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Abstract— We investigate three emerging topics essential for the development of cognitive radar (CR) for 
spectrum sharing: the response time (RT) of the CR, the autonomous regulation of the perception-action cycle 
(PAC), and the regulation of cognition. The RT measures the latency of all algorithms / hardware and is 
examined with respect to enabling capabilities of software-defined systems for rapid flexibility and 
responsiveness. The autonomous regulation of the PAC determines “how fast the CR can interact with the 
environment” as well as “how fast the CR should interact with the environment.” The regulation of the PAC is 
explored with respect to pulse-to-pulse waveform agility to coexist successfully with dynamic radio frequency 
(RF) emitters in the ambient electromagnetic environment (EME) and the consequence of modifying the 
waveform within the coherent processing interval (CPI). Finally, the regulation of cognition determines how to 
select a particular CR technique appropriately for a given dynamic environment. This selection requires a high-
level, or meta-decision process to identify the appropriate cognitive radar technique as the EME changes over 
time and we therefore concentrate discussion on the newly emerging topic for radar called metacognitive radar. 
The exploration of these three topics include a review of past and current research with discussion of possible 
future research. 

I. Introduction 
A current major challenge in the radar community is operationalizing cognitive radar (CR). Although 

multiple definitions and taxonomies of CR exist [1-5], the Institute of Electrical and Electronic Engineers 

(IEEE) has defined it as a “system that in some sense displays intelligence, adapting its operation and its 

processing in response to a changing environment and target scene. In comparison to adaptive radar, 

cognitive radar learns to adapt operating parameters as well as processing parameters and may do so over 

extended time periods [6].” The model commonly explored for adjusting CR operation in a changing 

environment and target scene is the perception-action cycle (PAC) [1,3], which is a closed-loop model that 

actualizes the behavior above. The PAC has served as a foundation to categorize CR techniques and to 

assess their level of cognition. The implementation of the PAC for CR has been explored for several 

applications [4, 7-18]. The definition of CR for future systems will continue to evolve in order to incorporate 



the unrecognized practical aspects of operationalizing models into emerging software-defined and 

intelligent systems for rapid flexibility and responsiveness [19]. The goal of this paper is to establish a 

framework of research topics that the radar community can explore to address the practical aspects of CR 

development, which motivates the integration of multiple, disparate CR techniques onto a flexible software-

defined radar architecture. These CR techniques represent a toolbox of solutions that must be chosen 

autonomously and under uncertainty by a high-level decision process within dynamic environmental 

scenarios. One can make the case that operationalizing CR is subject to three factors: 

• System Response Time (RT): A measure of latency (for some degree of accuracy) of all standard 

algorithms, CR techniques, hardware, and adaptive hardware components within the CR system. 

The RT is measured with respect to the rate the CR interacts with the environment via the PAC. 

• Autonomous PAC Regulation: Determines the rate (i.e. how fast) the CR interacts with the 

environment thereby setting the appropriate PAC speed. PAC regulation also depends on how 

quickly the environment and target scene evolve over time. 

• Autonomous Regulation of Cognition: Because a single CR technique or solution has advantages 

and disadvantages for different environmental conditions, multiple different CR techniques are 

needed for dynamic scenarios. Hence, there is no single optimal CR solution. The regulation of 

cognition requires a “meta” process to select the appropriate CR technique as needed. We therefore 

concentrate here on the newly emerging topic of metacognitive radar. 

These three factors imply that a CR is not composed of a single PAC operating on a single timeline, 

but instead consists of a hierarchy of PACs with different response times and rates. For example, PAC 

models operating on shorter timescales (i.e. pulse-to-pulse adaptations) have the capability to respond 

quickly to events in the environment, while PAC models operating on longer timescales (scan-to-scan) have 

the capability to determine model failure in dynamic environments. These three factors are necessary 

elements for future CR models that require a hierarchy of PAC loops. This paper extends the discussion in 

[20], where the factors above were introduced, by providing further analysis, outlining potential hardware 



requirements and limitations, discussing solutions to challenges that occur when the PAC changes too fast 

or too slow relative to the environment, presenting a scalable model for the practical implementation of CR, 

and highlighting how metrics are impacted by this model. This model is intentionally generic to address 

several radar applications; however, our focus here is the spectrum sharing application in order to 

demonstrate implementation for autonomous, real-time radar (described in Section II). Section III then 

provides a discussion of the system RT for spectrum sharing, while Section IV discusses factors 

contributing to PAC regulation. Finally, Section V expands upon the metacognitive radar (MCR) model 

presented in [21] that integrates a wide variety of CR techniques into a single software-defined radar 

platform for multi-function capabilities, illustrating the implementation of the MCR model for a real-time 

radar tracking scenario. 

II. Cognitive Radar Techniques for Spectrum Sharing 

Spectrum is presently one of the most precious commodities. Government regulatory agencies throughout 

the world have taken initiatives for more effective spectrum sharing practices between commercial and 

government radio frequency (RF) systems [22-25]. The need for spectrum sharing is exacerbated by the 

emergence of the fifth generation (5G) of wireless communications technology, with 5G a paradigm shift 

from its fourth generation (4G) predecessor, offering the potential to revolutionize the way people and 

machines communicate and exchange information [26]. Regulators are proposing new policy practices that 

allocate additional frequency bands [27,28]. Similar practices originated with older communication 

technology [29] via the spectrum auction of the advanced wireless service 3 (AWS-3) bands and spectrum 

sharing between radar and unlicensed wireless devices. These changes will adversely affect government 

radar systems that have legacy rights to the spectrum and were not engineered to share the spectrum, thus 

necessitating CR solutions for efficient and effective spectrum access and utilization. 

To address these spectrum sharing challenges for radar, we consider a coexistence strategy for 

dynamic spectrum access (DSA). In this context, coexistence implies that the radar avoids interfering with 

other wireless devices in the spectrum without use of a common signaling protocol [30]. This arrangement 



requires the radar to employ spectrum sensing to determine interference levels induced by other wireless 

devices and subsequently reconfigure the radar waveform to avoid mutual interference. This coexistence 

approach involves passive monitoring of the radar’s operating band, with bandwidth B, over time to 

determine an appropriate radar frequency allocation that simultaneously optimizes signal to interference 

plus noise ratio (SINR) and bandwidth. The full bandwidth solution (i.e. radar operates over all of B) clearly 

provides the finest range resolution; however, selection of the full bandwidth incurs co-channel interference 

with other wireless devices, thus decreasing the radar’s SINR while generating mutual interference. The 

more spectrally efficient alternative is to select a frequency sub-band, with bandwidth β ≤ B and center 

frequency fSB, to minimize the expected interference [30]. In this development the passive monitoring 

procedure utilizes the front-end of the radar; hence, radar operations cease during monitoring. Specialized 

timing is required to interleave radar and sensing operations for efficient DSA [31]. 

A generalized block diagram of the DSA approach is illustrated in Fig. 1. The authors have explored 

this model for five different CR techniques, where each implements the PAC with different learning models 

and waveform types to determine the best radar performance for coexistence, resulting in different 

advantages and disadvantages based on the type of RF interference (RFI). Each technique forms a time 

sequence of power spectra based on passive measurements, with particular focus on the percentage of 

occupied spectrum in B and the randomness of this occupied spectrum (i.e. how often it changes). This 

spectrum monitoring approach is based on energy detection and the channel state is determined via 

threshold techniques. The authors chose to explore energy detection for its 1) low latency, a necessary 

requirement for real-time DSA, 2) scalability to multiple radar applications that occur in different frequency 

bands, and 3) capability to detect a wide variety of wireless signal types with minimal a priori information. 



 
Fig. 1: Block diagram of the DSA approach that illustrates the general processing used for five different CR 
techniques. 

 

The power spectra are next processed by the fast spectrum sensing (FSS) algorithm [30], which 

distills information about the power spectrum into representative metadata to reduce the input to a given 

CR technique. Prior work has shown that the latency of a multi-objective optimization decision process is 

significantly reduced (by orders of magnitude) using FSS. The power spectrum of Fig. 2 is used to illustrate 

the concept of FSS and was estimated by the fast Fourier transform (FFT) using the data in [30] with B = 

100 MHz, frequency resolution ΔB = 100 kHz, and N = 1000 samples. The first FSS function, “Identify,” 

combines interference within the power spectrum into alternating low (green) and high (red) powered 

groups using an energy detection threshold that is estimated by training data and set to be 10 dB above the 

noise floor (-110 dBm in this case). Fig. 2 depicts 11 total groups, of which six are low-power and five are 

high-power. The second function, “Merge,” then merges high-power groups into spectral clusters to be 

avoided depending on the waveform structure to be employed (e.g. determining the single largest 

contiguous bandwidth or via spectral notching).  

The output of FSS is the metadata comprised of center frequencies, bandwidths, and power levels 

of the merged clusters. This metadata then informs the operation of the particular CR technique to be 

deployed. The techniques that have been explored thus far include Sense-React-Avoid (SRA), Sense-

Predict-Avoid (SPA), Sense-Learn-Avoid (SLA), Sense-React-Notch (SRN), and Sense-Predict-Notch 

(SPN), with the spectral parameters determined by each used to synthesize a waveform for DSA. 

 The SRA technique uses the FSS metadata to quickly react to RFI by selecting the center frequency 

and bandwidth of the particular low-power group having the largest contiguous bandwidth [30,31]. The 



SPA approach likewise seeks the largest 

bandwidth, but does so in an anticipatory 

manner by employing a stochastic model 

that represents the RFI as an alternating 

renewal process [32], with the RFI 

statistics learned online in real-time. 

Similarly, SLA is a reinforcement 

learning approach that treats the CR’s 

waveform selection as a Markov decision 

process (MDP) for decision making under 

uncertainty [33], realizing a decision rule 

(or policy) that maximizes the expected value of a user-defined reward based on an application-specific 

combination of SINR and bandwidth. Recent research examines Deep Q-Learning, which can handle a 

larger problem space than the MDP algorithm, including additional memory states [34]. An adversarial 

bandit model has also been examined which maintains favorable performance even in the presence of 

intelligent interference sources (i.e. intelligent jammers) [35]. In [36] the SPA and SLA CR techniques 

were compared and found to yield similar performance in many stochastic scenarios. 

In contrast to the avoidance approaches that seek contiguous bandwidth, the SRN approach uses 

the FSS metadata to inform subsequent spectral shaping optimization that realizes instantiations of random 

FM (RFM) waveforms that are continuous, have a constant time-domain envelope, and possess an enforced 

spectral mask containing notches [37,38]. The main advantage of this approach is that the full bandwidth 

can be utilized, sans notched regions, though a higher computational cost is incurred for waveform 

generation. It has also recently been shown that SRN can likewise be combined with prediction [39] to 

facilitate the CR technique of SPN, which addresses real-time computational demand as well reducing the 

achievable latency in responding to RFI changes. 

Fig. 2: Example spectrum with low and high 
power RFI. FSS refines the number of 
frequency bins handled by a decision process. 



A summary of these CR strategies, all of which can adapt on a pulse-to-pulse basis, is provided in 

Table I. The RT of each method is denoted using TCR, which measures the processing time (or latency) that 

is quantified according to the implementation strategy and hardware discussed in Section III. The 

Performance Metric denotes the means used to evaluate each CR technique, where the prime metrics of 

SINR and bandwidth are self-explanatory, while collisions (CO) and missed opportunities (MO) 

respectively indicate unintentional mutual interference and available spectrum not utilized by the radar. The 

Clutter Modulation performance metric evaluates the phenomenology (Section IV) that arises when sub-

coherent processing interval (CPI) waveform adaptations occur, which causes pulse compression sidelobe 

and mainlobe modulation across slow-time that can mask true targets locations and increase false alarms. 

The Response Strategies are classified into reactive or predictive approaches, where the former signifies 

waveform modification based solely on the most recent passive measurements and the latter relies on a 

learning or policy-based model to anticipate RFI behavior. 

The CR framework in Fig. 1 also encompasses the use of a high-power tunable matching network [43] 

to optimize the transmitter front-end power amplifier in terms of power added efficiency (PAE), spectral 

containment, or output power, the latter of which has been shown to increase the radar’s maximum detection 

range. The goal here is to continually retune this matching network to maintain the optimal RF front-end 

configuration for the MCR system while the particular DSA parameters are varied. Because the current 

instantiation is mechanical and the adjustment time is measured in the tens of milliseconds, this technique 

Technique TCR Performance Metric Response 
Strategy 

Ref 

SRA 164 μs SINR / Bandwidth / Clutter Modulation Reactive [30,31,40,41] 

SPA 410 μs CO / MO Predictive [32,36] 

SLA 410 μs SINR / Bandwidth Predictive [33-35] 

SRN 451 μs CO / SINR / Bandwidth / Clutter Modulation Reactive [37,38,42] 

SPN 451 μs SINR / Sidelobes Predictive [39] 

Table I: Summary of CR techniques for DSA. All methods can adapt on a pulse-to-pulse basis. 

 



aims to improve the average performance at the moment, though future versions (e.g. plasma based) are 

expected to be far faster. 

III. Response Time (RT) 
A particularly important topic for practical implementation of CR is the collective RT of the algorithms and 

hardware within the architecture. Despite being a key measure for human cognition [44,45], RT is often 

over-looked in the context of cognitive RF systems. For example, if two radars have equal levels of 

cognition (based on some ontology) and arrive at the same result, would the radar that converges to a 

solution faster have greater cognitive ability? The faster solution could lead to additional interactions with 

the environment, thereby offering the opportunity to learn at a quicker rate. Measuring the RT for human 

cognition involves both the time to complete a task and the accuracy of the result [45]. This joint 

time/accuracy consideration for radar poses a trade-off between a highly accurate (and possibly complex) 

CR technique and its corresponding latency, which is further exacerbated when multiple CR techniques, 

multiple objectives, and/or other radar signal processing algorithms can be employed. Finally, as adaptive 

hardware components are used in future CR designs to expand flexibility for transmitted waveforms, the 

trade-off between hardware tuning speed and fidelity must also be examined [43].  

Our definition of RT reflects the earliest research involving the implementation of artificial 

intelligence (AI) in radar by addressing the limitations of digital hardware and the algorithm complexity 

for real-time CR systems [11]. One such example dates back to 1967 for adaptive antenna systems to reject 

unwanted RFI [46], the solution of which offered a computationally efficient algorithm for real-time 

implementation. Other examples of RT for CR include knowledge-based systems for radar surveillance 

where the trade-off is examined between optimal system design features (performance accuracy) and the 

system capability / latency based on available computational resources (time) [4,13,47]. Other CR research 

between 2006 and 2014 investigated the PAC based on Fuster’s paradigm [1,3] that was later combined 

with components of knowledge-based systems to form the Fully Adaptive Radar for Track Update-Interval 

Control approach [48], which itself served as the foundation for the cognitive radar engineering workspace 



(CREW) programmable radar platform [49]. CREW demonstrated improved radar performance in tracking 

a moving target by adapting the pulse repetition frequency and number of pulses per CPI in real-time. 

As discussed in Section I, a CR 

system should be capable of housing a 

confluence of algorithms and 

technologies to address a wide variety of 

radar scenarios. One hardware platform 

that can support this capability is the 

universal software radio peripheral 

(USRP). Although intended for radio 

communications, the USRP can be programmed to realize radar functionality and operation as well. In [10] 

the capability of CREW was extended to the USRP, while in [9] the USRP x310 platform was considered 

for the application of real-time DSA [9], later referred to as a software-defined radar (SDRadar). 

The original SDRadar architecture of [9] implemented SRA and regulated the timelines of multiple 

spectrum sensing and radar signal processing algorithms between the field programmable gate array 

(FPGA) and the graphic processing units (GPUs), while having the appropriate data rate connections to 

deliver information at the proper time. As summarized in Fig. 3, this basic architecture shares resources 

between the radar processing and spectrum sensing components, and is foundational for the efficient 

implementation of multiple CR techniques discussed in Section II, where the goal is to maximize 

performance in real-time. The SDRadar shares the available resources on the USRP motherboard (i.e. 

FPGA) and host-PC as illustrated in Fig. 4. This firmware implementation aims to efficiently perform the 

most fundamental radar functions (i.e. matched filtering, Doppler processing, and constant false alarm rate 

detection) along with spectrum sensing to achieve real-time operation. As shown in Fig. 4, this functionality 

mostly uses hardware-accelerated resources like the GPU and FPGA, leaving the central processing unit 

(CPU) to perform more complex operations that are difficult to implement in hardware (e.g. machine 

Fig. 3: Resource sharing components of radar signal processing 
and spectrum sharing. 



learning techniques). Not only does this hardware-accelerated processing allow room for more advanced 

algorithm development, it also significantly improves the SDRadar’s performance. For example, the 

original SDRadar architecture described in [9] used the CPU for range-Doppler processing and target 

detection, resulting in added latency (data processed every other CPI cycle). With the GPU implementation, 

every CPI is processed in real-time. The original architecture in [9] likewise implemented FSS [31] on the 

CPU, resulting in a 3.4 ms reaction time to changing RFI. Implementation of FSS on the FPGA has reduced 

that reaction time to 164 μs [40], a more than 20-fold reduction. 

To ascertain the RT for each CR approach it is important to identify the particular timing 

bottleneck(s). For the SRA approach, the RT-limiting operation is FSS, which involves FFTs (~160 μs) 

plus a few multiplies and additions. By comparison, the SRA generation of an appropriate chirp waveform 

via direct digital synthesis requires only a few clock cycles (on the order of nanoseconds). Operations such 

as range-Doppler processing and CFAR detection are asynchronous from the PAC loop on the FPGA, and 

thus can be performed on the host-PC without limiting the RT. 

The SPA implementation uses the host-PC and memory to quantify the statistics of RF activity and 

subsequently predict the likelihood of future RFI. Similarly, SLA uses the host-PC to learn RF activity via 

policy iteration and select the best future option to avoid RFI. To facilitate construction of each of these 

models, the host collects and stores a history of RFI metadata states over a given evaluation interval that 

serves as training data. The SPA training process runs on the timescale of 10s of milliseconds, thus 

Fig. 4: Block diagram of the basic SDRadar for SRA. Red boxes denote radar functions while blue denotes 
spectrum functions. 

 



satisfying real-time requirements. Since policy iteration is more computationally complex, the SLA model 

is necessarily trained on a smaller subset of the stored data. In both of these cases, the predicted/learned 

RFI state determined on the host then informs chirp waveform generation performed on the FPGA. The 

history of RFI metadata also continues to be updated in case retraining is needed. 

To maximize the utilization of bandwidth the SRN and SPN approaches involve the generation of 

spectrally-notched waveforms that are forms of random frequency modulation (RFM) [50], which 

facilitates incoherent sidelobe averaging during slow-time processing to offset the increase in sidelobes 

incurred by notching, all while preserving the RFM structure to ensure compatibility with high-power 

transmitters. With regard to RFI determination for use in waveform generation, that component of the RT 

for these approaches is analogous to SRA and SPA, respectively. The common attribute of notched, random 

RFM waveform generation within the FPGA is achieved by using the zero-order reconstruction of 

waveforms (ZOROW) method [51], which involves an analytical spectrum representation of the physical 

waveform that accounts for the modest rate of the digital-to-analog converter (DAC) and overall lower 

fidelity available in USRPs. Because ZOROW is an iterative process, there is a relationship with spectral 

notch depth and RT (e.g. ~25 dB relative to the spectral peak was achieved with an overall RT of 451 μs). 

Finally, tuning of the RF front-end to maximize output power is not currently fast enough to adapt 

dynamically on CR time-scales. Consequently, the algorithm that controls transmit circuit tuning must 

adhere to a set of known configurations based on expected CR conditions (see [43]) and therefore presently 

has no impact on the RT. That said, the prospect of increased tuning speeds may change this arrangement 

in the future. 

IV. PAC Regulation 
The autonomous regulation of the PAC changes how the CR interacts with the environment. To illustrate 

this point, consider the echo-location capability of bats [1]. As a bat approaches a target (e.g. an insect), it 

changes its transmitted sound frequency and duration. This manner of range-dependent adaptation involves 

an increase in the rate of transmitted waveforms (and received echoes) to pin-point the insect’s location 



during the final moments of engagement. In a similar way, the CR interacts with the environment to 

determine the rate at which the PAC should change, which could be implemented at various timescales 

such as the pulse repetition rate, the dwell rate, the scanning rate, or the convergence rate of a high-level 

decision process. If adaptation is too slow, target information could be lost. If adaptation is too fast, radar 

resources could be mismanaged.  

Fast adaptation can also introduce nonstationary effects. As discussed in [37,40-42], intra-CPI 

waveform adaptation can translate into a modulation of the clutter, making standard cancellation less 

effective and ultimately necessitating proper compensation within the receive processing. Likewise, real-

time transmit circuit optimization can introduce amplifier impedance modulation if adjustments coincide 

with transmitted pulses [52]. Similar to the RT discussion, a trade-off between slow and fast PAC adaptation 

rates exists and should be balanced to best fit evolving target and environmental conditions. 

Consider a scenario where a radar and at least one other system are concurrently sharing a common 

frequency band in a rapidly varying manner.  If these systems are to operate without mutual interference, 

accurate sensing and a short RT are needed. Pulse-agile techniques for spectrum sharing have been shown 

to perform well at minimizing the mutual interference between non-cooperative, RF systems [37,40-42]. 

Of course, the efficacy of these techniques is dictated by the speed with which the PAC is completed. For 

example, Fig. 5 illustrates two different PAC rates for the SDRadar sharing the spectrum with RFI that 

randomly hops frequency every 2 ms. Specifically, Figs. 5a and 5b show spectrograms in which the 

SDRadar adaptation rate is 312.5 Hz (or 3.2 ms) and 6.25 kHz (or 164 μs), respectively. When the SDRadar 

adapts too slowly relative to the RFI (Fig. 5a), the collision rate can get as high as 100%. In contrast, Fig. 

5b shows that the higher adaptation rate allows the SDRadar to respond over 10 times faster than the RFI 

is hopping, realizing a collision rate below 10%. This lower collision rate not only reduces the radar’s 

impact on other signals sharing the band, it also improves the radar’s performance. 

Fig. 6 shows the resulting receiver operating characteristic (ROC) curves when performing range-

Doppler processing based on the spectrum sharing scenarios in Fig. 5. Notice that both slow and fast 



adaptation show improvement relative to full 

bandwidth (FBW) operation that involves no 

adaptation (blue trace), though fast adaptation is 

clearly much closer to the ideal case of no RFI 

(green trace). While increasing adaptation speed 

certainly improves the ability to avoid mutual 

interference, intra-CPI adaptation can also 

introduce the modulation effects noted above 

[37,40-42]. For instance, the delay-Doppler 

smearing of clutter induced by waveform 

changes to accommodate dynamic RFI can 

translate into an increase in the rate of false alarms by a factor of 100 or more [40] if not appropriately 

compensated.  

One such compensation approach is deconvolution using the delay-Doppler point-spread function 

[41], which borrows from distortion removal in image processing. By treating the clutter-modulated range-

Doppler response as the corrupted image and the full bandwidth response as that provided by the ideal 

Fig. 6: ROC curves for SDRadar adapting at 3.2 ms 
(“Slow Adapt”) and 160 μs (“Fast Adapt”), while 
coexisting with randomly hopping RFI. 

Fig. 5: Spectrogram of SDRadar sharing a 100 MHz band with a random frequency hopping signal.      
Collisions are reduced with a faster PAC adaptation rate. 

 

Fig. 5a: 3.2 ms adapt rate 
 

Fig. 5b: 164 μs adapt rate 
 



‘lens’, then deconvolution using the point-spread function is effectively an additional filtering ‘lens’ that 

removes unwanted artifacts from the scene. 

A separate approach performs fast-time (range) and slow-time (Doppler) processing jointly since 

the modulation effect is a result of fast/slow-time coupling (conceptually similar to angle/Doppler coupling 

for airborne clutter cancellation). The non-identical multiple pulse compression (NIMPC) formulation [42] 

performs this manner of joint processing, in so doing realizing a multiplicative (instead of additive) increase 

in the available range and Doppler degrees-of-freedom. The limitation to NIMPC has been high 

computational cost due to joint operation, though efficient versions are currently have recently been 

demonstrated [53]. 

V. Metacognitive Radar (MCR) 

The final topic of consideration for practical implementation of CR is the regulation of cognition. The key 

is knowing when to apply the appropriate algorithm for a given environmental and target scenario. For 

example, why apply a cognitive solution when an adaptive, or deterministic, approach is adequate? This 

question is particularly pertinent for the increasing congested and constrained electromagnetic environment 

where new cognitive capabilities are so important to address growing spectral/operational complexity [54]. 

This section therefore discusses the merits and challenges of implementing MCR for algorithm selection.  

The MCR framework is a comprehensive feedback and control process to regulate the appropriate 

CR strategy for changing scenarios, i.e. a best-of-breed approach that recognizes when to use certain CR 

strategies and when to change between them. The techniques discussed in Section II represent a dichotomy 

of cognitive solutions ranging from purely adaptive with simple waveform synthesis (e.g. SRA) to training-

based models with sophisticated waveform designs (e.g. SPN). Each technique has advantages for 

enhancing radar performance in specific classes of environmental conditions. Consequently, a 

comprehensive DSA approach is to select the appropriate algorithm based on real-time observations of RFI 

and radar performance. This approach treats the CR techniques in Section II as a database, or toolbox, of 



solutions that can be selected for implementation based on the conditions at hand. That said, this strategy 

also requires a higher-level decision process to regulate use of the individual CR approaches. 

The higher-level cognition process considered here is the bio-inspired metacognitive radar model [21]. 

Metacognition is a widely studied topic in the fields of human learning, neurological impairments, 

computation, automation, and control [55]. Metacognition for radar was explored briefly for waveform 

diversity [56], but more recently for CR applications [21,57]. A block diagram of the MCR model is 

illustrated in Fig. 7, which involves selecting the appropriate CR technique based on long-term observations 

of radar performance and the electromagnetic environment (EME). The main components of this model are 

MCR Knowledge, MCR Monitoring, MCR Control, and the CR techniques [58]. In the context of spectrum 

sharing, the MCR Knowledge defines the learning rate and capabilities for each CR technique. MCR 

Monitoring classifies the spectrum to identify a subset of appropriate CR strategies matched to the given 

EME. MCR Control then defines the regulation of the learning process for implementing CR techniques. 

 

Fig. 7: Metacognitive radar model to select the appropriate CR technique based on real-time observations of 

radar performance and the EME. 

Fig. 7 also depicts the timeline of radar operation, which is much shorter than that of a particular CR 

technique. In the classical definition of CR, waveforms and other parameters are modified to control the 



behavior of the radar and improve performance. For the tracking application, the radar would operate over 

several CPI cycles before the CR can estimate target position and velocity information, and then modify 

the appropriate parameters. In a similar way, the MCR engine observes CR operations and monitors radar 

performance over an extended time period while simultaneously monitoring the EME. Based on the radar 

performance and changing conditions of the EME, the MCR engine explores different CR techniques over 

time. The CR technique that is expected to produce the “optimal” performance is then selected (or 

“exploited”) for use until either the radar performance degrades or the EME conditions change. To achieve 

convergence to the optimal CR strategy, i.e. one that yields the best radar performance over time, we 

develop a sequential decision process analogous to the multi-armed bandit problem. By receiving feedback 

about each algorithm, the goal is to balance the exploration and exploitation trade-off. During an exploration 

phase, each technique is selected and radar performance metrics are observed. The exploitation phase then 

selects the best technique based on the expected performances. For instance, in [59] the "explore-first" 

approach was used initially, whereby the MCR engine first sequentially samples CR strategies to evaluate 

radar performance before exploiting the option with the most favorable expected performance for the 

remaining decision rounds. 

Radar performance evaluation during the explore-first phase considers a normalized linear 

combination of SINR and bandwidth. These metrics allow for simple estimates that correspond to radar 

target detectability and range resolution, respectively. Past work heavily weighted SINR [21], though the 

relative weighting of SINR and bandwidth highly depends on the particular radar application. For example, 

those that require tracking of several closely-spaced targets need higher bandwidth to achieve sufficient 

range resolution. In contrast, the tracking of distributed moving targets favors SINR, instead of bandwidth, 

to mitigate range-bin migration during a CPI. Prior work in [60] has demonstrated that short-range moving 

targets may trade-off SINR for bandwidth while still preserving target detection performance. 



The MCR proposed in 

[21] also explores how to 

rearrange the CR techniques into 

simpler categories for 

implementation. Fig. 8 illustrates 

the toolbox of solutions that are 

used for SDRadar. This 

architecture allows for the 

combining of different cognitive 

methods, waveform types, and radar signal processing with the tunable matching network. The “Cognitive 

Strategy” component uses the fundamental DSA information from the CR techniques discussed in Section 

II, which are here rearranged into the generic categories of Fixed, React (SRA), Learn (SLA), and Stochastic 

(SPA). The “Waveform Type” selection determines whether an LFM or RFM waveform is transmitted, and 

whether the radar will attempt to avoid sub-bands with RFI, implement narrowband notches to mitigate the 

RFI, or select the entire bandwidth.  The maneuverability to avoid and notch is a form of frequency hopping 

that is dependent on the RFI. Finally, the signal processing is tailored for a generic tracking radar application 

by using range-Doppler processing. A decision is made in each of these four categories to provide a 

comprehensive strategy for DSA. 

This MCR process has been demonstrated to optimize radar performance in changing RFI scenarios 

via simulation in [21], and has been implemented on the SDRadar hardware for real-time DSA and 

evaluated on a sequence of changing RFI scenarios. The RFI scenarios include: I) a swept tone interferer 

that sweeps over a 100 MHz bandwidth, II) a random frequency hopper that moves around the same 100 

MHz bandwidth, and III) an intermittent 20 MHz 4G Long Term Evolution (LTE) uplink signal. A spectrum 

evaluation interval (SEI) is defined to reevaluate the environment for changes in the EME. Each SEI 

reinitiates the explore-first process every 20 CPIs. Fig. 9a shows the mode of operation driven by the MCR 

Fig. 8: Implementation architecture of the SDRadar. 



engine over the course of these RFI scenarios while Fig. 9b shows the respective SINR performance. Each 

RFI scenario lasts for 80 CPIs.  

 

RFI Scenario I (swept tone) considers a deterministic interferer that is well suited for SPA. The 

explore-first process consistently converges to the SPA solution, with reevaluation occurring every 20 CPIs. 

Fig. 9b shows the exploit phase consistently achieving higher performance during the MCR process. The 

SINR variation during the exploit cycles are the result of occasional collisions with the high-power swept 

RFI. While a few collisions occur in the first two exploit cycles, SPA perfectly avoids the RFI in the third 

cycle, which results in a SINR increase. RFI Scenario II (random hopper) shows that the MCR converges 

to SRA each SEI. The predictive SPA and SLA CR techniques incur a degradation in performance for 

random RFI scenarios. 

Finally, RFI Scenario III poses a challenging LTE RFI scenario. Due to the amount of variation 

present in these LTE patterns, the optimal solution appears to vary over time. From CPI 140 to 160, the 

MCR is trained on the spectral data from the prior SEI (CPI 120 to 140), which causes SLA to converge to 

a solution that avoids transmitting in bands with RFI altogether. By avoiding transmitting in active LTE 

bands, SLA results in a high SINR from CPI 140 to 160. Once the MCR has learned the new spectral 

(I)       (II)      (III)   

Fig. 9a: MCR mode of operation. 

(I)       (II)      (III)   

Fig. 9b: Average SINR result. 

Fig. 9: MCR example using real-time implantation on the SDRadar. Each figure denotes three RFI 
scenarios: I) a tone that sweeps over a 100 MHz bandwidth, II) a random frequency hopper that moves 
around the same 100 MHz bandwidth, and III) an intermittent 20 MHz LTE uplink signal. 



patterns, the process favors higher bandwidth in exchange for lower SINR and begins to alternate between 

SPA and SRA. During the two next SEIs, the MCR converges to SPA. The last SPA cycle shows an SINR 

degradation compared to the previous one, which results in the MCR selecting SRA to slightly recover the 

losses. 

VI. Conclusions 

There are numerous practical aspects involved with implementing CR techniques onto an SDRadar 

platform, with the various techniques possessing different advantages and disadvantages according to the 

statistical EME conditions. Response time of a CR capability requires careful consideration, as does 

regulation of the perception-action cycle relative to the dynamic nature of the EME. Intra-CPI waveform 

adaptation introduces another performance trade-space between adequately avoiding/notching in-band RFI 

and the modulation of clutter that can hinder effective cancellation, which subsequently requires 

compensation. At a higher level, management of the overall CR process necessitates the automation of CR 

technique selection in a metacognitive manner that balances all the various trade-offs to select a 

comprehensive approach for a given situation. 
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