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Abstract—Waveform agility provides greater design freedom 

through the generation of a coherent processing interval (CPI) of 
nonrepeating waveforms. However, doing so introduces coupling 
of the range and slow-time Doppler dimensions that hinders 
clutter cancellation if not addressed. Non-identical multiple pulse 
compression (NIMPC) is a joint-domain approach that solves this 
problem, though the high dimensionality incurs a prohibitive 
computational cost. Inspired by recent work that exploits the 
Toeplitz structure of NIMPC, here we take that notion even 
further, demonstrating the processing of measured data at a cost 
significantly lower than direct NIMPC application. 

Keywords—moving target indication, waveform agility, joint-
domain processing, computational efficiency 

I. INTRODUCTION 

Standard moving target indication (MTI) radar involves 
illumination by a repeated waveform, such as the commonly 
used linear frequency modulated (LFM) chirp. The receive-
captured reflections are then pulse compressed followed by 
(slow-time) Doppler processing to separate movers from 
stationary clutter. For this repeated-waveform framework, the 
range and slow-time Doppler domains are decoupled; thereby 
permitting separate, sequential processing according to the 
dimensionality of each distinct domain [1].  

The introduction of variability among the waveforms 
within the CPI via waveform agility (or pulse agility) greatly 
increases design freedom [2], but also causes the range and 
slow-time Doppler domains to become coupled. The result is 
variability of the sidelobe structure on a pulse-to-pulse basis, 
inducing the phenomenon known as range sidelobe 
modulation (RSM) [3]. While RSM provides a benefit in 
terms of incoherent sidelobe averaging, it also introduces a 
nonstationary effect that can hinder clutter cancellation when 
standard sequential (decoupled) processing is performed [4]. 

Specifically, Doppler processing of a CPI containing RSM 
yields a smearing of clutter (at/near zero Doppler) across the 
entire Doppler domain. Moreover, significant changes in the 
waveform spectrum over the CPI (such as in dynamic spectral 
notching [5]) can also modulate the pulse compression 
mainlobe, further exacerbating this smearing effect.  

There are two general philosophies when it comes to 
compensating for RSM for clutter cancellation. One seeks to 
“homogenize” on a pulse-to-pulse basis so that processing can 
still be performed in a sequential manner. Early efforts 
designed mismatched filters (MMFs) that produce sidelobe 
responses with sufficient similarities to minimize RSM [2,6]. 

However, because doing so tends to expend degrees of 
freedom that would be better served suppressing sidelobes, it 
was realized (see [7]) that MMFs focused solely on sidelobe 
suppression (and not homogenization) are generally a better 
alternative for arbitrary nonrepeating waveforms (see [4]). 

The other philosophy involves jointly processing the range 
and slow-time Doppler domains, which is appropriate given 
their inherent coupling in this context. These approaches 
model delay-shifted versions of each pulsed waveform to 
account for the range domain, combined with the slow-time 
phase progression across the CPI for each Doppler bin. While 
some adaptive joint estimation methods have been conceived 
[8-10], they do not address clutter cancellation.  

In contrast, NIMPC [11] was formulated to have a 
structured (clutter + noise) covariance matrix within this joint-
domain context. While not adaptive in the classical sense (i.e. 
not constructed from snapshots of sampled data), NIMPC can 
be applied in a manner akin to maximum SINR filtering [12] 
to cancel clutter and RSM, as shown with recent experimental 
demonstration [13]. 

Of course, a limiting factor for NIMPC is the 
computational cost of inverting an NM×NM joint-domain 
matrix, where M is the number of pulses in the CPI and N is 
the number of samples in each discretized waveform 
(assuming consistent time-bandwidth product (BT)). To 
achieve sufficient fidelity for receive processing, over-
sampling relative to waveform 3-dB bandwidth is required 
depending on the spectral roll-off, e.g. LFM is quite sharp 
while nonrepeating random FM (RFM) waveforms [4] tend to 
be more gradual. Noting that NIMPC incurs a computational 
cost of O((MN)3) for the matrix inverse alone, in [14] this 
covariance matrix was reformulated as block-Toeplitz, thereby 
reducing the matrix inversion cost by a factor of N. 

Here we take the idea in [14] a step further, facilitating 
efficient application of linear conjugate gradient (CG) 
methods for NIMPC by leveraging the block-Toeplitz 
structure to realize a frequency-domain implementation of 
circulant matrix multiplication. The performance of these 
efficient solutions is assessed using open-air measurements. 

II. NIMPC MODEL 

Denote an 1N   collection of contiguous fast-time 
received samples induced by the mth pulse as 

,( ) ( ) ( )m m ml l l 


 y S x n ,                        (1) 
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where l indicates the range cell index and ( )m ln contains the N 
associated additive noise samples. The (2 1)N N   matrix 

( 1)
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models the convolution of N discretized samples of waveform 
( ),ms t  denoted as vector ,1 ,2 ,[ ],m m m m Ns s ss   with 2N1 

discretized range samples of complex scattering in ( )lx . 
The response in (1) for each pulse is then collected into the 

N M matrix 

1 2( ) [ ( ) ( ) ( )]Ml l l lY y y y ,                      (3) 

which is organized in terms of fast-time along each column 
and slow-time along each row. This range-Doppler coupled 
form can likewise be expressed as an 1NM  vector by 
concatenating (or vectorizing) the columns of (3) as  

1 2( ) [ ( ) ( ) ( )]T T T T
Ml l l ly y y y ,                     (4) 

where ( )T  is the transpose operator. The coupled equivalent 
to standard sequential range-Doppler processing at the lth 
range bin and Doppler frequency can then be realized via 

( )
ˆ( , )

H

H

l
x l 

 

 
b y

b b
,                                   (5) 

where ( )H  is the Hermitian operator,  
( 1)

1 2[ ]T j T j M T T
Me e 


b s s s                    (6) 

is a Doppler-shifted waveform sequence, and normalization in 
(5) is included for consistent scaling. 

Incorporating (1) into (4) yields 

( ) ( ) ( )l l l 


 y S x n ,                           (7) 

where the (2 1)M NN    concatenated matrix is 

1, 2, ,[ ]T T T T
M   S S S S ,                        (8) 

which subsumes Doppler as noted after (1), and the NM noise 
samples are collected into 1 2( ) [ ( ) ( ) ( )]T T T T

Ml l l ln n n n . 
The NIMPC clutter cancellation framework [11] defines a 

joint-domain filter for each Doppler bin and suppresses the 
clutter response from a collection of specified Doppler values 
(i.e., around zero). To do so, the NM NM  clutter-plus-noise 
structured correlation matrix 

nse( )H
 


 R S S R                           (9) 

is formed, where the noise component 2
nse nse NM NM R I  is 

an identity matrix scaled by noise power 2
nse  in the case of 

white noise. The set  comprises the particular Doppler 
values associated with clutter (requires prior determination) 
and each term ( )H

 S S  in the summation is composed of 
M M blocks, where each block is an N N Toeplitz matrix. 

In the efficient implementation that follows it is convenient 
to express the correlation matrix in a more compact form 

while also explicitly specifying the cardinality of . 
Consequently, we can also pose (9) as 

nse
H

  R S S R                           (10) 

in which the Doppler interval of the clutter is discretized into 
K bins (having sufficient granularity). Thus, 

1 2
[ ]

K   S S S S                         (11) 

is an (2 1)N KNM  matrix, with k  for 1, ,k K   the 
indexed Doppler values. 

The NIMPC filter [11] for Doppler , expressed using the 
nomenclature above, is therefore 

1
 

w R b                                (12) 

and is applied by replacing b  with w  in (5). However, this 
approach requires inversion of an NM NM matrix, which is 
computationally prohibitive. Alternatively, consider the form 

 R w b                                 (13) 

to solve for w  more efficiently by leveraging redundant 
signal structure in b  and R . It was shown in [14] that b  
from (6) can be equivalently expressed as 
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where 1 2[ ]MC c c c  is ,NM M  each 0 in the matrix is 
an 1N  vector of zeros, and v  is simply an 1M   Doppler 
steering vector. Ignoring the v  term for a moment, (13) can 
otherwise be rewritten as 

R D C                                    (15) 

for NM M  matrix 1 2[ ]MD d d d . It can therefore 
be shown that 

 w Dv ,                                 (16) 

such that determination of D  provides the means to readily 
compute the joint-domain filter for arbitrary Doppler. In the 
next section we separate (15) into the constituent components 

m mRd c                                   (17) 

for 1, ,m M   to solve iteratively for each column of D . 

III. EFFICIENT IMPLEMENTATION #1: PCG 

Rather than solving (17) through matrix inversion, via 
forward/backward substitution [15], or using an efficient block 
Toeplitz solver [16], an approximate solution can be 
iteratively refined through convex optimization techniques. It 
is known [17] that the solution to (17) is the same as the 
minimizer of the quadratic (and thus convex) cost function 

( ) H H H
m m m m m m mf   d d Rd d c c d ,                     (18) 

which has the gradient 

* ( )
m

m m mf  
d

d Rd c                             (19) 

that is identical to (17) and the Hessian 
2 ( )mf d R .                                  (20) 



Steepest descent would be simple to implement, yet it only 
has linear convergence. Newton/quasi-Newton methods are 
faster, but have complexity/memory requirements that are 
comparable to direct inversion. However, the preconditioned 
linear conjugate gradient (PCG) algorithm provides super-
linear convergence to the optimum [17], with each iteration 
moving the optimal step in a direction conjugate to all 
previous directions. Since convergence would otherwise be 
dictated by the condition number of ,R a positive-definite 
preconditioner matrix M  is introduced, providing a trade-
space between solution quality and computational cost, with 
good performance achieved in just a few iterations. The block-
Toeplitz structure also readily supports parallel processing. 

For starting point , 0m id  and known 1M , PCG [17] in 
this context is initialized as 
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Given stopping threshold , then I iterations are performed via 
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with complexity dominated by matrix-vector multiplications. 
However, using (10) and some arbitrary vector f we can 

decompose the following matrix-vector multiplication as 

nse
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where the last line imposes the assumption of white noise. 
Using Hadamard product , the 1(2 1)N K  intermediate 
term can be efficiently computed via 
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where ms  and mf  are obtained from the mth N-length segment 
of each respective waveform that is subsequently padded with 

1N   zeros (yielding (2 ) 11N    vectors), and the A and AH 
matrices are the (2 1) (2 1)N N  discrete Fourier transform 
(DFT) and inverse DFT, respectively. The vector q, with 
elements 2 /(2 1)( ) j n N Nq n e    for 0, 1, ,2 2,n N   is a 
complex sinusoid that equivalently shifts ms  by N samples via 
multiplication in the frequency domain. 

The h term in (23) can then similarly be computed as 
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where (2 1) ( 1)[ ]N N N N N N    I I 0 is a zero-appended identity 
matrix that truncates the last ( 1)N   terms of a (2 ) 11N    
vector. When (24) and (25) are performed sequentially using 
fast Fourier transforms (FFTs), and with each waveform FFT 
computed offline, the complexity of multiplication by 
R reduces from O(N 2M 2) to O(2MK(2N1)log2(2N1)). 

The preconditioner M  can greatly accelerate convergence 
and can be used with (17) to initialize the starting point as 

1
,0 .m m

d M c                                (26) 

However, preconditioning incurs an additional computational 
cost, and thus M needs to be selected such that the complexity 
of (21) and (22) do not significantly increase. In [18] a block-
circulant approximation was shown to improve convergence 
and is efficiently solved with a per-iteration cost of at most 
O(2M2Nlog2(N)) [19]. Alternatively, if the K Doppler 
frequencies are located about some center (like (11)), diagonal 
blocks of a block-circulant preconditioner can instead reduce 
the per-iteration complexity by a factor of M while still 
achieving faster convergence. These two implementations are 
denoted as PCG-1 (full block-circulant) and PCG-2 (diagonal 
block-circulant). 

IV. EFFICIENT IMPLEMENTATION #2: PROJ-NIMPC 

An alternative fast implementation can be realized by 
leveraging the projection-based approach of the extensive 
cancellation algorithm (ECA) [20], which was developed for 
passive bistatic radar. Combining ECA with the NIMPC 
model yields a projection form of NIMPC denoted as Proj-
NIMPC. Rather than the piecewise model of (1) involving 

1N  measurement snapshots, here a length-L range interval is 
addressed collectively. For the mth pulse, this 1L   received 
vector is modeled similar to (1) as  

,m m m 


 y S x n                              (27) 

where this Toeplitz matrix is ( 1)L L N   and has the form 
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The joint-domain extension like (7) is now the 1LM   vector 

 


 y S x n   ,                                (29) 

where the ( 1)L LM N    concatenated matrix in (29) is 

1, 2, ,[ ]T T T T
M   S S S S                            (30) 

in the same manner as (8), and likewise for the noise vector. 
Similarly constructing the joint-domain clutter component 
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followed by subsequent standard range/Doppler processing of 
.z  Here g  and h can be computed efficiently in the same 

manner as (24) and (25), respectively, albeit with the removal 
of q and the zero-padding increased to ( ) .L N  Solving for 
the intermediate term 

1( )H 
 a S S g                                  (34) 

can be achieved by rearranging (34) as 

( )H
  S S a g    ,                                (35) 

which maps directly back into the framework of (13)-(17) to 
permit efficient computation via the PCG method outlined in 
(21) and (22). The computational distinction here is that PCG 
is now being applied to the ( 1) ( 1)L N K L N K    matrix 
in (35) and associated preconditioner, instead of the 
corresponding NM NM  matrices in the previous section. 

V. COMPUTATIONAL COMPLEXITY 

 Table I delineates the computational cost of the various 
NIMPC implementations. In addition to achieving substantially 
greater efficiency as discretized waveform dimensionality N 
and pulse number M grow, these fast methods also avoid the 
need to store the extremely large joint-domain matrices.  

TABLE I.  COMPLEXITY OF NIMPC IMPLEMENTATIONS  
NIMPC via [11] K(2N1) (MN)2 + (MN)3 + D (MN)2 
faster NIMPC via [14] K(2N1) (MN)2 + M(MN)2 + (MN)2 
CG 2 I M 2 K (2N1) log2(2N1) 
PCG-1 2IM 2K(2N1) log2(2N1) + 2IM 3N log2(N) 
PCG-2  2IM 2K(2N1) log2(2N1) + 2IM 2N log2(N) 
Proj-NIMPC (direct (34)) K 3(LN+1)2 + 2K 2M(LN+1) L log2(L) 
Proj-NIMPC (w/ PCG-2) 4(2I+1) KML log2(L) 

VI. EXPERIMENTAL EVALUATION 

Open-air measurements were collected to assess the 
different NIMPC joint-domain implementations on real MTI 
data. Here M=100 nonrepeating PRO-FM waveforms [7] 

were generated using a Tektronix AWG70002A arbitrary 
waveform generator with T=4.5µs pulsewidth and 3-dB 
bandwidth of B=33.3 MHz (so BT=150), at a 3.55 GHz 
center frequency and 5 kHz pulse repetition frequency (PRF). 

The various NIMPC implementations place a zero-centered 
Doppler null with K=10 bins equally spaced over ±150 Hz, 
use 2 4

nse 10 ,   and discretize the waveforms to N=900. The 
number of range window samples was L=5.9×103. When CG 
or PCG-2 were employed, I = 10 iterations were performed. 
The actual number of operations of each implementation for 
these particular parameters is listed in Table II. While the faster 
NIMPC approach of [14] does provide a factor of ~11 
reduction relative to NIMPC [11] by exploiting Toeplitz 
structure, the PCG and projection/PCG implementations above 
achieve reductions of 4×104 and 3×105, respectively.  

TABLE II.  COMPLEXITIES FOR EXPERIMENTAL EVALUATION 
NIMPC via [11] 9.5×1014 
faster NIMPC via [14] 8.7×1013 
CG NIMPC, I = 10 2.1×1010 
PCG-2 NIMPC, I = 10 2.3×1010 
Proj-NIMPC (direct (34)) 1.9×1012 
Proj-NIMPC (PCG-2, I = 10) 3.1×109 

 
Open-air measurements were collected from the roof of 

Nichols Hall on the University of Kansas campus, with 
collocated transmit/receive antennas aimed at a nearby traffic 
intersection to illuminate movers. Figure 1 illustrates the 
impact of transmitting a CPI of nonrepeating waveforms, 
where we clearly see the emergence of range sidelobe 
modulation (RSM) via the spreading of clutter across Doppler. 
Specifically, because the transmitter and receiver are operating 
concurrently due to the short range, the direct path leakage 
dominates the entire Doppler interval for the first 800 meters. 
The insert in Fig. 1 highlights the traffic intersection ~1 km 
away, where the RSM effect is still observed, albeit to a lesser 
degree since the responses are closer to the noise floor. 

 
Fig. 1. Standard range-Doppler processing (no clutter cancellation)                   
for open-air measurement using 100 pulsed PRO-FM waveforms 

Of course, Fig. 1 employs no clutter cancellation. When it 
is applied (Fig. 2) via a simple Doppler-only projection, the 
direct path response and stationary clutter are suppressed. 
However, because the RSM effect spreads across Doppler, it 



persists after cancellation because the inherent coupling 
between range and slow-time Doppler are not being addressed. 
Further discussion can be found in [4] and references therein. 

Figure 3 shows the improvement that can be achieved with 
joint-domain clutter cancellation via NIMPC [11]. Now the 
direct path spreading is almost completely mitigated 
(suppressed by about 35 dB) and the various movers (cars and 
trucks) in the intersection are clearly visible in the insert. Some 
Doppler sidelobe roll-off is still present, which is to be 
expected since NIMPC does not currently permit Doppler 
windowing. This computationally expensive, yet exact, result 
will serve as a performance benchmark for the efficient 
implementation results that follow. 

 
Fig. 2. Standard range-Doppler processing (with clutter cancellation) for 

open-air measurement using 100 pulsed PRO-FM waveforms 

 
Fig. 3. NIMPC processing via [11] for open-air measurement using 100 pulsed 

PRO-FM waveforms 

Figures 4 and 5 show the CG and PCG-2 implementations 
of NIMPC, each after 10 iterations. This value was selected to 
illustrate the trade-off between further refining the 
approximation with more iterations and controlling 
computational cost, which is nearly identical for these methods 
(per Table II). In the intersection region, both approaches yield 
results that are almost identical to the direct NIMPC result in 
Fig. 3. However, for the CG case in Fig. 4, which does not use 
preconditioning, residual RSM from the direct path is still 
noticeably visible because the approach takes longer to 

converge. In contrast, the PCG-2 case in Fig. 5 demonstrates 
there is a clear convergence advantage to preconditioning 
because the RSM, while not yet completely mitigated, is 
suppressed by an additional 8 dB by comparison. 

 
Fig. 4. NIMPC CG implementation (I=10) for open-air measurement using 

100 pulsed PRO-FM waveforms 

 
Fig. 5. NIMPC PCG-2 implementation (I=10) for open-air measurement using 

100 pulsed PRO-FM waveforms 

Figures 6 and 7 show the Proj-NIMPC implementations 
involving either direct inversion of the matrix in (34) or solving 
(35) via PCG-2, respectively, realize even better RSM 
suppression for the same 10 iterations. Indeed, the direct path 
response is now completely suppressed, and per Table II the 
latter result is achieved with the lowest computational cost. 

As a final comparison using these open-air results, Fig. 8 
depicts the convergence trends for the iterative NIMPC 
implementations, with original NIMPC [11] included for 
reference (lower dashed line) and standard uncoupled 
cancellation used to normalize (upper dashed line). The value 
plotted here is the average residual power over range interval 
[+10,+760] meters and across all Doppler, except for the 
clutter null region. While all four of these implementations do 
converge to the same level as full-dimension NIMPC 
performance, the Proj-NIMPC PCG-2 version clearly does so 
with the fewest iterations, thus underscoring its overall 
computational efficiency. 



 
Fig. 6. Proj-NIMPC implementation (direct (34)) for open-air measurement 

using 100 pulsed PRO-FM waveforms 

 
Fig. 7. Proj-NIMPC implementation (w/ PCG-2) for open-air measurement 

using 100 pulsed PRO-FM waveforms 

 
Fig. 8. Average direct path induced RSM versus iteration count 

VII. CONCLUSIONS 

Inspired by recent work [14] exploiting Toeplitz structure 
in the NIMPC method [11], which enables waveform-agile 
joint-domain clutter cancellation, CG [17-19] and ECA [20] 
schemes have been leveraged to reduce computational cost to a 
significant extent. Moreover, when these implementation 
approaches are combined, even greater efficiency improvement 

is realized, with experimentally demonstrated performance 
indistinguishable from that of original NIMPC. 
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