
I/O Processing in a Virtualized Platform: A Simulation-Driven
Approach

Vineet Chadha
Renato J. Figueiredo

Advanced Computing and Information
 Systems Laboratory, University of Florida

{chadha,renato}@acis.ufl.edu

Ramesh Illikkal, Ravi Iyer
 Jaideep Moses, Donald Newell

Intel Corporation, Hillsboro, OR
{ramesh.g.illikkal, ravishankar.iyer,

 jaideep.moses, donald.newell}@intel.com

Abstract
Virtualization provides levels of execution isolation and service
partition that are desirable in many usage scenarios, but its associ-
ated overheads are a major impediment for wide deployment of
virtualized environments. While the virtualization cost depends
heavily on workloads, it has been demonstrated that the overhead
is much higher with I/O intensive workloads compared to those
which are compute-intensive. Unfortunately, the architectural
reasons behind the I/O performance overheads are not well under-
stood. Early research in characterizing these penalties has shown
that cache misses and TLB related overheads contribute to most
of I/O virtualization cost. While most of these evaluations are
done using measurements, in this paper we present an execution-
driven simulation based analysis methodology with symbol anno-
tation as a means of evaluating the performance of virtualized
workloads. This methodology provides detailed information at the
architectural level (with a focus on cache and TLB) and allows
designers to evaluate potential hardware enhancements to reduce
virtualization overhead. We apply this methodology to study the
network I/O performance of Xen (as a case study) in a full system
simulation environment, using detailed cache and TLB models to
profile and characterize software and hardware hotspots. By ap-
plying symbol annotation to the instruction flow reported by the
execution driven simulator we derive function level call flow
information. We follow the anatomy of I/O processing in a virtu-
alized platform for network transmit and receive scenarios and
demonstrate the impact of cache scaling and TLB size scaling on
performance.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Design studies, Measurement techniques, performance
attributes.

General Terms Measurement, Performance

Keywords Simulation, Virtualization, Performance model, Xen,
Virtual Machines

1. Introduction
In recent years, virtualization has re-emerged as a means to im-
prove the utilization of available compute resources and to en-
hance the overall system reliability [22]. While reliability and cost

arguments motivate the use of virtualized systems, the overhead
due to virtualization is a major obstacle for widespread adoption.
It is well understood that compute-intensive workloads suffer low
virtualization overheads compared to I/O-intensive workloads.

In order to design I/O-efficient virtualized systems, it is a key
challenge to understand how micro-architectural features impact
the performance of I/O workloads in virtualized environments.
Recent studies [4, 5] show that most of I/O overhead could be
attributed to increased cache and TLB misses. While previous
studies have relied on measurements to assess the performance
impact of I/O virtualization of existing workloads and systems, it
is important to understand architectural-level implications to
guide the design of future platforms and the tuning of system
software for virtualized environments.

This paper addresses this problem and presents a simulation-based
analysis methodology which extends a full system simulator with
symbol annotation of the entire software stack in virtualized envi-
ronments – including the hypervisor, service and guest domains.
The key contributions of this paper are twofold: first, we describe
methodologies and issues involved in analyzing a virtualized
workload on an existing simulator, including symbol annotation
to differentiate the various components in the software stack; and
second, we demonstrate the feasibility and initial results of using
this extended simulation environment to evaluate the profile of
cache and TLB misses in a representative I/O workload. Results
from this case study shows that we can correlate simulated results
with important events across these different components of the
stack. To our knowledge, this is the first study using full-system
simulation to estimate overheads and profile the anatomy of I/O
processing in a virtualized system. Using full-system simulation,
we profile the workload following the execution path of network
packet handling inside the virtual environment. Furthermore, we
perform architecture-level quantitative analyses using cache and
TLB simulation models that are integrated with the execution-
driven simulation and symbol annotation framework.

We chose to model cache and TLB in detail since the cost associ-
ated with these resources are considered to be high. By profiling
the execution and collecting architectural data, we show the
causes for cache misses as well as TLB misses. We also show the
impact of cache size and TLB size on I/O performance by scaling
these resources. In this paper we provide a detailed analysis of the
current I/O VM architecture of a representative open-source
VMM (Xen [20]), using the SoftSDV [26] execution-driven simu-
lator extended with symbol annotation support and a network I/O
workload (iperf). We selected network I/O since inter-VM com-
munication and service VM architecture is integral part of the
current IO virtualization architecture. Also, recent studies have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
VEE’07 June 13–15, 2007, San Diego, California, USA.
Copyright © 2007 ACM 978-1-59593-630-1/07/0006...$5.00

116

indicated that the I/O VM architecture becomes a performance
bottleneck as we stress the network I/O throughput [4, 5].

The rest of the paper is organized as follows. The motivation
behind the current work is described in Section 2. Section 3 de-
scribes the simulation methodology, tools and symbol annota-
tions. Section 4 details the software and architectural anatomy of
I/O processing by following the execution path through guest
domain, hypervisor and the I/O VM domain. Also, we provide
initial results of resource scaling in Section 4. Section 5 describes
related work. We conclude with summary and future work in
Section 6.

2. Motivation and Background
The present work is motivated by the fact that current system
evaluation methodologies for classic and para-virtualized VMs
are based on measurements of a deployed virtualized environment
on a physical machine. Although such an approach gives good
estimates of performance overheads for a given physical machine,
it lacks flexibility in determining the resource scaling perform-
ance. In addition, it is difficult to replicate a measurement frame-
work on different system architectures. We suggest that it is im-
portant to move towards a full system simulation methodology
because it is a flexible approach in studying different architec-
tures.

Simulation-based approaches have been extensively used in com-
puter architecture to design and analyze the performance of up-
coming system architecture [21, 28, 29]. A simulation-based
methodology for virtual environments is also important to guide
the design and tuning of architectures for virtualized workloads,
and to help software systems developers to identify and mitigate
sources of overheads in their code.

A driving application for simulation-driven analysis is I/O work-
loads. It is important to minimize performance overheads of I/O
virtualization in order to enable efficient workload consolidation
use models. For example, in a typical three tier data center envi-
ronment, Web servers providing the external interface are typi-
cally I/O-intensive; a low performing front end server could bring
the overall data center performance down. It is also important to
minimize performance overheads to enable emerging usage mod-
els of virtualization. New architecture features could also drive
the virtualization evolution. For example, offloading the I/O ser-
vices to an isolated, specialized I/O domain and communicating
to it through messages is motivated by similar arguments that
have motivated micro-kernels [27]. Enabling a low latency, high
bandwidth inter-domain communication mechanism between VM
domains is one of the key architecture elements which could push
this distributed services architecture evolution forward.

2.1 Full System Simulator and Performance
Full system simulators are often employed to evaluate design,
development and testing on traditional hardware and software for
upcoming architectures. There are several cycle-accurate simula-
tors that support the x86 instruction set architecture [18, 21]; in
this paper we use the SoftSDV simulator [26] as a basis for the
experiments. SoftSDV not only supports fast emulation with dy-
namic binary translation, but also allows proxy I/O devices to
connect a simulation run with physical hardware devices. It also
supports multiple sessions to be connected and synchronized

through a virtual SoftSDV network. For cache and TLB modeling
we integrated CASPER [24] – a functional simulator which offers
rich set of performance metrics and protocols to determine cache
hierarchical statistics.

2.2 I/O Virtualization in Xen
We briefly look at the various I/O architecture options and in
particular the I/O VM model used in Xen 3.0. The design of I/O
architecture in virtual systems is often driven by tradeoffs be-
tween fault tolerance and I/O performance. In this context, I/O
architectures can be broadly divided into split I/O and direct I/O.
Direct I/O is generally adopted in classical virtual machines like
VMware to boost I/O performance where front end and backend
drivers often communicate using system calls. Split I/O architec-
ture, adopted by para-virtualized machines, isolates backend driv-
ers in a separate VM to communicate with front end drivers
through inter-process communication (IPC), resulting in an ap-
proach similar to those found in micro-kernels.

SoftSDV Full System Simulator

Guest Domain
(Dom-U)

Service Domain
(Dom-0)

Simulated Physical Machine
Proc Memory IO

Xen Hypervisor

Virtual Machine

Proc Memory

Virtual Machine

Proc Memory IO

XenoLinux XenoLinux

IO
backend IO DriversApplication IO

Front end

Physical Machine

Proc MemoryMemory IO

A

B

C

SoftSDV Full System Simulator

Guest Domain
(Dom-U)

Service Domain
(Dom-0)

Simulated Physical Machine
Proc Memory IO

Xen Hypervisor

Virtual Machine

Proc Memory

Virtual Machine

Proc Memory IO

XenoLinux XenoLinux

IO
backend IO DriversApplication IO

Front end

Physical Machine

Proc MemoryMemory IO

A

B

C

Figure 1: Full system simulation environment with Xen Execu-
tion includes (A) Xen Virtual Environment (B) SoftSDV Simula-
tor (C) Physical Machine.

The Xen I/O architecture has evolved from hypervisor-contained
device drivers (direct I/O) to a split I/O. The primary goal of the
I/O service VM based Xen I/O architecture is to provide fault
isolation from misbehaved device drivers. It also enables the use
of unmodified device drivers. The Xen network I/O architecture is
based on a communication mechanism to transfer information
between guest and service VM (Figure 1, (A)). The guest do-
main’s front end driver communicates with backend drivers
through IPC calls. The virtual and backend driver interfaces are
connected by an I/O channel. This I/O channel implements a zero-
copy page remapping mechanism for transferring packets between
multiple domains. We describe the IO VM architecture in detail
when we present the life-of-packet analysis in Section 4.

3. Analysis Methodology
In this section, we present an overview of Xen as case study using
full system simulation analysis methodology. We also show how
we identified the flow of packets inside a multi-layer software

117

environment with multiple VMs and hypervisor along with micro-
architectural details of the processor events of interest. Figure 2
summarizes the profiling methodology and the tools we used. The
following sections describe the individual steps in detail; these
include (1) virtualization workload (2) full system simulation (3)
instruction trace (4) performance simulation with detailed cache
and TLB simulation and (5) symbol annotation.

3.1 Full System Simulation: Xen VMM as workload
The first step in the methodology for getting a detailed under-
standing of the workload is to run a virtualized environment, un-
modified, within a full system execution driven simulator. In the
analysis presented in this paper, the Xen virtualized environment
includes the Xen hypervisor, the service domain (Dom0) with its
O/S kernel and applications, and a guest, “user” domain (DomU)
with its O/S kernel and applications (Figure 1). In order to ana-
lyze a network-intensive I/O workload, the iperf benchmark ap-
plication is executed in DomU.

Execution
Driven

Simulation

Virtualization
workload

Platform
Functional
Simulation Performance Simulation

Abstract
Processor

model

Cache
model

TLB
model

Symbol
Annotation

Instruction
Trace

HW Arch.
Events

3 4 5

2

1

Execution
Driven

Simulation

Virtualization
workload

Platform
Functional
Simulation Performance Simulation

Abstract
Processor

model

Cache
model

TLB
model

Performance Simulation

Abstract
Processor

model

Cache
model

TLB
model

Symbol
Annotation

Instruction
Trace

HW Arch.
Events

3 4 5

2

1

Figure 2: Execution Driven Simulation & Symbol annotated
profiling methodology – (1) Virtual workload (2) Execution
driven simulation (3) Instruction trace form functional model (4)
Hardware events such as cache hit (5) EIP Symbol annotation.

This environment allows us to tap into the instruction flow to
study the execution flow and to plug in detailed performance
models to characterize architectural overheads. As explained in
Section 2.1, the DomU guest uses a front end driver to communi-
cate with a backend driver inside Dom0, which controls the I/O
devices. We synchronized two separate simulation sessions to
create a virtual networked environment for I/O evaluation. The
execution-driven simulation environment combines functional
and performance models of the platform. For this study, we chose
to abstract the processor performance model and focus on accu-
rate cache and TLB models to enable the coverage of a long pe-
riod in the workload (approximately 1.2 billion instructions).

3.2 Instruction trace
Functional simulation provides stateless execution of systems
instructions; no state is maintained for TLB and cache access. The
SoftSDV functional simulator loads and executes the Xen hyper-
visor and guest images. When iperf executes and communicates
with the I/O services in Dom0, the instructions issued by the hy-
pervisor, DomU and Dom0 are decoded and executed by the func-
tional model. This enables tracing of the flow of execution at the

instruction level for the entire workload execution which serves as
a starting point for the analysis. The instruction trace can then be
parsed to identify important events such as context switches and
function calls. For example, we mapped the next instruction after
the CALL instruction to the symbols collected from hypervisor,
application and drivers to obtain a sequence of functions in execu-
tion.

3.3 Symbol Annotation
In Linux, symbols for the kernel (and, similarly for applications
and drivers) can be located in compile-time files (such as sys-
tem.map for kernel). Symbols for running process can be col-
lected from proc kernel data structures. In order for us to gain
more insight into the packet flow and software modules inside the
virtualization software layers, we also added symbol information
to the execution flow. Symbols were collected from the Xen hy-
pervisor and guest operating system, and we also added symbols
from applications and drivers to complete the instruction trace
annotation. The annotation process matches the simulated instruc-
tion pointer (EIP in x86) with such symbols, allowing the tagging
of regions of the instruction trace (and associated statistics) with
code executed by the different components of the virtualized envi-
ronment. For example, this methodology has allowed us to follow
the life of a network packet inside the Xen virtualized environ-
ment, which is described in Section 4. An example execution flow
after symbol annotation is given in Figure 3. These decoded in-
structions from the functional model are then provided to the per-
formance model which simulates the architectural resources and
timing for the instructions executed.

3.4 Performance Statistics
We collect instruction flow and associated performance statistics
from cache and TLB models to identify performance hotspots. We
can leverage detailed models of cache and TLB to characterize
the impact of cache and TLB size on the I/O virtualization per-
formance. Results from the resource scaling studies for the Xen
virtualized environment are provided in Section 4.2. A simulated
platform also provides us with the capability of changing the un-
derlying hardware architecture to evaluate architecture enhance-
ments and their impact on workload performance. An example of
the execution flow with performance details is given in Figure 4.

EIP Function Nam e M odule
ff110760 stop_tim er [hypervisor]
ff1103c0 rem ove_entry [hypervisor]
ff123c90 sm p_send_event_check_m ask [hypervisor]
ff110650 set_tim er [hypervisor]
ff110540 add_entry [hypervisor]
ff110370 up_heap [hypervisor]
ff124570 update_dom _tim e [hypervisor]
ff117820 context_sw itch [hypervisor]
ff117690 __context_switch [hypervisor]
ff11d820 write_ptbase [hypervisor]
ff127810 __copy_to_user_ll [hypervisor]
ff10f980 do_softirq [hypervisor]
ff124280 get_s_tim e [hypervisor]
ff114120 reprogram _tim er [hypervisor]
ff124280 get_s_tim e [hypervisor]
ff1493d5 create_bounce_fram e [hypervisor]
c023da30 evtchn_do_upcall [kernel]
c0106b60 do_IRQ [kernel]
c0142d30 __do_IRQ [kernel]

Figure 3: Annotated instruction flow.

118

EIP Function Name Module L1
 H

its

L1
 m

is
se

s

L1
 n

st
_m

is
se

s

L1
 d

at
a_

m
is

se

L1
 re

ad
_m

is
se

L1
 w

rit
e_

m
is

s

L1
 to

ta
l r

ef
s

L1
 In

st
r r

ef
s

L1
 d

at
a

re
fs

L1
 d

at
a_

rd
s

L1
 d

at
a_

w
rs

L2
 H

its

L2
 m

is
se

s

L2
 n

st
_m

is
se

s

L2
 d

at
a_

m
is

se

L2
 re

ad
_m

is
se

L2
 w

rit
e_

m
is

s

L2
 to

ta
l r

ef
s

L2
 In

st
r r

ef
s

L2
 d

at
a

re
fs

L2
 d

at
a_

rd
s

L2
 d

at
a_

w
rs

TL
B

64
da

ta
H

it

TL
B

64
da

ta
M

is

TL
B

64
In

st
H

itC

TL
B

64
In

st
M

is

ff110760 stop_timer [hypervisor] 0
ff1103c0 remove_entry [hypervisor] 37 2 2 0 0 0 39 25 14 7 7 2 0 0 0 0 0 2 2 0 0 0 14 0 25 0
ff123c90 smp_send_event_check_mask [hypervisor] 17 0 0 0 0 0 17 12 5 2 3 0 0 0 0 0 0 0 0 0 0 0 5 0 12 0
ff110650 set_timer [hypervisor] 35 1 1 0 0 0 36 18 18 8 10 1 0 0 0 0 0 1 1 0 0 0 18 0 18 0
ff110540 add_entry [hypervisor] 49 1 1 0 0 0 50 32 18 9 9 1 0 0 0 0 0 1 1 0 0 0 18 0 32 0
ff110370 up_heap [hypervisor] 37 1 1 0 0 0 38 22 16 5 11 1 0 0 0 0 0 1 1 0 0 0 16 0 22 0
ff124570 update_dom_time [hypervisor] 99 3 3 0 0 0 102 58 44 27 17 3 0 0 0 0 0 3 3 0 0 0 44 0 58 0
ff117820 context_switch [hypervisor] 17 2 2 0 0 0 19 11 8 5 3 2 0 0 0 0 0 2 2 0 0 0 8 0 11 0
ff117690 __context_switch [hypervisor] 40 2 2 0 0 0 42 29 13 7 6 2 0 0 0 0 0 2 2 0 0 0 13 0 29 0
ff11d820 write_ptbase [hypervisor] 23 0 0 0 0 0 23 11 12 8 4 0 0 0 0 0 0 0 0 0 0 0 12 0 11 0
ff127810 __copy_to_user_ll [hypervisor] 32 0 0 0 0 0 32 21 11 6 5 0 0 0 0 0 0 0 0 0 0 0 11 0 21 0
ff10f980 do_softirq [hypervisor] 34 2 2 0 0 0 36 26 10 7 3 2 0 0 0 0 0 2 2 0 0 0 9 1 24 2
ff124280 get_s_time [hypervisor] 56 0 0 0 0 0 56 35 21 9 12 0 0 0 0 0 0 0 0 0 0 0 20 1 33 2
ff114120 reprogram_timer [hypervisor] 39 2 2 0 0 0 41 27 14 10 4 2 0 0 0 0 0 2 2 0 0 0 12 2 27 0
ff124280 get_s_time [hypervisor] 16 1 1 0 0 0 17 11 6 2 4 1 0 0 0 0 0 1 1 0 0 0 6 0 10 1
ff1493d5 create_bounce_frame [hypervisor] 36 2 2 0 0 0 38 24 14 9 5 2 0 0 0 0 0 2 2 0 0 0 13 1 24 0
c023da30 evtchn_do_upcall [kernel] 59 2 2 0 0 0 61 20 41 29 12 2 0 0 0 0 0 2 2 0 0 0 41 0 19 1
c0106b60 do_IRQ [kernel] 69 5 4 1 1 0 74 52 22 12 10 5 0 0 0 0 0 5 4 1 1 0 17 5 51 1
c0142d30 __do_IRQ [kernel] 10 1 1 0 0 0 11 7 4 2 2 1 0 0 0 0 0 1 1 0 0 0 4 0 6 1

Figure 4: Performance information added to annotated instruction flow.

3.5 Environment Setup for Virtualized Workloads
The setup and priming of a workload within a simulation envi-
ronment can be time-consuming. To facilitate the setup for simu-
lation of the virtualized environment, we first create a raw virtual
disk which is then ported to the simulator.We chose to apply
physical-to-virtual disk conversion as generally it is time consum-
ing to test and commit changes in a simulated medium; creating a
disk image outside the simulator facilitates the setup and testing
of the workload. Also, for current architectures, decoupling simu-
lation from testing images gives us the flexibility to test O/S or
application modifications and execution on a physical machine.
For example, even though we executed iperf for the experimental
evaluation, the above methodology provides flexibility to support
any application. To convert a physical disk into a virtual disk, we
modified the physical disk partition table to create a miniature
replica of the physical disk using the Linux dd utility.

Also, to reduce booting time of the installed O/S, we customized a
stripped-down version of the physical image by removing unnec-
essary boot time processes. For guest Xen images, we created a
blank virtual disk and populated it with minimal RPM installation
packages primarily to facilitate iperf run and networking with
Dom0.

The CASPER cache model exports APIs to print or collect the
instruction traces during a simulation run. As shown in Figure 5,
an instruction parser is used to parse different instruction events
such as INT (interrupts, system calls), MOV CR3 (address space
switch), and CALL (function call). These traces were dumped
into a file with run-time virtual address information, as well as
cache and TLB statistics. SoftSDV system call (SSC) utilities
facilitate transfer of data between host and simulated guest.

These utilities are important as we gathered run time symbols of
kernels and application from the proc kernel data structure to
transfer to the host system (for example, /proc/kallsyms for kernel
symbols). For iperf runtime symbols, we mapped process ID with
corresponding process ID in proc directory. These run-time sym-
bols, in addition to compile-time symbols from kernel, hypervi-

sor, drivers and iperf, provide mapping information between func-
tions and virtual addresses.

Application

Drivers

kernel

Proc

Hypervisors

Inst
Parser

Analysis
Dump

Symbols
dump

Demangle

Visualization

Cache/
TLB
dump

S
oftS

D
V

C
PU

 C
o

n
tro

ller

Call-Next
Virtual

Address

Symbol
Virtual

Address

Perf
Model

Func
Model

Symbols are collected
from Xen and
Application

Application

Drivers

kernel

Proc

Hypervisors

Inst
Parser

Analysis
Dump

Symbols
dump

Demangle

Visualization

Cache/
TLB
dump

S
oftS

D
V

C
PU

 C
o

n
tro

ller

Call-Next
Virtual

Address

Symbol
Virtual

Address

Perf
Model

Func
Model

Symbols are collected
from Xen and
Application

Figure 5: Performance simulation model is used to collect in-
struction traces of virtualized workload. SoftSDV CPU controller
controls execution in performance or functional mode. Instruc-
tion traces are parsed and mapped with symbol dumps to create
IO call graph

Ring 0

Ring 3

Domain-U
Domain-0
Hypervisor

Life of I/O Packet ->

a b c d

Ring 0

Ring 3

Domain-U
Domain-0
Hypervisor

Life of I/O Packet ->

a b c d

Figure 6: Life of an I/O Packet (a) unprivileged domain (b)
Grant table mechanism – switch to hypervisor (c) Timer interrupt
to start the context switch (d) Privileged domain.

119

We annotated symbols to keep track of the source of a function
call invocation. Note that there can be duplicate symbols when we
sum up all collected symbols into a file. We removed these dupli-
cates and formatted the data collected from proc structures to
represent data in a useful way. In some cases, it was necessary to
manually resolve ambiguities in virtual address spaces through
checkpoint at virtual address during re-run of a simulated
SoftSDV session. Linux utilities such as nm and objdump are
often used to collect symbols from compile time symbol tables. In
general, any application can be compiled to provide symbol table
information. In C++ applications (such as iperf), function name
mangling in object code is used to provide distinct name for func-
tions that share the same name. Essentially, it adds some random-
ness at prefix and suffix of the function name. We used the de-
mangle option of the nm utility to obtain the correct function for
iperf application. Xen kernel and hypervisor symbols are col-
lected from /boot/System.map-2.6.13-xen and $INSTALL/
xen/xen-syms. We compared and visualized instruction trace and
symbol dump into user-friendly format to obtain call graphs and
statistical information such as cache and TLB misses per function
invocation.

EIP Function Instr count
c02aeb50 do_sock_write 0
c02b2720 lock_sock 78
c0331a00 _spin_lock_bh 85
c02f2590 tcp_current_mss 154
c01e5560 copy_from_user 255
c01e54b0 __copy_from_user_ll 277
c023fa00 __alloc_skb 505
c02b3380 alloc_skb_from_cache 527
c0164d90 kmem_cache_alloc 543
c0164d90 kmem_cache_alloc 591
c01e5560 copy_from_user 1552
c01e54b0 __copy_from_user_ll 1574
c023fa00 __alloc_skb 2029
c02b3380 alloc_skb_from_cache 2051
c0164d90 kmem_cache_alloc 2067
c0164d90 kmem_cache_alloc 2115
c01649b0 cache_alloc_refill 2136
c0331b40 _spin_lock 2170
c01647a0 cache_grow 2217
c0331b40 _spin_lock 2245
c01646e0 kmem_flagcheck 2277
c0163860 kmem_getpages 2290
c01499c0 __alloc_pages 2309
c01498d0 get_page_from_freelist 3581
c01497f0 zone_watermark_ok 3611
c0149550 buffered_rmqueue 3662
c014a140 _page_state_offset 3728
c0148f80 prep_new_page 3754
c01517d0 page_address 3832
c014a170 mod_page_state_offset 3864
c01645f0 alloc_slabmgmt 3923
c0164d90 kmem_cache_alloc 3937
c0164760 set_slab_attr 3999
c0164660 cache_init_objs 4028
c0331b40 _spin_lock 4085
c0331b40 _spin_lock 4140
c0164710 slab_get_obj 4184
c0164710 slab_get_obj 4210
c02b7230 sk_stream_mem_schedule 7810
c01e5560 copy_from_user 9175
c01e54b0 __copy_from_user_ll 9197
c02f2ed0 __tcp_push_pending_frames 9382
c02f2c10 tcp_write_xmit 9396
c02f2750 tcp_init_tso_segs 9417
c02b2780 release_sock 9478

Module
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U

EIP Function Instr count
c02aeb50 do_sock_write 0
c02b2720 lock_sock 78
c0331a00 _spin_lock_bh 85
c02f2590 tcp_current_mss 154
c01e5560 copy_from_user 255
c01e54b0 __copy_from_user_ll 277
c023fa00 __alloc_skb 505
c02b3380 alloc_skb_from_cache 527
c0164d90 kmem_cache_alloc 543
c0164d90 kmem_cache_alloc 591
c01e5560 copy_from_user 1552
c01e54b0 __copy_from_user_ll 1574
c023fa00 __alloc_skb 2029
c02b3380 alloc_skb_from_cache 2051
c0164d90 kmem_cache_alloc 2067
c0164d90 kmem_cache_alloc 2115
c01649b0 cache_alloc_refill 2136
c0331b40 _spin_lock 2170
c01647a0 cache_grow 2217
c0331b40 _spin_lock 2245
c01646e0 kmem_flagcheck 2277
c0163860 kmem_getpages 2290
c01499c0 __alloc_pages 2309
c01498d0 get_page_from_freelist 3581
c01497f0 zone_watermark_ok 3611
c0149550 buffered_rmqueue 3662
c014a140 _page_state_offset 3728
c0148f80 prep_new_page 3754
c01517d0 page_address 3832
c014a170 mod_page_state_offset 3864
c01645f0 alloc_slabmgmt 3923
c0164d90 kmem_cache_alloc 3937
c0164760 set_slab_attr 3999
c0164660 cache_init_objs 4028
c0331b40 _spin_lock 4085
c0331b40 _spin_lock 4140
c0164710 slab_get_obj 4184
c0164710 slab_get_obj 4210
c02b7230 sk_stream_mem_schedule 7810
c01e5560 copy_from_user 9175
c01e54b0 __copy_from_user_ll 9197
c02f2ed0 __tcp_push_pending_frames 9382
c02f2c10 tcp_write_xmit 9396
c02f2750 tcp_init_tso_segs 9417
c02b2780 release_sock 9478

Module
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U

Dom-U

Dom-U
Dom-U

Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U
Dom-U

Dom-U
Dom-U

Figure 7: Dom-U call graph: Socket allocation, user-kernel data
copy and finally TCP transmit write (period (a) in Figure 6).

4. Experiments and Simulation Results
We conducted experiments in two parts. First, we collected im-
portant events such as the occurrence of CALL instructions to
determine the flow of a virtual Ethernet packet. Secondly, we
executed the iperf application to generate both transmit and re-
ceive workloads to perform cache scaling studies. Figure 5 shows
the simulation framework implementation to obtain call graph
information and perform cache scaling studies. As shown in Fig-
ure 5, the CPU controller layer in SoftSDV integrates with a per-
formance or functional model.

The platform configuration for this study is set to a single proces-
sor with 2 levels of cache (32 KB first level data and instruction
cache, 2MB L2 cache) and with 64-entry instruction and data
TLBs. The experimental setup involved multiple SoftSDV ses-
sions connected over virtual network. We choose to run iperf
session for the sake of brevity to study life of I/O packet. The
iperf client is executed to initiate packet transmissions from a Xen
environment.

4.1 Life Cycle of an I/O packet
 We describe the execution flow of packet processing inside a
Xen virtual machine. In Figure 6, we present an overview of
different stages which characterize the life of a packet between
VM domains. Typically, a network packet in the Xen environ-
ment goes through the following four stages in its life cycle:

1. Unprivileged domain – packet build and memory allocation
2. Page transfer Mechanism – a zero-copy mechanism to map

pages in virtual address space of Dom0/DomU domains
3. Context Switch between hypervisor and domains – timer

interrupts
4. Privileged domain – Event channel mechanism to send ac-

knowledgment to guest domain.

EIP M odule Function Name Instr Count
c02f1910 Dom -U tcp_transm it_skb 0
c02b37a0 Dom -U skb_clone 25
c02f16f0 Dom -U tcp_select_window 238
c02f30e0 Dom -U __tcp_select_window 250
c02f1780 Dom -U tcp_build_and_update_options 362
c02f1550 Dom -U tcp_event_data_sent 454
c0331a90 Dom -U _read_lock_bh 702
c0331c60 Dom -U _read_unlock_bh 728
c0331a90 Dom -U _read_lock_bh 800
c0331c60 Dom -U _read_unlock_bh 885
c0331b40 Dom -U _spin_lock 954
c02cbaf0 Dom -U qdisc_restart 1000
c0331920 Dom -U _spin_trylock 1051
c03319d0 Dom -U _spin_lock_irq 1097
c023f6a0 Dom -U gnttab_claim_grant_reference 1129
c023f360 Dom -U gnttab_grant_foreign_access_ref 1159
c023e500 Dom -U notify_remote_via_irq 1211
ff127900 Hypervisor copy_from_user 1262
ff127860 Hypervisor __copy_from_user_ll 1281
ff105130 Hypervisor evtchn_send 1330
ff104d80 Hypervisor evtchn_set_pending 1370
ff10e780 Hypervisor vcpu_wake 1408

Figure 8: TCP transmit and Grant table invocation (transition
from period (a) to period (b) in Figure 6).

4.1.1 Unprivileged Domain
On the transmit side, a packet originates from the iperf applica-
tion. The execution flow traverses from the application into the
DomU guest OS kernel where all the required TCP/IP processing
is completed. The TCP/IP stack builds the payload in transmit
socket buffers (skb) and hands them over to the front-end driver.
Socket buffers (skb) represent network packets as they are trans-

120

mitted through the system and facilitate the implementation of
zero-copy networking between Xen virtual machines [32]. For
example, we identified an interface in Xen to allocate a socket
buffer in the networking layer (alloc_skb_from_cache). The front
end driver uses the grant table mechanism provided by the hyper-
visor to hand over the buffer to Dom-0. Figure 7 shows the func-
tions and the associated instruction count for overall life of the
packet in DomU: lock socket, copy data from user space to kernel
space, allocate page from free list, and release socket lock. Note
that the instruction count statistics are shown in chronological
order with function entry points as markers, it is not done at indi-
vidual function level. We removed some repeating functions to
improve readability. As part of the transmit processing the DomU
guest domain communicates to Dom0 using event channels.

4.1.2 Grant Table Mechanism
Once the message to notify Dom0 of a transmit request is sent
through event channels, the transmit packets are picked up by the
Dom0 when the hypervisor schedules it to execute. The Xen
VMM provides a generic mechanism to share memory pages
between domains, referred to as grant table mechanism: before
sending an event to Dom0, the DomU guest domain sets access
rights to the memory pages holding the actual packet contents
through a grant table interface provided by the hypervisor. Figure
8 demonstrates the execution flow from domU to hypervisor
through the grant table mechanism.

4.1.3 Timer Interrupts
Switching into the hypervisor is initiated typically on timer inter-
rupts. The functions invoked during a timer interrupt which re-
sults in a VM switch are shown in Figure 9. The last function in
the table is invoked inside the Dom0.

EIP Module Function Instr count
ff114210 Hypervisor smp_apic_timer_interrupt 0
ff110760 Hypervisor stop_timer 94
ff1103c0 Hypervisor remove_entry 119
ff110650 Hypervisor set_timer 485
ff110540 Hypervisor add_entry 517
ff110370 Hypervisor up_heap 539
ff124570 Hypervisor update_dom_time 679
ff117820 Hypervisor context_switch 723
ff117690 Hypervisor __context_switch 752
ff11d820 Hypervisor write_ptbase 856
ff127810 Hypervisor __copy_to_user_ll 931
ff10f980 Hypervisor do_softirq 991
ff124280 Hypervisor get_s_time 1026
ff114120 Hypervisor reprogram_timer 1105
ff124280 Hypervisor get_s_time 1116
ff1493d5 Hypervisor create_bounce_frame 1260
c023da30 Dom-0 evtchn_do_upcall 1350

Figure 9: Context switch between hypervisor and Dom-0 VM -
Timer interrupts (transition from period (b) to (c) in Figure 6).

4.1.4 Privileged Domain
Once inside the Dom0, the backend driver picks up the packets
and bridges them to the real network interface card. For this it
needs to access the packet buffer from the guest domain. It uses
the grant provided by the guest to map the page into its own do-
main and accesses it. Once transmit processing is complete,
Dom0 sends an acknowledgment back to the DomU guest domain
using event channel mechanisms. Execution flow in Dom0 is
shown in Figure 10 (since the complete execution at this stage

long, we only are able to show snippets of execution covering the
basic flow and highlighting the important functions). Note that
the grant table mechanism is used to map guest pages into Dom0
address domain on the backend receiving side. Then the packet is
sent to the bridge code, after which it is sent out on the wire. Once
complete, the host map is destroyed and an event is sent on the
event channel to the guest domain.

It is interesting to note that the processor TLB is flushed while
destroying the grant. It is done by writing the CR3 register (the
x86 page table pointer) through the write_cr3 function. We look
at the impact of this TLB flush in Section 4.2. This completes the
transmit side processing.

EIP Function Name Module Instr.Count
c023da30 evtchn_do_upcall Dom0 0
c0142d30 __do_IRQ Dom0 85
c0331b40 _spin_lock Dom0 116
c023e530 mask_evtchn Dom0 147
c0142c80 handle_IRQ_event Dom0 193
c0249700 add_to_net_schedule_list_tail Dom0 243
ff11e8b0 cleanup_writable_pagetable Hypervisor 1577
ff103ac0 find_domain_by_id Hypervisor 1741
ff1205f0 create_grant_host_mapping Hypervisor 1963
ff11dcd0 put_page_from_l1e Hypervisor 2033
ff127810 __copy_to_user_ll Hypervisor 2143
c02c9cb0 eth_type_trans Dom0 2550
c02b98c0 netif_rx Dom0 2671
c02b9de0 netif_receive_skb Dom0 3170
c02d4f40 nf_hook_slow Dom0 3412
e121ffb0 br_handle_frame_finish Dom0 4258
e121ed70 br_fdb_update Dom0 4294
e121e7d0 __br_fdb_get Dom0 4475
e121f2d0 br_forward Dom0 4630
c02d4f40 nf_hook_slow Dom0 4686
e1031ad0 e100_tx_clean Dom0 18899
c0331b40 _spin_lock Dom0 18914
e1030000 e100_enable_irq Dom0 19004
c0331990 _spin_lock_irqsave Dom0 19015
c0331b90 _spin_unlock_irqrestore Dom0 19043
ff11e8b0 cleanup_writable_pagetable Hypervisor 19545
ff127860 __copy_from_user_ll Hypervisor 19625
ff103ac0 find_domain_by_id Hypervisor 19727
ff1203b0 destroy_grant_host_mapping Hypervisor 19827
ff127810 __copy_to_user_ll Hypervisor 19972
ff123b40 __flush_tlb_mask Hypervisor 20054
ff119970 write_cr3 Hypervisor 20072
c024a0f0 make_tx_response Hypervisor 20266
ff127900 copy_from_user Hypervisor 20422
ff127860 __copy_from_user_ll Hypervisor 20451
ff105130 evtchn_send Hypervisor 20531
ff104d80 evtchn_set_pending Hypervisor 20589
c01343c0 rcu_pending Dom0 21106

… … … … … … … … … … … … … … …

… … … … … … … … … … … … … … …

… … … … … … … … … … … … … … …

… … … … … … … … … … … … … … …
Figure 10: Life of a packet in Dom-0: Accessing granted page,
ethernet transmission, destroy grant mapping and event notifica-
tion back to hypervisor (period (c) in Figure 6). Dotted line indi-
cates unidentified function calls.

Note that the flow described here is only an example. The execu-
tion flow may vary based on the state of the stack and the avail-
ability of buffers. External interrupts also may alter the execution
flow considerably. An execution driven simulation environment
allows us to profile various execution flows and characterize the
I/O architecture correctly. Similarly, we can get the execution
flow at the receiver side in a Xen execution environment

121

Impact of VM switch on TLB

2435

2440

2445

2450

2455

2460

2465

2470

2475

603500 604000 604500 605000 605500 606000 606500

Instructions retired

DT
LB

 M
iss

1375

1380

1385

1390

1395

1400

ITL
B

Mi
ss

DTLB Miss

Series3

ITLB Miss

__copy_to_user_ll605456

write_ptbase605381

__context_switch605277

context_switch605248

Impact of VM switch on TLB

2435

2440

2445

2450

2455

2460

2465

2470

2475

603500 604000 604500 605000 605500 606000 606500

Instructions retired

DT
LB

 M
iss

1375

1380

1385

1390

1395

1400

ITL
B

Mi
ss

DTLB Miss

Series3

ITLB Miss

__copy_to_user_ll605456

write_ptbase605381

__context_switch605277

context_switch605248

Impact of "Grant Destroy" on TLB

2720

2725

2730

2735

2740

2745

2750

2755

630500 631000 631500 632000 632500 633000 633500

Instructions retired

D
TL

B
 M

is
s

1532

1534

1536

1538

1540

1542

1544

1546

1548

1550

1552

IT
LB

 M
is

s

DTLB Misses
Series3
ITLB Misses

write_cr3631615

__flush_tlb_mask631602

__copy_to_user_ll631553

destroy_grant_host_mapping631461

find_domain_by_id631397

__copy_from_user_ll631334

cleanup_writable_pagetable631277

Impact of "Grant Destroy" on TLB

2720

2725

2730

2735

2740

2745

2750

2755

630500 631000 631500 632000 632500 633000 633500

Instructions retired

D
TL

B
 M

is
s

1532

1534

1536

1538

1540

1542

1544

1546

1548

1550

1552

IT
LB

 M
is

s

DTLB Misses
Series3
ITLB Misses

write_cr3631615

__flush_tlb_mask631602

__copy_to_user_ll631553

destroy_grant_host_mapping631461

find_domain_by_id631397

__copy_from_user_ll631334

cleanup_writable_pagetable631277

(a)

(b)

(c) (d)
Figure 11: (a) Execution path showing the impact of TLB flush can context switch on TLB misses (b) Correlation between VM switching
and TLB misses (c) TLB misses following a VM Switch (d) TLB misses following a grant destroy.

4.1.5 Cache and TLB characteristics
It is important to analyze the impact of hardware design decisions
on the performance of VMMs. As mentioned earlier, we focus on
the performance characteristics related to cache and TLB re-
sources. Figure 11(a) shows an execution snippet where TLB

flushes and misses are plotted as a function of simulated instruc-
tions retired. The figure shows that there is a high correlation
between the TLB misses, context switches and TLB flush events.
An execution run of VM during a period with no context switches
or TLB flushes results in negligible TLB misses.

122

Figure 12: Execution path showing the impact of VM switch on cache misses.

Whenever TLB flushing events happen, there is a surge of TLB
misses. This correlates well with the observations of TLB miss
overhead in earlier studies. Figure 11(b) shows the increased
number of TLB misses associated with the VM switches in a cu-
mulative graph. We observe that there is a surge of TLB misses
associated with each VM switch. Execution segments without
VM switches show flat areas with few TLB flushes.

Figure 11(c) depicts a typical VM switch scenario. The execution
moves from one VM to another through a context. The CR3 value
is changed to point the new VM context. This triggers the hard-
ware to flush all the TLBs to avoid invalid translations. But this
comes with a cost of TLB flushes every time a new page is
touched, both for code and data pages.

Another scenario is the explicit TLB flushes done by the Xen
hypervisor as part of the data transfer between VMs. This is an
artifact of the current IO VM implementation as explained in the
previous section. In order to revoke a grant, a complete TLB flush
is executed explicitly, which also creates TLB performance issues
similar to VM switch. Figure 11(d) demonstrates the code flow
and the TLB impact.

Figure 12 shows the impact of context switches on cache per-
formance. The vertical lines mark VM switch events obtained
through symbol annotation, and the plotted line shows the cumu-
lative cache miss events. Note that the cache miss rate increases
are also correlated with VM switch events.

4.2 Cache and TLB Scaling
In this section, we look at the impact of cache size and TLB sizes
on I/O virtualization overhead. As described earlier, we used the
functional model of SoftSDV to boot a RHEL 4 Linux disk image
and Xen-3.0.2 as a test bed. We ran two sessions of the SoftSDV
simulation tool connected to each other through a virtual subnet
configured for network communication. For each experiment, we
executed a session of iperf [9]; TLB and cache statistics we meas-
ured for transfer of approximately 25 million TCP/IP packets.

Figure 13 shows the cache scaling effect. We simulated a two
level cache: 32KB L1 (split data and instruction) and a 2MB uni-
fied L2 cache. The primary goal is to understand the cache sensi-

tivity of the I/O virtualization architecture in the context of net-
work I/O. Note that increasing the L2 cache size up to 4MB pro-
vided good performance scaling, after which the increase in per-
formance was minimal. Increasing the cache size beyond 8MB,
the miss rate the rate of reduction in miss rates is small. We can
attribute reduced miss rates from the 8MB cache to the inclusion
of needed pages from hypervisor, Dom0 and DomU.

L2 Cache Scaling - Transmit
(Normalized to 2MB performance)

0%

25%

50%

75%

100%

0 4 8 12 16 20 24 28 32
L2 Cache size

No
rm

al
iz

ed
 M

is
s

Ra
tio

(MB)

L2 Cache Scaling - Transmit
(Normalized to 2MB performance)

0%

25%

50%

75%

100%

0 4 8 12 16 20 24 28 32
L2 Cache size

No
rm

al
iz

ed
 M

is
s

Ra
tio

(MB)

Figure 13: Transmit L2 Cache Scaling

TLB Scaling - Transmit
(Normalized to 64 Entry TLB)

0%

20%

40%

60%

80%

100%

120%

64 128 256 512 1024
TLB Size

N
or

m
al

iz
ed

 T
LB

 m
is

s
ra

tio

DTLB Miss
ITLB Miss

(Entries)

TLB Scaling - Transmit
(Normalized to 64 Entry TLB)

0%

20%

40%

60%

80%

100%

120%

64 128 256 512 1024
TLB Size

N
or

m
al

iz
ed

 T
LB

 m
is

s
ra

tio

DTLB Miss
ITLB Miss

(Entries)

Figure 14: Transmit TLB Scaling Impact

123

L2 Cache Scaling - Recive Side
(Normalized to 2MB performance)

0%

25%

50%

75%

100%

0 4 8 12 16 20 24 28 32
L2 Cache size

N
or

m
al

iz
ed

 M
is

s
Ra

tio

(MB)

L2 Cache Scaling - Recive Side
(Normalized to 2MB performance)

0%

25%

50%

75%

100%

0 4 8 12 16 20 24 28 32
L2 Cache size

N
or

m
al

iz
ed

 M
is

s
Ra

tio

(MB)

Figure 15: Receive L2 Cache scaling

Figure 14 shows the TLB performance scaling impact for data and
instruction TLBs. As shown in the figure, with increase in size of
the data TLB, the miss ratio decreases for sizes up to 128 entries.
For larger sizes, the miss ratio is nearly constant. The ITLB miss
rate decreases slightly, while the DTLB rate shows a sharper de-
crease from 64 to 128 entries. We infer that TLB size of 128 en-
tries is sufficient to incorporate all address translations during the
TLB stage. Similarly, we also performed the cache and TLB scal-
ing studies on the receive side. Results are given in Figures 15
and 16 respectively.

Finally, we studied the potential impact of a TLB optimization to
make global hypervisor pages persistent in TLBs. In the absence
of TLB tagging, on a TLB flush all translations are invalidated.
The goal of this optimization is to allow tagging the TLB with a
single bit indicating that tagged translations are not to be flushed,
which can be used in a virtualized environment to tag pages asso-
ciated with hypervisor code and data. As shown in Figure 17,
such an optimization indeed has the potential to substantially
reduce DTLB misses (and, to a lesser extend, reduce ITLB
misses).

5. Related Work
The characterization of the performance overhead is an important
concern in the study of virtualized environments, and several
studies have addressed this issue with a methodology based on
execution of application benchmarks on virtualized platforms [15,
20]. Performance monitoring tools have been deployed to gauge
application performance in virtualized environments [3, 4, 5].
Traditional network optimizations such as TCP/IP checksum off-
load, TCP segmentation offload are being used to improve net-
work performance of Xen-based virtual machines [4]. In addition,
faster I/O channel for transferring network packets between guest
and driver domains is being studied [4]. These studies lack micro-
architectural overhead analysis of the virtualized environment.

TLB misses after context switches negatively impact I/O per-
formance. In the past, TLBs have been tagged with a global bit to
prevent flushing of global pages such as shared libraries and ker-
nel data structures. In current system architectures, context switch
overhead can be reduced through tagging TLB entries with ad-
dress-space identifiers (ASID). A tag based on VMID could be
further used to improve I/O performance for virtual machines.
Processor architectures, with hardware virtualization support,

incorporate features such as virtual-processor identifiers (VPID)
to tag translations in the TLB [6, 19].

TLB Scaling Receive
(Normalized to 64 Entry TLB)

0%
20%

40%
60%

80%

100%
120%

64 128 256 512 1024
TLB Size (Entries)

N
or

m
al

iz
ed

 T
LB

M
is

s
R

at
io

-

0%
20%

40%
60%

80%

100%
120%

64 128 256 512 1024

N
or

m
al

iz
ed

 T
LB

M
is

s
R

at
io

DTLB Miss
ITLB Miss

TLB Scaling Receive
(Normalized to 64 Entry TLB)

0%
20%

40%
60%

80%

100%
120%

64 128 256 512 1024
TLB Size (Entries)

N
or

m
al

iz
ed

 T
LB

M
is

s
R

at
io

-

0%
20%

40%
60%

80%

100%
120%

64 128 256 512 1024

N
or

m
al

iz
ed

 T
LB

M
is

s
R

at
io

DTLB Miss
ITLB Miss

Figure 16: Receive TLB Scaling

Impact of Global Bit

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

64 128 256 512 1,024

TLB Size

TL
B

 M
is

s
R

at
io

Base case ITLB Miss
Global Tag ITLB Miss
Base case DTLB Miss
Global Tag DTLB Miss

(Entries)

Impact of Global Bit

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

64 128 256 512 1,024

TLB Size

TL
B

 M
is

s
R

at
io

Base case ITLB Miss
Global Tag ITLB Miss
Base case DTLB Miss
Global Tag DTLB Miss

(Entries)
Figure 17: Impact of Global bit for transmission

6. Conclusion and Future Work
The focus of this paper is to present a case study of a virtualized
workload in a simulated environment to study micro-architectural
features as a means of performance evaluation. We used an exe-
cution driven simulation framework, along with a symbol annota-
tion methodology, to analyze the overheads of an I/O intensive
workload running in a virtualized Xen environment. We also pre-
sented the initial research results from TLB and cache scaling for
the I/O workload. The execution driven simulation framework
presented in this paper provides the speed and flexibility needed
for understanding the current architecture bottlenecks and ex-
periment with potential architectural changes in hardware and
software.

We plan to extend the studies with VPID tagged TLBs and also
understand the impact of hardware based TLB coherence man-
agement. We will also be investigating the feasibility of hardware
support for better inter-VM communication mechanisms using an
extended analysis framework. The importance of performance
isolation and VM level QoS [7, 25] is a growing research area
especially with the introduction of multi-core processors sharing
platform resources like cache, TLB and memory resources. We
are investigating hardware and software enhancements for archi-
tecting QoS aware multi-core platforms.

124

References
[1] A. Foong, J. Fung, and D. Newell, “An In-Depth Analysis of

the Impact of Processor Affinity on Network Performance”,
Proceeding of IEEE Int’l Conf. Networks, IEEE Press, 2004.

[2] A. Foong, T. R. huff, H. H. Hum, J. P. Patwardhan, and G. J.
Regneir, “TCP Performance Analysis Re-visited,” Interna-
tional Symposium on Performance Analysis of Software and
Systems, Mar 2003.

[3] A. Menon, J. R. Santos, Y Turner, and G. Janakiraman,
“Xenoprof - Performance profiling in Xen”. http://xenoprof.
sourceforge.net/xenoprof_2.0.txt (Accessed June 2006).

[4] A. Menon, A. Cox, W. Zwaenepoel, “Optimizing Network
Virtualization in Xen”, 2006 USENIX Annual Technical
Conference.

[5] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman and W.
Zwaenepoel, “Diagnosing Performance: Overheads in the
Xen Virtual Machine Environment”, 1st ACM/USENIX
Conference on Virtual Execution Environments (VEE’05),
June 2005.

[6] G. Neiger, A. Santoni, F. Leung, D. Rodgers and R. Uhlig.
Intel Virtualization Technology: Hardware Support for Effi-
cient Processor Virtualization. Intel Technology Journal,
August 2006.

[7] H. Kannan, F. Guo, L. Zhao, R. Illikkal, Ravi Iyer, D. New-
ell, Y. Solihin and C. Kozyrakis, “From Chaos to QoS: Case
Studies in CMP Resource Management,” 2nd Workshop on
Design, Architecture and Simulation of CMP platforms
(dasCMP / MICRO), Dec 2006.

[8] Intel Virtualization. Technology Specification for the IA-32
Intel Architecture, April 2005.

[9] Iperfbenchmark. http://dast.nlanr.net/Projects/Iperf/ (Ac-
cessed June 2006).

[10] J. E. Smith, and R. Nair. Virtual Machines: versatile plat-
forms for systems and processes. Morgan Kaufmann pub-
lishers. May 2005.

[11] J. F. Kloster, J. Kristensen and A. Mejlholm, ”Efficient
Memory Sharing in the Xen Virtual Machine Monitor”,
Technical Report. Department of Computer Science, Aalborg
University, Jan 2006.

[12] J. Liu, W. Huang, B. Abali and DK Panda, “High Perform-
ance VMM-Bypass I/O in Virtual Machines”, USENIX An-
nual Technical Conference, June 2006.

[13] J. Sugerman, G. Venkitachalam, and B.Lim, “Virtualizing
I/O devices on VMware Workstation’s hosted virtual ma-
chine monitor”, USENIX Annual Technical Conference,
June 2001.

[14] L Albertsson and Peter S Magnusson, “Simulation-based
temporal debugging of Linux”, Proceeding of 2nd real-time
linux workshop 2000.

[15] L. Cherkasova and R. Gardner, ”Measuring CPU Overhead
for I/O Processing in the Xen Virtual Machine Monitor,”
Proceedings of the USENIX Annual Technical Conference,
April 2005.

[16] M. Ramachandran, N. Smith, M. Wood, S. Garg, J. Stanley,
E Eduri, R. Rappoport, A. Chobotaro, C. Koltz and L. Janz,
“New Client Virtualization Usage Models Using Intel Virtu-

alization Technology”, Intel Technology Journal, August
2006.

[17] M. Rosemblum and T. Garfinkel, “Virtual Machine Moni-
tors: Current Technology and Future trends”, IEEE Com-
puter, 38(5): 39-47, 2005.

[18] M. T. Yournst. PTLsim/X: Xen and the Art of full system
multiprocessor simulation.
http://www.ptlsim.org/Documentation/PTLsimManual.pdf
(Accessed Dec 2006).

[19] “Pacifica – Next Generation Architecture for Efficient Vir-
tual Machines”. http://developer.amd.com/assets/WinHEC
2005_Pacifica_Virtualization.pdf (Accessed April 2007).

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I Pratt, and A Warfield, “Xen and the
Art of Virtualization”, Proceedings of the ACM symposium
on operating systems principles, Oct 2003.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, B.
Werner, “Simics: A Full System Simulation Platform”, IEEE
Computer, Feb 2002.

[22] R. Figueiredo, P. Dinda, J. Fortes, “Resource Virtualization
Renaissance”, guest editor’s introduction, IEEE Computer,
38(5): 28-31, 2005.

[23] R. Illikkal, R. Iyer, Don Newell, “Micro-Architectural Anat-
omy of a Commercial TCP/IP Stack”, 7th IEEE Annual
Workshop on Workload Characterization (WWC-7), Oct.
2004.

[24] R. Iyer, “On Modeling and Analyzing Cache Hierarchies
using CASPER”, 11th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Tele-
communications Systems (MASCOTS'03).

[25] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu and S. Reinhardt, “QoS Policies and Ar-
chitecture for Cache/Memory in CMP Platforms,” accepted
for ACM SIGMETRICS 2007.

[26] R. Uhlig, R. Fishtein, O. Gershon, I Hirsh and H. Wang,
“SoftSDV: A Presilicon Software Development Environment
for the IA-64 Architecture. Intel Technology Journal. Q4,
1999. (http://www.intel.com/ technology/itjf).

[27] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Ma-
genheimer, “Are Virtual Machine Monitors Microkernels
Done Right?”, Proceedings of Hot OS 2005.

[28] SimOS: The Complete Machine Simulator. http://simos.
stanford.edu/ (Accessed Dec 2006)

[29] SimpleScalar: Tools for simulation of modern processors
http://www.cs.wisc.edu/~mscalar/software.html (Accessed
Dec 2006).

[30] S. Makineni and R. Iyer, “Performance Characterization of
TCP/IP Packet Processing in Commercial Server Work-
loads”, 6th IEEE Workshop on Workload Characterization,
Oct 2003.

[31] V. Uhlig, U. Dannowski, E. Skoglund, A. Haeberlen, and G.
Heiser, "Performance of address space multiplexing on the
Pentium," Tech. Rep. 2002-1, University of Karlsruhe, Ger-
many, 2002.

[32] Xen networking. http://lwn.net/Articles/117736/ (Accessed
September 2006).

125

