
sor with 2 levels of cache (32 KB first level data and instruction 
cache, 2MB L2 cache) and with 64-entry instruction and data 
TLBs. The experimental setup involved multiple SoftSDV ses-
sions connected over virtual network. We choose to run iperf 
session for the sake of brevity to study life of I/O packet. The 
iperf client is executed to initiate packet transmissions from a Xen 
environment. 

4.1 Life Cycle of an I/O packet 
 We describe the execution flow of packet processing inside a 
Xen virtual machine.  In Figure 6, we present an overview of 
different stages which characterize the life of a packet between 
VM domains. Typically, a network packet in the Xen environ-
ment goes through the following four stages in its life cycle: 

1. Unprivileged domain – packet  build and memory allocation  
2. Page transfer Mechanism – a zero-copy mechanism to map 

pages in virtual address space of  Dom0/DomU domains  
3. Context Switch between hypervisor and domains –  timer 

interrupts 
4. Privileged domain – Event channel mechanism to send ac-

knowledgment to guest domain. 

 
EIP M odule Function Name Instr Count
c02f1910 Dom -U tcp_transm it_skb 0
c02b37a0 Dom -U     skb_clone 25
c02f16f0 Dom -U     tcp_select_window 238
c02f30e0 Dom -U         __tcp_select_window 250
c02f1780 Dom -U     tcp_build_and_update_options 362
c02f1550 Dom -U     tcp_event_data_sent 454
c0331a90 Dom -U     _read_lock_bh 702
c0331c60 Dom -U     _read_unlock_bh 728
c0331a90 Dom -U     _read_lock_bh 800
c0331c60 Dom -U     _read_unlock_bh 885
c0331b40 Dom -U     _spin_lock 954
c02cbaf0 Dom -U     qdisc_restart 1000
c0331920 Dom -U     _spin_trylock 1051
c03319d0 Dom -U     _spin_lock_irq 1097
c023f6a0 Dom -U     gnttab_claim_grant_reference 1129
c023f360 Dom -U     gnttab_grant_foreign_access_ref 1159
c023e500 Dom -U     notify_remote_via_irq 1211
ff127900 Hypervisor         copy_from_user 1262
ff127860 Hypervisor             __copy_from_user_ll 1281
ff105130 Hypervisor         evtchn_send 1330
ff104d80 Hypervisor             evtchn_set_pending 1370
ff10e780 Hypervisor                 vcpu_wake 1408  

Figure 8: TCP transmit and Grant table invocation (transition 
from period (a) to period (b) in Figure 6). 

4.1.1 Unprivileged Domain 
On the transmit side, a packet originates from the iperf applica-
tion. The execution flow traverses from the application into the 
DomU guest OS kernel where all the required TCP/IP processing 
is completed. The TCP/IP stack builds the payload in transmit 
socket buffers (skb) and hands them over to the front-end driver. 
Socket buffers (skb) represent network packets as they are trans-
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mitted through the system and facilitate the implementation of 
zero-copy networking between Xen virtual machines [32]. For 
example, we identified an interface in Xen to allocate a socket 
buffer in the networking layer (alloc_skb_from_cache).  The front 
end driver uses the grant table mechanism provided by the hyper-
visor to hand over the buffer to Dom-0.  Figure 7 shows the func-
tions and the associated instruction count for overall life of the 
packet in DomU: lock socket, copy data from user space to kernel 
space, allocate page from free list, and release socket lock. Note 
that the instruction count statistics are shown in chronological 
order with function entry points as markers, it is not done at indi-
vidual function level. We removed some repeating functions to 
improve readability. As part of the transmit processing the DomU 
guest domain communicates to Dom0 using event channels.   

4.1.2 Grant Table Mechanism 
Once the message to notify Dom0 of a transmit request is sent 
through event channels, the transmit packets are picked up by the 
Dom0 when the hypervisor schedules it to execute. The Xen 
VMM provides a generic mechanism to share memory pages 
between domains, referred to as grant table mechanism: before 
sending an event to Dom0, the DomU guest domain sets access 
rights to the memory pages holding the actual packet contents 
through a grant table interface provided by the hypervisor. Figure 
8 demonstrates the execution flow from domU to hypervisor 
through the grant table mechanism. 

4.1.3 Timer Interrupts 
Switching into the hypervisor is initiated typically on timer inter-
rupts. The functions invoked during a timer interrupt which re-
sults in a VM switch are shown in Figure 9. The last function in 
the table is invoked inside the Dom0. 

 
EIP Module Function Instr count
ff114210 Hypervisor smp_apic_timer_interrupt 0
ff110760 Hypervisor stop_timer 94
ff1103c0 Hypervisor     remove_entry 119
ff110650 Hypervisor set_timer 485
ff110540 Hypervisor     add_entry 517
ff110370 Hypervisor         up_heap 539
ff124570 Hypervisor update_dom_time 679
ff117820 Hypervisor context_switch 723
ff117690 Hypervisor     __context_switch 752
ff11d820 Hypervisor         write_ptbase 856
ff127810 Hypervisor     __copy_to_user_ll 931
ff10f980 Hypervisor     do_softirq 991
ff124280 Hypervisor         get_s_time 1026
ff114120 Hypervisor         reprogram_timer 1105
ff124280 Hypervisor             get_s_time 1116
ff1493d5 Hypervisor create_bounce_frame 1260
c023da30 Dom-0 evtchn_do_upcall 1350  

Figure 9: Context switch between hypervisor and Dom-0 VM -
Timer interrupts (transition from period (b) to (c) in Figure 6). 

4.1.4 Privileged Domain 
Once inside the Dom0, the backend driver picks up the packets 
and bridges them to the real network interface card. For this it 
needs to access the packet buffer from the guest domain. It uses 
the grant provided by the guest to map the page into its own do-
main and accesses it. Once transmit processing is complete, 
Dom0 sends an acknowledgment back to the DomU guest domain 
using event channel mechanisms. Execution flow in Dom0 is 
shown in Figure 10 (since the complete execution at this stage 

long, we only are able to show snippets of execution covering the 
basic flow and highlighting the important functions). Note that 
the grant table mechanism is used to map guest pages into Dom0 
address domain on the backend receiving side. Then the packet is 
sent to the bridge code, after which it is sent out on the wire. Once 
complete, the host map is destroyed and an event is sent on the 
event channel to the guest domain.  

It is interesting to note that the processor TLB is flushed while 
destroying the grant. It is done by writing the CR3 register (the 
x86 page table pointer) through the write_cr3 function. We look 
at the impact of this TLB flush in Section 4.2. This completes the 
transmit side processing. 

 

EIP Function Name Module Instr.Count
c023da30 evtchn_do_upcall Dom0 0
c0142d30 __do_IRQ Dom0 85
c0331b40 _spin_lock Dom0 116
c023e530 mask_evtchn Dom0 147
c0142c80 handle_IRQ_event Dom0 193
c0249700 add_to_net_schedule_list_tail Dom0 243
ff11e8b0 cleanup_writable_pagetable Hypervisor 1577
ff103ac0 find_domain_by_id Hypervisor 1741
ff1205f0 create_grant_host_mapping Hypervisor 1963
ff11dcd0 put_page_from_l1e Hypervisor 2033
ff127810 __copy_to_user_ll Hypervisor 2143
c02c9cb0 eth_type_trans Dom0 2550
c02b98c0 netif_rx Dom0 2671
c02b9de0 netif_receive_skb Dom0 3170
c02d4f40 nf_hook_slow Dom0 3412
e121ffb0 br_handle_frame_finish Dom0 4258
e121ed70 br_fdb_update Dom0 4294
e121e7d0 __br_fdb_get Dom0 4475
e121f2d0 br_forward Dom0 4630
c02d4f40 nf_hook_slow Dom0 4686
e1031ad0 e100_tx_clean Dom0 18899
c0331b40 _spin_lock Dom0 18914
e1030000 e100_enable_irq Dom0 19004
c0331990 _spin_lock_irqsave Dom0 19015
c0331b90 _spin_unlock_irqrestore Dom0 19043
ff11e8b0 cleanup_writable_pagetable Hypervisor 19545
ff127860 __copy_from_user_ll Hypervisor 19625
ff103ac0 find_domain_by_id Hypervisor 19727
ff1203b0 destroy_grant_host_mapping Hypervisor 19827
ff127810 __copy_to_user_ll Hypervisor 19972
ff123b40 __flush_tlb_mask Hypervisor 20054
ff119970 write_cr3 Hypervisor 20072
c024a0f0 make_tx_response Hypervisor 20266
ff127900 copy_from_user Hypervisor 20422
ff127860 __copy_from_user_ll Hypervisor 20451
ff105130 evtchn_send Hypervisor 20531
ff104d80 evtchn_set_pending Hypervisor 20589
c01343c0 rcu_pending Dom0 21106

… … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … …  
Figure 10: Life of a packet in Dom-0: Accessing granted page, 
ethernet transmission, destroy grant mapping and event notifica-
tion back to hypervisor (period (c) in Figure 6). Dotted line indi-
cates unidentified function calls. 
 

Note that the flow described here is only an example. The execu-
tion flow may vary based on the state of the stack and the avail-
ability of buffers. External interrupts also may alter the execution 
flow considerably. An execution driven simulation environment 
allows us to profile various execution flows and characterize the 
I/O architecture correctly. Similarly, we can get the execution 
flow at the receiver side in a Xen execution environment 
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Figure 11:  (a) Execution path showing the impact of TLB flush can context switch on TLB misses (b) Correlation between VM switching 
and TLB misses (c) TLB misses following a VM Switch (d)  TLB misses following a grant destroy. 
 

4.1.5 Cache and TLB characteristics 
It is important to analyze the impact of hardware design decisions 
on the performance of VMMs. As mentioned earlier, we focus on 
the performance characteristics related to cache and TLB re-
sources.  Figure 11(a) shows an execution snippet where TLB 

flushes and misses are plotted as a function of simulated instruc-
tions retired. The figure shows that there is a high correlation 
between the TLB misses, context switches and TLB flush events.  
An execution run of VM during a period with no context switches 
or TLB flushes results in negligible TLB misses. 
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Figure 12: Execution path showing the impact of VM switch on cache misses. 

 
Whenever TLB flushing events happen, there is a surge of TLB 
misses. This correlates well with the observations of TLB miss 
overhead in earlier studies. Figure 11(b) shows the increased 
number of TLB misses associated with the VM switches in a cu-
mulative graph. We observe that there is a surge of TLB misses 
associated with each VM switch. Execution segments without 
VM switches show flat areas with few TLB flushes.  

Figure 11(c) depicts a typical VM switch scenario. The execution 
moves from one VM to another through a context. The CR3 value 
is changed to point the new VM context. This triggers the hard-
ware to flush all the TLBs to avoid invalid translations. But this 
comes with a cost of TLB flushes every time a new page is 
touched, both for code and data pages. 

Another scenario is the explicit TLB flushes done by the Xen 
hypervisor as part of the data transfer between VMs. This is an 
artifact of the current IO VM implementation as explained in the 
previous section. In order to revoke a grant, a complete TLB flush 
is executed explicitly, which also creates TLB performance issues 
similar to VM switch. Figure 11(d) demonstrates the code flow 
and the TLB impact. 

Figure 12 shows the impact of context switches on cache per-
formance. The vertical lines mark VM switch events obtained 
through symbol annotation, and the plotted line shows the cumu-
lative cache miss events. Note that the cache miss rate increases 
are also correlated with VM switch events. 

4.2 Cache and TLB Scaling 
In this section, we look at the impact of cache size and TLB sizes 
on I/O virtualization overhead.  As described earlier, we used the 
functional model of SoftSDV to boot a RHEL 4 Linux disk image 
and Xen-3.0.2 as a test bed. We ran two sessions of the SoftSDV 
simulation tool connected to each other through a virtual subnet 
configured for network communication.  For each experiment, we 
executed a session of iperf [9]; TLB and cache statistics we meas-
ured for transfer of approximately 25 million TCP/IP packets. 

Figure 13 shows the cache scaling effect. We simulated a two 
level cache: 32KB L1 (split data and instruction) and a 2MB uni-
fied L2 cache. The primary goal is to understand the cache sensi-

tivity of the I/O virtualization architecture in the context of net-
work I/O. Note that increasing the L2 cache size up to 4MB pro-
vided good performance scaling, after which the increase in per-
formance was minimal. Increasing the cache size beyond 8MB, 
the miss rate the rate of reduction in miss rates is small.  We can 
attribute reduced miss rates from the 8MB cache to the inclusion 
of needed pages from hypervisor, Dom0 and DomU.  
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Figure 13: Transmit L2 Cache Scaling 
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Figure 14: Transmit TLB Scaling Impact 
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Figure 15: Receive L2 Cache scaling 
 

Figure 14 shows the TLB performance scaling impact for data and 
instruction TLBs.  As shown in the figure, with increase in size of 
the data TLB, the miss ratio decreases for sizes up to 128 entries. 
For larger sizes, the miss ratio is nearly constant. The ITLB miss 
rate decreases slightly, while the DTLB rate shows a sharper de-
crease from 64 to 128 entries. We infer that TLB size of 128 en-
tries is sufficient to incorporate all address translations during the 
TLB stage. Similarly, we also performed the cache and TLB scal-
ing studies on the receive side. Results are given in Figures 15 
and 16 respectively.  

Finally, we studied the potential impact of a TLB optimization to 
make global hypervisor pages persistent in TLBs. In the absence 
of TLB tagging, on a TLB flush all translations are invalidated. 
The goal of this optimization is to allow tagging the TLB with a 
single bit indicating that tagged translations are not to be flushed, 
which can be used in a virtualized environment to tag pages asso-
ciated with hypervisor code and data. As shown in Figure 17, 
such an optimization indeed has the potential to substantially 
reduce DTLB misses (and, to a lesser extend, reduce ITLB 
misses).  

5. Related Work 
The characterization of the performance overhead is an important 
concern in the study of virtualized environments, and several 
studies have addressed this issue with a methodology based on 
execution of application benchmarks on virtualized platforms [15, 
20]. Performance monitoring tools have been deployed to gauge 
application performance in virtualized environments [3, 4, 5]. 
Traditional network optimizations such as TCP/IP checksum off-
load, TCP segmentation offload are being used to improve net-
work performance of Xen-based virtual machines [4]. In addition, 
faster I/O channel for transferring network packets between guest 
and driver domains is being studied [4]. These studies lack micro-
architectural overhead analysis of the virtualized environment. 

TLB misses after context switches negatively impact I/O per-
formance. In the past, TLBs have been tagged with a global bit to 
prevent flushing of global pages such as shared libraries and ker-
nel data structures. In current system architectures, context switch 
overhead can be reduced through tagging TLB entries with ad-
dress-space identifiers (ASID). A tag based on VMID could be 
further used to improve I/O performance for virtual machines. 
Processor architectures, with hardware virtualization support, 

incorporate features such as virtual-processor identifiers (VPID) 
to tag translations in the TLB [6, 19].  
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Figure 16: Receive TLB Scaling 
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Figure 17: Impact of Global bit for transmission 

6. Conclusion and Future Work 
The focus of this paper is to present a case study of a virtualized 
workload in a simulated environment to study micro-architectural 
features as a means of performance evaluation. We used an exe-
cution driven simulation framework, along with a symbol annota-
tion methodology, to analyze the overheads of an I/O intensive 
workload running in a virtualized Xen environment. We also pre-
sented the initial research results from TLB and cache scaling for 
the I/O workload. The execution driven simulation framework 
presented in this paper provides the speed and flexibility needed 
for understanding the current architecture bottlenecks and ex-
periment with potential architectural changes in hardware and 
software.   

We plan to extend the studies with VPID tagged TLBs and also 
understand the impact of hardware based TLB coherence man-
agement. We will also be investigating the feasibility of hardware 
support for better inter-VM communication mechanisms using an 
extended analysis framework. The importance of performance 
isolation and VM level QoS [7, 25] is a growing research area 
especially with the introduction of multi-core processors sharing 
platform resources like cache, TLB and memory resources. We 
are investigating hardware and software enhancements for archi-
tecting QoS aware multi-core platforms. 
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