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Abstract 

Polyphase radar codes promise enhanced performance and flexibility due to greater design 

freedom. While the search for better codes continues, the implementation issues of transmitter 

bandlimiting and nonlinear distortion have precluded their widespread use in high-power systems. 

This paper introduces a modified continuous phase modulation (CPM) implementation that 

converts an arbitrary polyphase code into a nonlinear FM waveform that is constant envelope and 

spectrally well-contained. Experimental results assess the receive sampling and pulse 

compression effects. 

Keywords 
Radar, pulse compression, nonlinear distortion, continuous phase modulation, radio spectrum 

management 

 

 

I.  INTRODUCTION 

The notion of phase coding for the purpose of radar pulse compression has been 

around for several decades with an extensive litany of contributions such as Barker codes 

[2], P-codes [3,4], minimum peak sidelobe (MPS) codes [5], and many others (see [6, 

Chap. 6] for a thorough survey). The metric of goodness for a code is generally based 

upon some measure of the time (range) sidelobes provided by the code’s autocorrelation, 

with factors such as Doppler tolerance and “thumbtack” characteristics as additional 

considerations. The size of the phase constellation for a code (the number of possible 

phase states) can theoretically be as small as 2 for binary codes up to an infinitude of 

values distributed over the 2 phase continuum. Since phase coding was first conceived, 

there has been an ongoing effort to discover ever longer codes with lower autocorrelation 

sidelobes (recently, for example [7,8]). The explosive growth in waveform diversity 

research has also expanded code search efforts to encompass new paradigms such as 

MIMO ([9] and references therein) and adaptive waveform design ([10] and references 
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therein). Fundamentally, all these efforts, for varying sensing modes and constraints, seek 

to optimize the means with which the active sensor queries the environment. 

While this intense effort has focused on the design of various coding schemes, far 

less emphasis has been placed on their physical implementation. Consider the 

mathematical representation of a continuous, baseband code that consists of a set of 

contiguous, constant amplitude, rectangular chips (or sub-pulses) that are modulated by 

the phase values of the code (Figure 1). This idealized representation is the mathematical 

model used by virtually all code search strategies seeking to determine an optimal 

sequence of code phase values [11]. However, as Levanon and Mozeson elaborate [6, pp. 

145-155], the instantaneous phase change between consecutive chips of the code results 

in extended spectral sidelobes having a sin(x)/x envelope. An operational transmitter, 

which includes driver amplifiers and an exciter, will not pass these extended spectral 

sidelobes due to inherent bandlimiting. Thus the transmitter, which possesses nonlinear 

characteristics as well, emits a physical signal that is a distorted version of the idealized 

continuous model of the code. Generally speaking, the nature of this distortion induces 

range straddling (or cusping) losses on receive [12] due to the bandlimiting distortion and 

spectral regrowth due to intermodulation products that are a nonlinear result of operating 

the power amplifier (PA) in saturation [13]. Of course, PA saturation is necessary to 

achieve the high efficiency required for high-power systems. 

 
Figure 1:  Idealistic representation of a polyphase-coded waveform 
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For the reasons stated above and because there tends to be a general looseness to the 

vernacular in the literature, it is useful to clarify distinctly the terms code, waveform, and 

emission as they are applied here. The code is a mathematical abstraction consisting of a 

finite set of sequential phase values 0[ , , ] N . The code elements are typically 

represented as corresponding to rectangular chips, though as discussed above this 

idealistic structure is not physically realizable without distortion. In contrast, the 

waveform is the continuous temporal signal that is modulated onto a pulse. Perhaps the 

most well-known waveform is the linear frequency modulated (LFM) chirp [6, pp. 57-

61]. The purpose of the implementation proposed here is to effect the conversion of a 

discrete code into a continuous waveform that is amenable to the bandlimiting/nonlinear 

characteristics of the transmitter. Finally, we shall refer to the signal that the radar 

physically launches into the environment as the emission, which in reality is a distorted 

version of the waveform due to transmitter effects. This definition also includes the pulse 

envelope, as the non-instantaneous rise and fall times likewise influence the nature of the 

emission, and electromagnetic effects from the antenna and potentially the radar 

platform. Enabled by the continuous phase modulation (CPM) implementation scheme 

developed here, optimization of the physical emission is subsequently addressed in the 

companion paper [14]. 

It is well known that a waveform should have a constant envelope to avoid some of 

the nonlinear distortion imparted to amplitude modulation (AM) in the saturated PA as 

well as to maximize power-added efficiency (PAE) and maintain “energy on target” for 

detection sensitivity.  It tends to be less appreciated, however, that a waveform must also 

be continuous, and thus differentiable, with sufficient bandlimiting to minimize the 
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spectral shaping imposed by the transmitter that can produce additional AM effects 

leading into the PA, subsequently compounding distortion.  For this reason, combined 

with the fact that a suitable implementation had not been developed, the use of arbitrary 

polyphase codes has previously been of limited use for high-power radar applications. 

For the subset of polyphase codes that possess only two antipodal phase states 

(binary codes), there are existing techniques to convert the code into a constant envelope, 

continuous waveform that can be transmitted with minimal distortion. The two most 

common techniques are derivative phase shift keying (DPSK) [15] and the biphase-to-

quadriphase (BTQ) transformation [16], which is a form of minimum shift keying 

(MSK). Of the two, the latter is superior from a spectral containment standpoint [15], 

though both are fundamentally limited in terms of range sidelobe performance due to the 

constraint of binary phase which limits the design degrees of freedom.   

Another approach that has been investigated to constrain the spectrum of coded 

waveforms is to replace the rectangular chips with windowed (and thereby truncated) sinc 

kernel functions [15,17]. While this approach has been shown to achieve very good 

spectral containment, which is of growing importance due to increasing congestion of the 

RF spectrum [18], the sinc kernel also produces amplitude modulation that subsequently 

requires linear amplification. To generate these waveforms with nonlinear amplification 

(higher PAE), a configuration comprising dual nonlinear amplifiers followed by a 

summer, otherwise known as LINC (LInear amplification with Nonlinear Components) 

[13], has been suggested. It has been experimentally demonstrated that high transmit 

power may still conceivably be achieved for this type of configuration as long as 

adequate cross-calibration of the two amplifiers in the LINC can be maintained. Of 
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course, the lost “energy on target” from AM effects still translates into reduced receive 

SNR, and thus lost sensitivity. 

To address the lack of a suitable implementation for arbitrary polyphase codes, a 

modified version of the continuous phase modulation (CPM) framework [19] is presented 

here. Being spectrally well-contained (continuous), power efficient (constant envelope), 

and easy to implement using standard FM [19, Chap. 6], CPM is currently used for the 

demanding applications of aeronautical telemetry [20,21] and deep-space communication 

[22], as well as within the Bluetooth wireless standard [23] to maximize battery life. For 

the application to radar, it is necessary to modify the form of CPM used in 

communications so that the properties of optimized polyphase codes can be maintained to 

the degree possible. It is shown via experimental measurements that the resulting 

polyphase-coded FM (PCFM) waveforms exhibit effective spectral containment, which 

translates into reduced transmitter distortion and straddling losses relative both to the 

idealized implementation and to a near-idealistic variant to “slow down” the phase 

transitions. 

The remainder of the paper is organized as follows. Section II presents the traditional 

CPM implementation used for communications and then introduces the new formulation 

for the implementation of PCFM radar waveforms. In Section III the receiver 

implications of employing PCFM waveforms are discussed. Finally, in Section IV 

experimental results demonstrate the efficacy of this new CPM implementation using a 

LFM-derived polyphase code for benchmarking and a previously optimized code to 

demonstrate the new waveform generation capability as well as highlight where further 

performance improvement may be obtained. 
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II.  CONTINUOUS PHASE MODULATION (CPM) 

For communications the CPM implementation provides a spectrally efficient (in 

bits/Hz) and power efficient means with which to modulate a stream of digitally encoded 

information.  For this purpose, there are different variations of CPM that depend on the 

spectral requirements of the physical emission and the computational complexity for the 

communication receiver [19]. In general, the CPM implementation for communications 

can be expressed mathematically via the scheme depicted in Fig. 2.  Here a stream of 

information-bearing data symbols i is multiplied by a modulation index hi, and then this 

modified stream is modulated onto an impulse train.  The sequence of weighted impulses 

( ; )p t   is convolved with the frequency shaping filter g(t) and is subsequently integrated 

to produce a continuous signal.  Following scaling by 2, the resulting phase-domain 

signal ( ; ) t  is converted into the complex baseband signal ( ; )s t   for modulation onto 

the carrier. 

 

 
Figure 2:  Generic CPM implementation for communications 

 

 

As an example, Fig. 3 illustrates the “phase cylinder” of the PCM/FM version of 

CPM [19] where it is observed that, unlike the idealistic polyphase radar coding scheme 

of Fig. 1 in which the phase is constant over a chip interval, the CPM phase is always in 

transition.  It is this state of continuous transition that enables CPM to provide such good 

spectral containment in comparison to other modulation schemes [19].   
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Figure 3:  CPM “phase cylinder” for the PCM/FM communication signal [19] 

 

For the communication implementation in Fig. 2 there is a requirement to preserve 

the encoded information such that it can be recovered at a receiver while the physical 

structure of the “waveform” is only important to the degree that it impacts spectral 

content and receiver performance. In contrast, a radar waveform carries no information, 

yet its modulation structure is vitally important to ensure the required range resolution 

and sensitivity following receiver pulse compression, whereby information on the 

illuminated environment is extracted. For radar, the CPM implementation can thus be 

simplified to eliminate aspects associated with information-bearing signals and must also 

be modified to preserve the desirable properties of optimized polyphase codes. 

A new form of CPM implementation is proposed that is appropriate for polyphase 

radar codes (Fig. 4), where a train of N  consecutive impulses with time separation pT  

are formed such that the total pulsewidth is  pT NT . The thn  impulse is weighted by 
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n , which is the phase change between successive chips of the polyphase code as 

determined by 

 
 

if

2 sgn if

n n
n n

n n n

  
 

    


   

 
 ,                         (1) 

where 

1    n n n      for     1, ,n N ,                   (2) 

sgn( )  is the signum operation, and n  is the phase value of the thn  chip in the length 

1N  polyphase code. The shaping filter ( )g t  is essentially the same as that used for 

communications where the most common examples are rectangular (RECT) and raised 

cosine (RC). The requirements on ( )g t  are: 1) that it integrates to unity over the real line; 

and 2) that it has time support on [0, ]pT , which is specific to radar so that the chip 

intervals do not overlap in time. The integration stage in Fig. 4 is initialized to 0  and the 

sequence of phase changes are collected into the vector x = [ 1 2 N   ]
T
, which 

parameterizes the complex baseband PCFM waveform 

  0

10

( ; ) exp ( ) ( 1)

t N

n p

n

s t j g n T d     


    
       
      

x .       (3) 

The benefit of enabling the practical implementation of existing optimized codes is 

clear. Furthermore, the transmitter hardware requirements for this new version of CPM 

are the same as previous versions [19, Chap. 6] that rely on standard FM (that is, it does 

not require an arbitrary waveform generator). However, as shown in the companion paper 

[14], the real potential of this implementation is the linkage it provides between the 

emission from the physical transmitter (complete with spectral shaping and nonlinear 

characteristics) and the optimization of the underlying polyphase code.  It is also 
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interesting to note that, if a rectangular shaping filter is selected for ( )g t , the phase of the 

resulting PCFM waveform could be viewed as a form of first-order hold as compared to 

the zero-order hold phase representation of the idealist phase code from Fig. 1. 

 
Figure 4:  Proposed CPM implementation to generate polyphase-coded FM (PCFM) waveforms 

 

III.  RECEIVE FILTERING FOR PCFM RADAR WAVEFORMS 

Because pulsed radar emissions have a finite time support given by the pulsewidth T, 

it is not possible to realize perfect bandlimiting. As such, receive sampling involves a 

trade-off between adequate fidelity, which is improved by increasing the sampling rate, 

and computational cost and noise rejection, which are improved by lowering the 

sampling rate. The degree of spectral containment of the radar waveform plays an 

important role in determining this trade-off. 

We can define the receive sampling period as 

( 1)



s

T
T

K N
 ,                     (4) 

where 1N  is the number of chips in the underlying code and K  is the number of 

samples per chip interval. Thus the chip width is / ( 1)  c sT T N K T . Note that, in 

contrast, a PCFM waveform (via Fig. 4) is driven by a sequence of N  phase changes and 

is thus constructed from N  weighted impulses having a time separation of /pT T N . 

However, we shall use the sampling definition from (4) to provide a convenient 
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framework with which to compare performance across different implementations. Based 

on (4), the sampled version of a continuous waveform ( )s t  will possess ( 1)K N N  

samples over the pulsewidth T. By using this formulation, the receiver fidelity in terms of 

sampling rate can be assessed as a function of K .   

The first-null (mainlobe) bandwidth of an idealistic polyphase-coded waveform 

(Fig. 1) is null 1/ cB T  [6, Sect. 6.8]. On neglecting small values of N , one observes that 

 pcT T  such that PCFM waveforms yield essentially the same mainlobe bandwidth. Of 

course, outside the mainlobe it is known that idealistic coded waveforms exhibit a rather 

slow spectral roll-off of 6 dB/octave, thereby producing a “spectral skirt” [6, Sect. 6.8], 

an attribute that is largely absent for PCFM waveforms as demonstrated in Section IV. 

Denoting ( )y n  and

 

( )h n  as the discrete-time baseband sequences for the sampled 

received signal and the receiver matched filter, respectively, the straddling loss [12, 24] at 

each delay offset   on the interval  0, sT can be defined as the metric 

 2
Straddling Loss ( ) 10log max ( ) ( ) ,

n
h n y n                      (5) 

with ( )y n

 

representing the response from a point scatterer with delay offset 

 

and 

where ( )y n  and

 

( )h n  are scaled to have unit length (so that a 0 dB result signifies no 

loss due to a perfect match). The interval  0, sT  represents the possible delay of the echo 

relative to the timing of the receive samples that are obtained at the rate of 1/ sT .  By 

using the metric in (5), the “goodness” of different waveform implementations and their 

associated (presumed) matched filter can be evaluated.   

The structure of polyphase codes (finite number of chips having arbitrary phase) 

makes them convenient to optimize via various search strategies [14]. However, retaining 
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this optimality requires that: a) the nature of the code-to-waveform implementation 

ensures that the subsequent emission is minimally affected by the transfer function of the 

transmitter, which can vary depending on such factors as memory effects, impedance 

mismatch, and temperature; and/or b) the code optimization actually accounts for the 

waveform implementation and transmitter distortion. Regarding the former, it is shown in 

Sect. IV that PCFM waveforms incur less distortion from the transmitter than idealistic 

coded waveforms. This issue of waveform/emission fidelity impacts the performance of 

the receiver filter via mismatch loss (assuming use of the matched filter) and the degree 

to which the optimized range sidelobe level is preserved. The latter is the subject of the 

companion paper [14]. 

Use the least squares (LS) pulse compression formulation from [25] within the 

waveform sampling context above to form the (( 1) 1)  M N MN  matrix 

 

1

1

1

0 0

0

0

0 0

N

N

N

s

s

s

s s

s

 
 
 
 

  
 
 
 
  

A ,              (6) 

where MN  is to be the length of a mismatch filter (with M  typically on the order of 2 to 

4) and the length- N  column vector s  is the sampled version of ( ; )s t x  from (3). Each 

column of A  is completed by inserting a total of 1MN   zeroes above and below s as 

appropriate. Based on [25], the LS mismatch filter (MMF) is readily found to be  

 
1

h A A A e
H H

m                               (7) 
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where  
H

 denotes the complex conjugate transpose operation and em  is the length 

( 1) 1M N   elementary vector with a 1 in the thm  element and zero elsewhere.  The 

value of m  is normally in the neighborhood of (( 1) 1) / 2 M N .   

Because s  is “over-sampled” by the factor K , the matrix  A A
H  can become ill-

conditioned for 1K   depending on the degree of spectral containment of the emission. 

A well-known solution to such a problem is diagonal loading as 

 
1




 h A A I A e
H H

m ,                              (8) 

where   is the loading factor and I  is the MN MN  identity matrix.  The particular 

value for   depends on the trade-off between range sidelobes and mismatch loss [26]. 

In (8), A  has also been replaced with A .  As discussed in [26], the formulation in 

(7) can produce a range super-resolution effect at the cost of higher range sidelobes.  A 

simple “beam spoiling” approach to trade range resolution for reduced range sidelobes 

within the LS MMF context [27] is to replace the rows of A  surrounding the thm  row 

with zeros.  Thus the matrix A  is obtained by setting the elements of the / 2  K  rows 

above and the / 2  K  rows below the thm  row to zero so that the resulting range 

resolution closely approximates the nominal resolution of the matched filter. 

IV.  EVALUATION OF PCFM WAVEFORMS 

To evaluate the efficacy of the new CPM implementation for polyphase radar codes, 

two sets of waveforms are considered. The first set involves different implementations of 

a code derived from the basic LFM waveform and is used in Sections IV.A through IV.D 

to establish a performance baseline. The second set is used in Sect. IV.E to demonstrate 
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the capability of the CPM implementation to generate a physically realizable radar 

emission from an existing optimized code (here via a length-64 polyphase Barker code 

[28]). 

For the first set, four different implementations of the P4 code [4] are considered 

(see Table 1), where each implementation generates a continuous waveform that is 

loaded onto an arbitrary waveform generator (AWG). This code is chosen because its 

implementation via CPM using the rectangular (RECT) shaping filter ( )g t  yields a 

PCFM waveform that very closely approximates the well-known LFM chirp (with 

piecewise linear phase transitions) and thus serves as a standard benchmark for 

comparison. The four implementations considered include this version, denoted as 

PCFM-RECT, another version denoted as PCFM-RC that uses the raised-cosine shaping 

filter, an “Ideal Chip” version of the waveform that is based on rectangular chips with 

instantaneous transitions (or as nearly so as can be physically achieved), and a “10% 

Transition” version of the Ideal Chip waveform where each phase transition involves a 

linear interpolation in phase over a time interval that is 10% of each chip width. This 

final waveform represents a known ad hoc approach to remediate the extended spectrum 

of the idealistic waveform due to “instantaneous” phase switching [6, Sect. 6.8].   

 
Table 1:  Waveform implementation schemes and their characteristics 

Implementation Waveform Characteristics 

Ideal Chip Fastest phase transition possible given AWG limitations 

10% Transition Linearly interpolated phase transition over 10% of chip width 

PCFM-RECT Uses a rectangular filter for g(t);  

PCFM-RC Uses a raised-cosine filter for g(t) 

 

Each of the waveforms in Table 1 is generated in Matlab using a sampling rate of 

150 samples / chip width and 64N   chips. Each waveform is then loaded onto an AWG 
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that is used to drive an existing S-band test setup that includes a mixer, pre-amplifier, 

bandpass filter, and a class AB solid-state GaN power amplifier (PA). A loopback 

capture of the resulting PA output “emission” is down-converted to baseband, is analog 

lowpass filtered, and is then sampled at a rate commensurate with 150 samples / chip 

width to match the original waveform. In this manner, for each implementation there is 

an “AWG waveform” and a “loopback emission” that allow comparison of how each 

implementation is affected by transmitter spectral shaping and nonlinear distortion. While 

receiver-induced distortion may also be present in the loopback emission, it is expected to 

be negligible relative to the transmitter distortion due to the absence of receiver clipping. 

The four implementations are evaluated in terms of pulse shape, spectral content, 

range straddling mismatch losses, and pulse compression filter response. The pulse shape 

is examined to demonstrate the deficiency of idealized coded waveforms and, in contrast, 

the practical benefit of CPM-implemented PCFM waveforms. The spectral content of the 

waveform, and by extension the physical emission from the transmitter, is used to 

illustrate the robustness of PCFM waveforms to transmitter distortion and the potential to 

improve spectral containment for high-power radar systems, particularly given the 

expectation of more stringent spectral requirements in the future (the current Radar 

Spectrum Engineering Criteria (RSEC) roll-off of 20 dB/decade may become 30 or 40 

dB/decade [29]).  Spectral content also determines the nature of the digital pulse 

compression filter in the receiver and the impact on range straddling losses.   

A) Transmit Effects - Pulse Shape 

The pulse shape of the loopback emission that results from driving each of the 

AWG-implemented waveforms from Table 1 into the transmitter provides an indication 
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of the impact the transmitter (without antenna effects) has upon each individual 

waveform.  Figures 5 and 6 depicts the pulse shapes (full and zoom-in, respectively) of 

the loopback emissions that result for the four different implementations of the P4 code.  

 
Figure 5:  Pulse shapes for the four loopback emissions following transmitter distortion 

 

 
Figure 6:  Pulse shapes for the four loopback emissions following transmitter distortion (zoom-in) 

 

As expected the Ideal Chip version, and to a slightly lesser degree the 10% 

Transition version, induce nulls that coincide with chip transitions. This effect is well 
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known and arises from intrinsic bandlimiting in the transmitter. In contrast, the two 

PCFM emissions, particularly the PCFM-RECT version, realize only small amplitude 

ripples as a result of the transmitter nonlinearity that induces phase modulation (PM) to 

AM effects, which is common for power amplifiers. 

B) Transmit Effects - Spectral Content 

The cause of the chip transition nulls in Figs. 5 and 6 can be observed by comparing 

the spectral content of each implementation in terms of the AWG-implemented 

waveform and subsequent loopback emission (Figs. 7-10). In Figs. 7 and 8, the AWG 

waveforms for the Ideal Chip and 10% Transition versions clearly have significant 

spectral spreading, though the latter is somewhat reduced by the ad hoc incorporation of 

phase transitions. Due to this extended spectral content, the spectral shaping induced by 

the transmitter imposes a penalty in terms of distortion and, consequently, mismatch loss. 

In quantitative terms, the spectral content of the AWG waveform and loopback emissions 

begin deviating from one another in the vicinity of the first sidelobe (around -13 dB) for 

both of these cases.  Also, the loopback emission for the 10% Transition case possesses a 

noise-limited bandwidth of roughly 25 MHz (not observable for the Ideal Chip loopback 

emission). 

By comparison, the spectral content of the PCFM AWG waveforms and loopback 

emissions (Figs. 9 and 10) have far less distortion because the CPM structure, as 

evidenced by its widespread use in power and spectrally constrained communication 

applications [19-23], is amenable to the inherent spectral shaping and nonlinear nature of 

the transmitter (particularly the power amplifier). While the PCFM loopback emissions 

also experience some deviation in spectral content relative to their respective AWG 
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waveforms, this distortion only occurs below roughly -34 dB, thus inducing far less 

mismatch. Furthermore, the PCFM emissions possess noise-limited bandwidth of roughly 

15 MHz, which is 60% of that demonstrated by the 10% Transition case, even though the 

necessary bandwidth (e.g. at -3 dB) is unchanged. As such, PCFM waveforms may serve 

as an enabler to address future requirements of spectral containment for high-power radar 

operation.  

 
Figure 7:  Spectral content of Ideal Chip waveform before and after the transmitter 
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Figure 8:  Spectral content of 10% Transition waveform before and after the transmitter 

 

 

 

 
Figure 9:  Spectral content of PCFM-RC waveform before and after the transmitter 
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Figure 10:  Spectral content of PCFM-RECT waveform before and after the transmitter 

 

C) Receive Effects – Sampling and Mismatch 

A pulsed emission cannot be truly bandlimited. The receiver sampling rate involves 

a trade-off in terms of data throughput / computational cost, noise rejection, and 

acceptable distortion from undersampling. To examine the four implementations with 

respect to receive sampling, the digitized AWG waveform and loopback emission, both 

of which consist of 150 samples per chip width, are lowpass filtered and downsampled. 

In accordance with the examination of straddling (cusping) loss in [12], here a Gaussian 

lowpass filter having a length of 4 chip widths and a cutoff frequency corresponding to 

the downsampling factor are used to decimate both the AWG waveform and loopback 

emission. We consider final sampling rates commensurate with K = 1, 2, 3, and 5 samples 

per chip width according to the definition in (4). Delay shifting the loopback emission 

prior to decimation permits the determination of straddling loss effects via (5) that are a 

result of mismatch from undersampling and transmitter distortion. 
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Figures 11 and 12 show the straddling loss with respect to delay  0,  sT  as a 

function of per-chip sampling factor K for the Ideal Chip and PCFM-RECT 

implementations, respectively. For both cases it is observed that 1K  sample per chip 

yields the highest straddling loss, with PCFM-RECT being slightly worse at the 

maximum. As K increases to 2 and greater, however, it is clear that the PCFM waveform 

experiences a lower degree of loss. Noting that the Ideal Chip implementation never 

attains a true match (0 dB), these results may also be partially attributed to the distortion 

the Ideal Chip waveform encountered in the transmitter. As such, Figs. 11 and 12 can be 

considered to represent total mismatch from transmitter effects and receive sampling.  

Using the straddling loss results in Figs. 11 and 12, as well as those for the 10% 

Transition and PCFM-RC waveforms (not shown), the maximum and mean straddling 

losses as a function of K are shown in Figs. 13 and 14, respectively. As expected, both 

figures reveal the straddling loss to decrease monotonically as K increases for all 

implementations, albeit with diminishing benefit. In Fig. 13 it is observed that, aside from 

1K , the CPM implementations yield a lower maximum loss than the idealized 

implementations. Likewise in Fig. 14 it is found that the CPM implementations have a 

lower measured mean loss for all values of K. 
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Figure 11:  Straddling loss of Ideal Chip vs delay offset τ for K samples per chip width 

 

 
Figure 12:  Straddling loss of PCFM-RECT vs delay offset τ for K samples per chip width 
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Figure 13:  Maximum straddling loss over  0,  sT  vs sampling rate  

 

 

Figure 14:  Mean straddling loss over  0,  sT  vs sampling rate  

 

D) Receive Effects – Range Sidelobe Response  

Using the versions of the AWG waveform and loopback emission decimated to 

5K  samples per chip interval, Figs. 15–18 reveal the resulting range correlations 
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where the AWG version is employed as a matched filter to the “point target reflection” of 

the decimated loopback emission. For the idealized waveform results in Figs. 15 and 16, 

the range sidelobes at the outermost delay offsets are observed to increase as one would 

expect from the use of the P4 code under idealized implementation [4]. In contrast, Fig. 

17 shows the gradual range sidelobe roll-off that one expects from the LFM, which is 

closely approximated by the PCFM-RECT implementation of the P4 code. Note the 

slight ripple that occurs at the lower sidelobe values is due to the modest transmitter 

distortion of CPM. Finally, Fig. 18 illustrates the results for PCFM-RC, which is a blend 

of the LFM and P4 range sidelobe responses. 

 
Figure 15:  Matched filter response to loopback emission of Ideal Chip waveform 
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Figure 16:  Matched filter response to loopback emission of 10% Transition waveform 

 

 
Figure 17:  Matched filter response to loopback emission of PCFM-RECT waveform 
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Figure 18:  Matched filter response to loopback emission of PCFM-RC waveform 

 

 

E) CPM Implementation of Previously Optimized Codes 

Whereas the P4 code employed above represents a sampled version of an LFM, now 

a previously optimized code is considered which, when implemented using CPM, 

produces a nonlinear FM (NLFM) waveform for PCFM. Here a length-64 polyphase 

Barker code [28] is used.  With the test setup described in [14] and 25 samples per chip 

width, followed by decimation using a 4 chip width Gaussian lowpass filter to 5K  

samples per chip width, the resulting decimated AWG waveform is used as the matched 

filter to the similarly decimated loopback emission. Figure 19 depicts the matched filter 

responses for the Ideal Chip and PCFM-RECT implementations (the results from the 

other two implementations are negligibly different). Of particular note is that in terms of 

peak sidelobe level (PSL), the criterion for which this code was optimized [28], the Ideal 

Chip implementation yields far better performance than the CPM-implemented 

waveform. It can thus be inferred that CPM, by introducing a deviation from the idealistic 

square chip structure upon which optimization was performed, results in some 
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degradation in the level of the range sidelobes, though the trade-off is that CPM 

facilitates the capability for actual implementation on a high-power radar.   

 
Figure 19:  Matched filter responses for Ideal Chip and PCFM-RECT implementations of a 64-

length polyphase Barker code 

 

By applying the mismatch filter (MMF) formulation of Sect. III, Fig. 20 illustrates 

the MMF responses for the Ideal Chip and PCFM-RECT implementations. Here 

/ 2 3  K  rows above and below the thm  row are set to zero, the mismatch filter is 

3M  times longer than the waveform, and the MMF for each case is diagonally loaded 

so as to achieve an identical mismatch loss of 0.5 dB. Under the MMF formulation, one 

observes that both implementations realize PSL reductions of roughly 8 dB. Thus the 

MMF can be used to compensate somewhat for the increase in range sidelobes 

experienced by the CPM implementation due to deviation from the idealized optimization 

framework.   

These results for an optimized code demonstrate the need to account for the code-to-

waveform implementation within the optimization process. In so doing, by direct 
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extension one could also incorporate the spectral shaping and nonlinear aspects of the 

transmitter. In the companion paper [14], this new paradigm of optimizing the physical 

radar emissions is explored. 

 
Figure 20:  Mismatch filter responses for Ideal Chip and PCFM-RECT implementations of a 64-

length polyphase Barker code 

 

CONCLUSIONS 

In this first paper of the two-part sequence, the continuous phase modulation (CPM) 

framework was modified for use as a means to implement radar codes as continuous 

polyphase-coded FM (PCFM) waveforms and ultimately as physical emissions. The new 

CPM scheme is amenable to the power and spectral efficiency goals of current and future 

radar systems that rely upon the operation of a saturated power amplifier to maximize 

power-added efficiency and associated distortion it induces. Furthermore, as is well-

known for communication applications, CPM can be easily implemented in hardware 

using standard FM thus making it applicable to legacy radar systems as well without the 

need of an arbitrary waveform generator. 
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It was shown that the PCFM waveforms incur less distortion from the transmitter 

than traditional implementations of polyphase codes and, as a result, less mismatch loss 

on receive. It was also found that the waveforms produced by the CPM implementation 

of previously optimized codes experience some degradation in terms of range sidelobes 

with respect to the idealistic coded waveform (which possesses theoretically infinite 

bandwidth). For this reason, the companion paper addresses the notion of “transmitter-in-

the-loop” optimization, whereby the code is determined according to the characteristics 

of the transmitter-distorted emission of the CPM-generated PCFM waveform. 
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