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Abstract 

This paper addresses polyphase code optimization with respect to the nonlinear FM 

waveform generated by the CPM implementation. A greedy search leveraging the complementary 

metrics of PSL, ISL, and spectral content yield extremely low range sidelobes relative to 

waveform time-bandwidth product. Transmitter distortion is also incorporated into the 

optimization via modeling and actual hardware.  Thus the physical radar emission can be 

designed to address spectrum management and enable the physical realization of advanced 

waveform-diverse schemes. 

Keywords 
radar, pulse compression, continuous phase modulation, nonlinear distortion, radio spectrum 

management, optimization methods, greedy algorithms 

 

 

I.  INTRODUCTION 

The traditional approach to nonlinear FM (NLFM) waveform design relies on the 

identification of a suitable continuous phase/frequency function of time (see Sect. 5.2 of 

[3] for an overview). Many such methods are based on the principle of stationary phase 

[4–6], which relates the power spectral density and the chirp rate at each frequency and 

thereby shapes the spectral content of the waveform accordingly. Another class of NLFM 

is hyperbolic FM (HFM), otherwise known as linear period modulation (LPM) [7,8]. 

Other design approaches include higher-order polynomials [9], use of the Zak transform 

[10], and hybrid methods that also employ amplitude tapering on receive [11,12]. In this 

paper, the authors explore the optimization of the class of NLFM waveforms denoted as 

polyphase-coded FM (PCFM) that are made possible through the continuous phase 

modulation (CPM) implementation. 

In the companion paper [13], it was shown that the CPM implementation commonly 

used for aeronautical telemetry, deep-space communications, and Bluetooth devices can 



3 

be modified to implement arbitrary polyphase radar codes as PCFM waveforms. With the 

use of appropriate mismatch filtering on receive to compensate for increased range 

sidelobes resulting from design mismatch, this scheme provides a means to use the large 

existing library of polyphase codes on high-power radar systems. Furthermore, this new 

code/waveform linkage provides the opportunity to optimize a code according to the 

characteristics of the resulting continuous waveform, thereby ameliorating the design 

mismatch problem. Such an approach can likewise be extended to incorporate the 

distortion induced by the physical transmitter and thus facilitate actual physical emission 

optimization. 

The virtue of a coded structure is that its discrete nature allows for optimization of 

the temporal signature through various code-search strategies [14–16]. Extension of this 

discrete structure into the continuous domain via appropriate implementation [13] and 

through the subsequent transmitter distortion thus provides a framework for optimizing 

physical emissions by these same code-search strategies. Figure 1 illustrates this general 

notion of emission optimization in which a candidate polyphase code is selected, is 

implemented as a continuous PCFM waveform via CPM, and then is injected into the 

transmitter where the waveform encounters spectral shaping and nonlinear effects. 

Assessment of the resulting physical emission (a distorted version of the waveform) is 

used to close the optimization loop and thereby drive the code-search process. 
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Figure 1:  Notional representation of the optimization of physical radar emissions 

 

Cast in the manner of Fig. 1 using the CPM implementation, the emission 

optimization problem involves the determination of a sequence of N phase values (more 

specifically, phase change values). If each of these N values can take on one of L possible 

states, then there exist NL  possible coded emissions (assuming, for operational time 

scales, that the transmitter behavior is time invariant). For even modest values of N and L, 

the computational requirements to search all possibilities quickly become intractable, 

thus necessitating the search for adequate suboptimal solutions. Consequently, a variation 

of the greedy code-search strategy known as Marginal Fisher’s Information (MFI) [16], 

recently demonstrated as an effective means to search a high-dimensional solution space, 

is employed. While the high dimensionality precludes the practical determination of a 

globally optimal solution, it is shown that this greedy approach yields effective 

suboptimal results, in part by leveraging a “performance diversity” concept that alternates 

among multiple different, yet complementary, performance metrics. Also, for some 

sensing applications, the argument can be made that many “good enough” emissions are 

even preferable to a single “best” emission. 

For emission optimization, three operational paradigms are considered:  1) an 

idealized distortion-free transmitter; 2) transmitter distortion defined by a mathematical 
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model; and 3) incorporation of a physical transmitter. The distortion-free case is included 

to demonstrate the potential of optimizing PCFM waveforms in this manner, with the 

special classes of linear FM (LFM) [3, Sect. 4.2] and hyperbolic FM (HFM) [7,8] 

waveforms used as benchmarks for comparison. Using mathematical models for 

transmitter distortion [17] provides an efficient way to account for realistic transmitter 

effects. This Model-in-the-Loop (MiLo) version of emission optimization may be useful 

to determine the potential capabilities and deficiencies of various transmitter 

components/topologies and may also serve as a starting point for inclusion of the physical 

transmitter in the optimization process.  Note that the efficacy of the MiLo approach is 

clearly dependent upon how well the mathematical model reflects reality. Finally, 

Hardware-in-the-Loop (HiLo) emission design involves the incorporation of a physical 

transmitter into the optimization procedure.  An L-band radar test bed at the University of 

Kansas is used to demonstrate HiLo design. 

The remainder of the paper is organized as follows. Section II establishes a formal 

framework that connects the discrete code to the physical emission, thus facilitating 

optimization. Section III discusses the code-search process used herein and the various 

optimization criteria. In Section IV, the distortion-free case is considered, and optimized 

PCFM waveforms are assessed according to standard benchmarks. Finally, the capability 

to optimize physical emissions for MiLo and HiLo schemes is demonstrated (Section V). 

 

II.  CODIFYING THE EMISSION 

As shown in Figure 1, the physical PCFM radar emission can be characterized by 

three stages: 1) an underlying discrete code comprised of a sequence of phase values that 
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2) undergoes a transformation into a continuous signal followed by 3) a subsequent 

transformation representing the distortion imparted by the transmitter. Per the 

formulation in [13], let 0 1 2, , , , N     represent the collection of 1N  phase values 

in a constant-envelope polyphase code. The set 1 2, , , N    is thus the collection of 

“shortest path” phase changes between the pairs of adjacent phase values (see (1) and (2) 

in [13]).  Noting that the initial phase 0  is arbitrary with regard to the set of N phase 

changes, the structure of the code can be compactly represented as the length-N vector  

 1 2

T

N  x .                                                   (1) 

The continuous phase modulation (CPM) implementation of radar codes can be 

expressed in a compact manner as the composite operator 

 CPM( ; )s t Tx x                                                      (2) 

representing [13, Fig. 4] that generates the continuous-time PCFM waveform associated 

with the particular phase-change code x.  Likewise, the distortion imparted by the 

transmitter onto the continuous waveform can be represented by the operation 

   Tx Tx CPM( ; ) ( ; )u t T s t T T    x x x  ,                                     (3) 

which produces the physical emission launched from the radar. Finally, defining the 

operation  ( ; )u t x  as the performance evaluation of the resulting emission according to 

some desired characteristic(s) like peak sidelobe level (PSL), integrated sidelobe level 

(ISL), spectral containment, etc., the design problem can thus be stated as: 

“optimize  ( ; )u t x  by selecting the parameters in  1 2

T

N  x ” 
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according to a specified criteria for  (see Section III.D). Hence, the notional emission 

generation and optimization framework of Fig. 1 can be illustrated from a mathematical 

perspective as shown in Fig. 2.   

 
Figure 2:  Mathematical representation for the optimization of PCFM radar emissions 

 

While it is beyond the scope of this present work to explore it in depth, the specific 

nature of the transmission operator TTx plays an important role in the actual radar 

emission. Here, as a proof of concept, a standard transmitter distortion model and a 

specific hardware instantiation are considered. However, the myriad combinations of 

transmitter components and design topologies [18], combined with physical effects such 

as mutual coupling and calibration of antenna arrays [19–21], as well as emerging 

operating modalities such as MIMO [22] and adaptive waveform design [15], all serve to 

illustrate a rich research problem with regard to the modeling, design, and incorporation 

of the effect of TTx.  It is clear that significant advances will necessarily require a holistic 

consideration of the signal processing (waveform generation and receive processing), the 

systems engineering attributes/capabilities for the particular sensing modality, and the 

physical electromagnetic (EM) effects at the given operating frequencies.  Also note that, 

for a physical system, there is a practical limit to how well the modeled TTx can actually 

be known, thus promoting the concerted use of both MiLo and HiLo approaches. 
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III.  SEARCHING FOR OPTIMALITY 

Numerous approaches exist for searching the NL  possible coded emissions (genetic 

algorithms, simulated annealing, etc.) with varying degrees of speed and effectiveness. In 

contrast to a traditional code-search effort, the computational burden of the present 

problem is more onerous due to the generation of the physical emission via (2) and (3) 

and the subsequent evaluation of  ( ; )u t x . The following subsections outline the 

general search strategy used herein, as well as some specific procedures to enhance and 

accelerate the search.  A multi-metric performance framework is also incorporated that 

aids in the avoidance of inadequate locally optimal solutions.    

A) Systematic Search for Optimized Emissions 

The search strategy used here is a piecewise greedy approach whereby 1N   

parameters in the phase-change vector x are held constant while the remaining parameter 

is perturbed to each of the L  possible phase-change values [16]. The particular perturbed 

value (say the th ) of this thn  parameter that provides the greatest improvement 

according to the performance evaluation  subsequently replaces the previous value for 

the thn  parameter, following which the process is repeated for a different parameter. If no 

improvement is possible, the parameter value is unchanged.   

The phase change parameter n  was defined in [13] as 

 
 

if

2 sgn if

n n
n n

n n n

  
 

    


   

 
 ,                           (4) 

 

where 

 

1    n n n      for     1, ,n N ,                   (5) 
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sgn( )  is the signum operation, and n  is the phase value of the thn  chip in the length-

(N1) polyphase code.  Because the search process involves a piecewise perturbation of 

the code parameters, it is instructive to note that a search in  space is different from a 

search in  space. For implementation convenience, the latter is considered. 

To initialize the search process, an initial phase-change code is defined as 

(0) (0) (0) (0)
1 2

T

N     x ,                                             (6) 

which produces the continuous waveform  (0) (0)
CPM( ; )s t Tx x  and the subsequent 

physical emission  (0) (0) (0)
Tx Tx CPM( ; ) ( ; )u t T s t T T      

x x x . Likewise, after the thi  

perturbation stage, the phase-change code is 

( ) ( ) ( ) ( )
1 2

T
i i i i

N     x ,                                             (7) 

with associated waveform  ( ) ( )
CPM( ; )i is t Tx x  and physical emission 

 ( ) ( )
Tx CPM( ; )i iu t T T 
 

x x .   

If the th( 1)i   stage involves the perturbation of the thn  phase-change parameter n , 

then (7) is modified by using (4) as 

 ( 1) ( ) ( ) ( ) ( ) ( )
1 1 , 1, , , , , ,

T
i i i i i i

n n n n n N    
 

   
 

x                   (8) 

for the L  possible values of the perturbation ,n , which are equally spaced on  ,   

including 0 (no change). With the subsequent candidate emission resulting from (8) as a 

function of ,n  defined as 

 ( 1) ( 1)
Tx CPM( ; )i i

n nu t T T  
 

x x ,                                           (9) 
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the optimal ˆ,n
  with index ˆ  is thus determined by 

 ( 1) ( )ˆ arg min ( ; ) ( ; )i i
nu t u t         x x                          (10) 

depending on the prescribed performance metric .  Once the optimal perturbation value 

ˆ,n
  is determined, then the associated ( 1)ˆ i

n


x  becomes ( 1)i
x . The process is then 

repeated for one of the other N  phase-change parameters to obtain ( 2)i
x  and so on until 

the desired performance is attained for the physical emission. 

B) Optimized Perturbation Ordering 

In the search procedure just described, the ordering of perturbation of the phase-

change parameters was not considered. From the perspective of a greedy search 

paradigm, it is appropriate to follow an ordering whereby the particular parameter being 

perturbed is the one that yields the greatest performance improvement.  However, since it 

is not known a priori which parameter n  can be perturbed to provide the greatest 

improvement, it is necessary to consider the perturbation of each of the N parameters 

separately and thereafter perform an a posteriori selection.  Note that for the perturbation 

of n  for each 1, 2, ,n N , the other 1N   parameters are held constant such that this 

procedure involves N separate parallel searches for the thi  perturbation stage.  This 

search process can be stated formally by extending (10) as 

   ( 1) ( )ˆˆ, arg min min ( ; ) ( ; )i i
n

n

n u t u t         x x                    (11) 

such that replacing the particular ( )
ˆ
i

n  with  ( )
ˆˆ ˆ,

i
n n

   yields the most improvement 

in the given metric . 
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The “super-greedy” search in (11) involves an N-fold increase in computational cost 

as compared to a pre-determined or random ordering of parameter perturbations. While 

parallel processing could clearly be employed to compensate for this high computational 

burden, a line search technique is presented to reduce the number of necessary 

performance evaluations. 

C) Line Search in Phase Space 

As stated in Section III.A, the search process necessitates the completion of a 

performance evaluation of each candidate emission as ( 1)( ; )i
nu t    x  for a discrete set of 

perturbation values ,n  for 1, 2, , L  and a given index n . To avoid the brute force 

approach of evaluating the emission for all L values of ,n  on  ,  , the well-known 

Fibonacci line search [23], or some variation thereof, can be used to focus successively 

onto the region(s) of ,n  for which the greatest improvement is obtained via (10).   

It is assumed that ( 1)( ; )i
nu t    x  is a continuous function of ,n  on  ,   for a 

fixed n, though not necessarily convex.  Hence, a coarse gridding of the interval  ,   

into J  sections can be established so that a separate line search is performed on each 

section, followed by a selection of the best result from among the J  sections. The benefit 

of such a search strategy is evidenced by noting the impact of doubling the number of 

discrete phase-space values for ,n  to 2L .  In this case, the brute force approach 

requires L  additional performance evaluations, while the piecewise line search need only 

require J  additional evaluations, which can be a significant computational savings for 
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modest values of J. For example, the results in Section IV indicate that the piecewise line 

search works well for J  4. 

D) Emission Assessment 

There are multiple assessment metrics for  with which one could optimize 

emission performance.  Perhaps the most common metric is the peak sidelobe level (PSL) 

[24], denoted PSL, and given by 

 PSL

( ,0)
( , ) max

(0,0)

 
  


     for    m ,T   ,                       (12) 

where  

( , ) ( ; ) ( ; )

T
j t

t T

e u t u t dt   






  x x                                    (13) 

is the ambiguity function in terms of delay   and Doppler frequency  . The PSL metric 

in (12) considers the zero-Doppler cut of (13), where the interval  m m,    corresponds 

to the time (range) mainlobe and  ,T T   is the time support of ( ,0)   due to finite 

pulse length. The PSL metric indicates the largest degree of interference that one point 

scatterer can cause to another at a different range offset. 

Another important metric is ISL, the integrated sidelobe level (ISL) [24], which for 

the zero-Doppler cut of the ambiguity function can be defined as  

  m

m
ISL

0

( ,0)

( , )

( ,0)

T

d

d





  

  

  

 





.                                       (14) 
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The ISL metric is particularly useful for establishing the susceptibility to distributed 

scattering such as clutter. 

The metrics in (12) and (14) may also be expanded to encompass non-zero Doppler 

by generalizing the mainlobe and sidelobe regions to correspond to the interior and 

exterior, respectively, of a range-Doppler ellipse. From a practical standpoint, the range-

Doppler sidelobe region need only comprise a Doppler interval that depends on feasible 

target velocities. Thus a Doppler-tolerant aspect may also be incorporated into these 

metrics by defining a skewed range-Doppler mainlobe ellipse. 

For code optimization approaches in the literature, PSL tends to be the most 

common basis for design. In contrast, most techniques to design continuous NLFM 

waveforms rely upon shaping of the waveform power spectral density [11] to mimic the 

effects of amplitude tapering while maintaining the constraint of a constant envelope. In 

that same vein, a spectrum-based metric that is posed in terms of the error with respect to 

a frequency template is defined to assess such waveforms. To that end, let ( )W f  be a 

frequency weighting template (for example, a Gaussian window) that is scaled to have 

energy commensurate to that of a constant modulus pulse of duration T.  For the emission 

frequency response ( ; )U f x , parameterized on the phase-change code x , a frequency 

template error (FTE) metric FTE can be defined as 

 
H

L

FTE

H L

1
( ; ) ( ; ) ( )

qf
p p

f

U f U f W f df
f f

 
   

 
x x ,                (15) 

where Lf  and Hf  demarcate the edges of the frequency interval of interest.  The values p 

and q define the degree of emphasis placed on different frequencies.  For p = 1 and q = 2, 

the metric in (15) defines a form of frequency-domain mean-square error (MSE). It is this 
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version that shall be applied later in the paper. Alternatively, p > 1 overly emphasizes 

frequencies with higher power (in-band) and p < 1 overly emphasizes frequencies with 

lower power (out-of-band). Since the desire is to vary the phase as a free parameter for 

optimization, it is only the spectral envelope that is used in (15) for optimization.  Also, 

because the power spectral density (PSD) is the Fourier transform of the autocorrelation, 

the PSD-based metric of (15) is complementary to metrics based on the ambiguity 

function (13) such as PSL (12) and ISL (14) in terms of optimizing the matched filter 

response of a waveform. 

E) Performance Diversity  

The metrics in the previous section provide different ways to assess the same 

fundamental goal – minimizing the range (and perhaps also Doppler) sidelobes. From an 

optimization perspective, these complementary metrics may be exploited to facilitate a 

form of performance diversity since each metric realizes a different performance surface 

with regard to the emission, especially with regard to the locations of local minima.  In 

other words, if one metric gets stuck in a local minimum, switching to a different yet 

complementary metric may allow continued progress, with no further improvement 

occurring only in the unlikely event that all metrics experience the same local minimum.  

Note that while multi-objective optimization generally involves the balancing of different 

conflicting metrics, the multi-metric approach described here involves complementary 

metrics that provide different perspectives on the same criterion: lower range sidelobes. 

With regard to waveform optimization consider the example of a phase transition 

code x  comprised of 64 ( N) elements. Figure 3 depicts the possible change in 

performance metric (the difference portion of (10)) when a single element of x  
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(specifically, index 23n  ) is varied over the interval [ , ]   under the condition of an 

ideal transmitter.  Note that the three (ISL, PSL, FTE) minima occur at slightly different 

phase transition values due to different underlying performance surfaces which, 

compounded over multiple optimization stages, can subsequently produce quite different 

waveforms at convergence. Furthermore, upon expanding to consider the best 

perturbation index n̂  over the set of all 64 possible phase transitions via (11), Fig. 4 

reveals that the three metrics lead to three quite different results: the PSL metric indicates 

ˆ 51n   is the best phase transition to perturb; while ISL and FTE metrics indicate ˆ 59n   

and ˆ 61n  , respectively. 

 
Figure 3: Change in performance metric  (for PSL, ISL, and FTE) as a function of different values 

for phase transition n = 23 
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Figure 4: Best change in performance metric  (for PSL, ISL, and FTE) as a function of transition 

index n.  The different metrics indicate that different transition indices are the best: PSL( n̂ = 51 ), 

ISL( n̂ = 59 ), and FTE( n̂ = 61 ) 

 

Employing this performance diversity paradigm, it has been found that emission 

optimization performance for all these complementary metrics can be significantly 

improved when a policy is instituted whereby the particular assessment metric is varied 

for different optimization stages. The nature of the policy is arbitrary and could involve, 

for example, a fixed interval of permutation stages for each metric in turn or, 

alternatively, an independent random selection of the metric for each stage. While global 

optimality is still not guaranteed, this form of metric-varying optimization helps avoid 

more of the local minima, since convergence would only halt if none of the metrics could 

provide sufficient further improvement. 

IV. DISTORTION-FREE OPTIMIZATION 

To evaluate the efficacy of this new design approach in the context of existing 

waveforms, first consider the case of an idealized transmitter with no distortion. To 

assess the performance of optimized PCFM waveforms, comparisons are made with the 
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well-known LFM chirp and the linear period modulation (LPM) waveform (otherwise 

known as hyperbolic FM, a class of NLFM [8]). For the same time-bandwidth product, 

these waveforms provide benchmarks for range resolution (LFM) and PSL (LPM). 

Specifically, because a reduction in range sidelobes corresponds to better spectral roll-

off, the result is degradation in range resolution compared to the LFM benchmark.  

However, the PSL value for LFM is known to be quite high at −13.5 dB. In contrast, 

LPM waveforms have a lower bound on PSL of [7] 

LPM bound 10PSL 20log ( ) 3BT    dB                   (16) 

for time-bandwidth product BT, which establishes a useful benchmark for sensitivity. 

For the idealized transmitter, no distortion occurs so  Tx( ; ) ( ; ) ( ; )u t T s t s t x x x . 

Consider optimizing this idealized PCFM emission for a phase-transition code x  

comprised of 64 ( N) elements, where each individual value of   can take on one of 64 

( L) phase transitions drawn from a uniform sampling on the interval [ , ]   and 

indexed as 1,2, , L , where 1  corresponds to     and L  corresponds to 

   . Consequently, we may express the thn  phase transition n  with index n  as 

1
2

1

n
n

L
  

 
  

 
                       (17) 

for 1,2, ,n N . Here the CPM implementation employs the rectangular (RECT) 

shaping filter [13] which, using (17), closely approximates an LFM waveform when 

n n . The optimization process is initialized with this LFM coding and the 

autocorrelation mainlobe for (12) and (14) is defined with m nullmin[ , 2.5 ]pT   where 
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null  is the distance from the mainlobe peak to the 1
st
 null and 2.5 pT  is used to bound the 

mainlobe width, for pT  the transition interval defined in [13]. 

According to the mainlobe bandwidth for PCFM waveforms as defined in [13, Sect. 

3], it is straightforward to show that N  provides an approximate upper limit on the time-

bandwidth product (based on the first spectral null). Hence, for 64N   the bound from 

(16) reveals a PSL lower limit of 39.1  dB for LPM waveforms [7]. 

Using the metrics for PSL (12), ISL (14), and FTE (15) separately, Fig. 5 shows the 

autocorrelations of the resulting optimized waveforms. In each case, the search process 

from (11) is applied until no further convergence is observable (that is, a local minimum 

is reached). Also shown in Fig. 5 is the result obtained from the performance diversity 

paradigm in which the search process from (11) is repeated using the metric ordering 

{ISL, PSL, FTE, ISL, PSL, FTE, ISL, PSL, FTE, PSL}, where the converged local 

minimum solution for the metric in each step serves as the initialization of the next step. 

This ordering is arbitrary, with the cycling structure used to avoid a successive repeat of 

the same metric which would have no benefit.  A comparison of the four cases (ISL, PSL, 

FTE, and performance diversity) reveals that performance diversity yields substantial 

improvement in sidelobe levels relative to the three individual metrics.   
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Figure 5:  Autocorrelation of the optimized ideal emissions using the PSL, ISL, and FTE metrics 

individually and the performance diversity paradigm 

 

 

 
Figure 6:  Autocorrelation of the optimized ideal emissions using the PSL, ISL, and FTE metrics 

individually and the performance diversity paradigm (mainlobe zoom-in) 

 

Figure 6 illustrates the mainlobe width for the different waveforms relative to the 

LFM waveform.  Table 1 quantifies the resolution for 3 dB and 6 dB mainlobe widths 

relative to that of the baseline LFM waveform and the final PSL, ISL, and FTE metrics 

for the four optimized waveforms (ISL only, PSL only, FTE only, and performance 



20 

diversity). It is found that optimization according to PSL only yields the least 

improvement over LFM for all three performance metrics (based on final PSL, ISL, and 

FTE values). That said, PSL optimization experiences little range resolution degradation 

relative to LFM. While a marked improvement is observed when using ISL or FTE 

individually, the clear winner in terms of sidelobe reduction is when all three metrics are 

used in the framework of performance diversity. In fact, the final PSL value of 40.2  dB 

for performance diversity is 1.1 dB better than the 39.1  dB lower bound defined above 

for LPM waveforms. The trade-off for such improvement is a ~30% degradation in range 

resolution (mainlobe broadening) relative to LFM. 

Table 1:  Quantified performance for optimization of idealized emissions 

 

Table 2 provides the indices employed by (17) to generate the resulting optimized 

PCFM waveforms. It is interesting to consider the associated phase transition sequences 

shown in Fig. 7 which represent the time-frequency behavior. Compared to the initial 

linear phase transition sequence using n n  and L N  in (17) that closely 

approximates LFM, the four optimized waveforms exhibit a seemingly random dithering 

that actually serves to break up the coherency which otherwise produces higher sidelobes. 

This dithering aside, careful examination shows that all four waveforms follow a roughly 

sideways S-shaped path close to the linear trajectory that is akin to traditional NLFM [3, 

Sect. 5.2]. Also, the PSL and FTE sequences have short-term wideband components that 



21 

are similar to the emissions of some species of bats (see Rhinolophidae and 

Mormoopidae in [25]).   

Table 2:  Phase transition indices (vector x) for optimized ideal emissions based on (17) 

 

 
Figure 7:  Discrete phase transition sequence x  of emissions optimized for PSL, ISL, and FTE 

individually and using performance diversity.   

 

In terms of unwrapped phase, the PCFM waveforms generated by the four x 

sequences in Table 2 still approximate the parabolic shape associated with the LFM 

phase progression (Fig. 8). Thus the Doppler tolerance property is also largely retained. A 

close-up of the delay-Doppler ambiguity function for the performance diversity 

optimized waveform is shown in Fig. 9. Where traditional NLFM waveforms possess 
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significant deviation from LFM at the ends of the pulse, which leads to additional ridges 

near the main range-Doppler ridge, these ridges are rather small for the optimized PCFM 

waveforms because the deviation from linear now takes the form of localized frequency 

dithering (Fig. 7). For the performance diversity ambiguity function (Fig. 9), the largest 

range-Doppler sidelobe value outside the main delay-Doppler ridge is −16.4 dB. 

 
Figure 8:  Continuous phase progression of emissions optimized for PSL, ISL, and FTE individually 

and using performance diversity.   Standard LFM is included for comparison. 

 
Figure 9:  Partial delay-Doppler ambiguity function of the emission optimized under the 

performance diversity framework 
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V. OPTIMIZATION OF RADAR EMISSIONS 

Now consider the impact of transmitter distortion and the use of transmitter-in-the-

loop optimization to compensate for distortion-induced sensitivity degradation.  The 

radar transmitter is comprised of multiple components (mixers, filters, amplifiers, etc.) 

that contribute to the distortion of the waveform. The most prominent source of distortion 

tends to be the power amplifier, which induces a nonlinear amplitude compression as a 

result of being operated in saturation to achieve high power efficiency.   

There are essentially two ways in which the transmitter may be incorporated into the 

process of optimizing the radar emission: 1) a Model-in-the-Loop (MiLo) formulation 

that employs a mathematical model of the transmitter; and 2) direct use of Hardware-in-

the-Loop (HiLo). The former can exploit the benefits of high-performance computing and 

massive parallelization to search efficiently for an optimized emission. However, the 

MiLo approach cannot account for all attributes of the transmitter and thus there is a limit 

to the fidelity that it can provide. In contrast, the HiLo approach allows the emission to be 

tuned precisely to the physical hardware, though the physical generation of candidate 

emissions and their subsequent capture for performance evaluation can introduce 

significant latency into the optimization process. Both approaches are considered in the 

next two subsections. 

A) MiLo Optimization 

The simplest approach for transmitter MiLo optimization can be realized using an 

IIR filter such as a Chebyshev filter followed by a mathematical model of the amplitude 

compression of the power amplifier. The filter replicates the spectral shaping of the 

physical system and provides more realistic rise and fall times for the pulse along with 
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the amplitude ripple and phase distortion of a physical system. The power amplifier 

causes nonlinear distortion that compounds the filtering effects.  

Extensive work exists on modeling power amplifier distortion. In this analysis, the 

model of a solid-state amplifier from [17] is adopted as it approximates the physical 

amplifier to be used in the subsequent hardware assessment. Note that greater distortion 

can be expected for tube-based power amplifiers, which remain in widespread use. 

Denoting ( ; )s t x as the filtered version of the waveform that is input to the power 

amplifier, the model-based emission can be expressed as 

 ( ; ) ( ; ) ( ; )u t G s t s tx x x ,                           (18) 

where the compression term G is 

 
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 .                             (20) 

In (20), v is the small-signal gain, 0A  is the saturating amplitude at the amplifier output, 

and b is an integer that controls the softness of transition from linear to nonlinear. For the 

ensuing results the values 10v  , 0 1A  , and 3b   are used. 

Figure 10 shows (in blue) the autocorrelation of the performance diversity waveform 

optimized for an ideal transmitter (from Sect. IV). Driving this waveform into the model 

above introduces distortion that produces increased sidelobe levels (in red) in the amount 

of 4.6 dB for the PSL metric and 2.8 dB for the ISL metric (interestingly, the FTE metric 
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does not change). Applying the performance diversity approach to now optimize the 

model-distorted emission (black trace) provides 4.4 dB of lost sensitivity for the PSL 

metric and 2.2 dB for the ISL metric. However, the FTE metric is now degraded by 2.1 

dB.  Table 3 quantifies the various metrics. 

 
Figure 10:  Emission autocorrelation for the ideal optimization (distortion-free) case, the modeled 

transmitter distortion case, and transmitter Model-in-the-Loop (MiLo) optimization 

 

Table 3:  Quantified Performance for MiLo Optimization 

 

B) HiLo Optimization 

Direct incorporation of the physical transmitter into the optimization process 

naturally accounts for the eccentricities of the hardware and thus can be expected to 

provide the most accurate result. To demonstrate the efficacy of HiLo optimization, the 
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L-band (fc = 1.842 GHz) radar test bed depicted in Fig. 11 is used with the anechoic 

chamber at the University of Kansas to perform free-space emission optimization that 

includes antenna effects. Here a Class A power amplifier is used which, in an attempt to 

mimic some of the distortion effects of a high-power amplifier, is driven well into 

saturation. Specifically, the 1 dB compression point for the amplifier is 6 dBm, and the 

input power driving the amplifier is 11 dBm (thus 5 dB into saturation).   

Following the CPM implementation of a candidate code (performed digitally in 

Matlab), the resulting PCFM waveform is converted to in-phase and quadrature-phase 

(I/Q) components and is then loaded onto the arbitrary waveform generator (AWG). The 

AWG drives the waveform into a single sideband (SSB) modulator that upconverts the 

waveform to L-band. The upconverted waveform is passed through the saturated solid-

state power amplifier and a quad-ridge horn transmit antenna. The receive antenna is a 

standard-gain horn. Following attenuation and downconversion in the receiver, the 

subsequent baseband signal is sampled by the digitizer and passed back to a Matlab 

program running on a laptop (Fig. 11), where the emission is assessed. Due to the 

absence of receiver clipping it is assumed that any distortion induced within the receive 

chain is negligible relative to that introduced by the transmitter. 

The performance diversity emission, optimized under ideal conditions from Section 

IV, is again used as the initialization. Due to buffering delays in the arbitrary waveform 

generator and the digitizer, the HiLo operation on this test bed is much slower than what 

could be achieved in the MiLo case in simulation. Thus, only the PSL metric from (12) is 

used to drive emission optimization. In practice, a high-fidelity model of the system 
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could be employed to obtain an initialization via MiLo that should subsequently only 

require fine tuning with HiLo optimization. 

As expected, the transmitter hardware distorts the idealized emission (Fig. 12) 

yielding 2.7 dB of PSL degradation. HiLo optimization is able to recover 1.5 dB of this 

lost sensitivity. Table 4 quantifies the results according to the various metrics.  Due to the 

use of an available Class A power amplifier, the degree of degradation was rather limited.  

Further studies are planned to investigate the amount of degradation and subsequent 

performance recovery that can be obtained for high-power tube-based amplifiers. 

 

 

Figure 11:  L-band radar test bed (anechoic chamber in background) 

 

Table 4:  Quantified performance for HiLo Optimization 
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Figure 12:  Emission autocorrelation for the ideal optimization (distortion-free) case, the physical 

(hardware) transmitter distortion case, and transmitter Hardware-in-the-Loop (HiLo) free-space 

optimization 
 

 

CONCLUSIONS 

In this second paper of a two-part sequence, it was shown that the continuous phase 

modulation (CPM) implementation of polyphase-code FM (PCFM) waveforms provides 

a linkage that connects the code to the continuous waveform and ultimately to the 

physical radar emission. As a result, the degrees of freedom of the code become the 

means with which to optimize the radar emission while naturally incorporating the 

intrinsic spectral shaping and nonlinear distortion of the transmitter. For the case of an 

idealistic transmitter (no distortion), it was shown that an optimized PCFM waveform can 

be obtained that exceeds the PSL benchmark established for linear period modulation 

(LPM) waveforms without the need for amplitude weighting of the pulse. When using 

either a mathematical model for the transmitter distortion or physical transmit hardware, 

the Model-in-the-Loop (MiLo) and Hardware-in-the-Loop (HiLo) optimization schemes 
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demonstrated the capability to recapture the lost sensitivity due to transmitter distortion. 

This work sets the stage for the physical optimization of high-power radar emissions, the 

design of emissions for exotic transmitter topologies proposed to enable better spectral 

containment, and numerous new waveform diversity approaches. 
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