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Abstract – The time-varying landscape of spectral congestion is 

driving the investigation into new forms of “spectrally aware” 

radar emissions based on passive sensing of the environment. The 

recent Pseudo-Random Optimized FMCW (PRO-FMCW) 

framework, which can be viewed as an instantiation of FM noise 

radar, generates a nonlinear FMCW waveform that does not 

repeat and is designed using spectrally shaped optimization to 

improve range sidelobe and spectral containment. Here, these 

concepts are combined to generate time-varying spectral gaps 

within the PRO-FMCW waveform to avoid in-band interference. 

The impact on radar range sidelobe performance is considered 

with regard to both static and time-varying spectral gaps. 

I. INTRODUCTION 

As the RF spectrum becomes increasingly crowded a new 
“cognitive” operating paradigm is emerging whereby 
awareness of other spectrum users and the resulting 
interference to/from oneself is a chief concern. With 5G 
commercial communications embracing the notion of “network 
densification” and hyper connectivity via machine-type 
communication [1], it is clear that new emission structures and 
receive processing schemes are imperative for future radar 
systems to achieve current sensing requirements, much less 
meet demands for further sensitivity enhancements [2,3]. 
Generally speaking, what is needed is continued advances in 
both interference avoidance and interference cancellation, with 
particular attention given to the potential for a highly non-
stationary spectral environment as more systems adopt this 
cognitive paradigm that may lead to the emergence of 
cognitive “power struggles” [4] following from a Baldwinian 
evolutionary perspective [5]. 

The current radar spectral emission requirements are 
delineated (at least in the US) in the NTIA “red book” [6] with 
more or less similar requirements observed worldwide. The 
main focus of these requirements is on spectral containment, 
which includes the rate of spectral roll-off from the passband 
and the out-of-band suppression. With the expectation of a far 
more dynamic spectral environment in the future combined 
with the ongoing prospect of emissions from non-compliant 
devices, the impetus is on the radar to adapt to this 
environment. In fact, the radar sub-discipline of waveform 
diversity [7-9] was actually instituted (in 2002) in part for the 
very purpose of addressing the anticipated problem of spectral 
congestion. The subsequent notion of cognitive radar, as first 
articulated by Haykin as a perception-action cycle [10] and 
later by Guerci in the knowledge-aided context [11], can be 
viewed in some respects as a proactive extension of waveform 
diversity [12]. 

Here we explore the design of radar emissions that require 
significant bandwidth yet must operate in relatively dense 
spectral environments (e.g. [13]). One approach to this problem 
is to pose and solve an optimization problem that is updated in 
real-time to seek a balance between maximizing bandwidth and 
acceptable signal to interference plus noise ratio (SINR) based 
on passive sensing of the available spectrum [14]. We build 
upon this framework by developing an emission structure that 
permits incorporation of time-varying spectral gaps to reduce 
interference to/from the radar and ultimately to enable more 
advantageous decisions within a bandwidth / SINR trade space. 

The notion of spectrally gapped radar waveforms is not 
new (e.g. [15-17]). However, the important distinctions 
explored here are 1) the locations of the spectral gaps change 
with time, which in fact is advantageous from an ambiguity 
function perspective, and 2) the waveform structure to which 
the spectral gapping is applied is a physical instantiation of FM 
noise radar denoted as pseudo-random optimized FMCW 
(PRO-FMCW) [18].  Along with the ultra-low sidelobe (ULS) 
emission developed in [19], the PRO-FMCW structure is based 
on a spectrally shaped optimization procedure. To realize gaps 
within this spectrally shaped design framework a stage 
employing the reiterative uniform weighted optimization 
(RUWO) approach from [20] is also used. 

II. SPECTRALLY SHAPED OPTIMIZATION 

The FMCW spectrally shaped optimization from [18] 
involves the generation of a random phase signal segment as 
initialization that is optimized to match a desired power 
spectral density (PSD), followed by phase alignment with the 
previous optimized segment to avoid phase discontinuities. To 
produce the desired spectral gaps with sufficient null depth, an 
additional step is added here prior to phase alignment that 
leverages the RUWO method from [20]. 

The PRO-FMCW method [18] employs a desired PSD 
|G(f)|2 having a Gaussian shape due to a well-known property 
of nonlinear FM waveforms that states that low range sidelobes 
can be achieved when the signal spectrum decreases towards 
the band edges [21]. Further, the Gaussian shape in particular 
is attractive because the Fourier transform of a Gaussian is a 
Gaussian, thus the autocorrelation is likewise Gaussian-shaped 
(in theory). In [18] and [19] it was observed via simulation and 
experimental measurement that, using this Gaussian PSD 
shaping, the Gaussian roll-off in autocorrelation is achieved 
until a (quite low) sidelobe floor is reached, which is thought to 
be a result of finite fidelity. By optimizing according to the 
PSD, which essentially reflects the average amount of time the 
FMCW waveform spends in a given frequency, the specific 
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time-frequency function is free to vary. As such, the waveform 
structure needs never repeat. 

The spectrally shaped optimization is applied 
independently to individual segments that collectively 
comprise the overall FMCW waveform. To incorporate 
spectral gaps into the formulation from [18], the PSD is 
modified from its Gaussian shape such that 

( ) 0 forG f f= ∈Ω ,                           (1) 

where Ω is the set of frequency intervals corresponding to 
where spectral gaps are desired. For the mth temporal segment 
of the waveform, the iterative optimization from [18] first 
applies the alternating projections 
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and 

( )1, 1,( ) ( ) exp ( )k m k mp t u t j r t+ += ∠ ,       (3) 

where 0, ( )mp t  is the initial random phase signal for the mth 

segment, u(t) is a rectangular window of length T and unit 

amplitude, F  and 1−
F  are the Fourier and inverse Fourier 

transforms, respectively, and ( )∠ •  extracts the phase of the 

argument. This alternating process is repeated for K iterations 

to obtain the mth optimized signal segment denoted , ( )K mp t . 

The process above was shown in [18] to perform well in 
achieving the desired Gaussian spectral roll-off. However, it 
has been found to be somewhat limited in the attainment of 
deep nulled spectral gaps. As such, the optimized segment 

, ( )K mp t  is subsequently modified using the RUWO approach 

from [20] to enhance the null depth of the spectral gaps. 

Denote the optimized segment , ( )K mp t  of temporal extent 

T in a discretized form as the N-length vector 0,mx , which is 

“over-sampled” relative to 3 dB bandwidth of the segment as 
discussed in [22] to ensure the representation has sufficient 
fidelity. The set of frequency intervals in Ω to be nulled are 
likewise discretized into Q values of fq having sufficient 
density to approximate a flat spectral gap adequately. Using 

these discrete frequency values, an N × N structured matrix is 
then constructed as  

H δ= +W BB I ,                (4) 

where δ is a diagonal loading term, I is an N × N identity 
matrix, and 
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is an N × Q matrix of frequency steering vectors corresponding 
to the Q discretized frequency values approximating Ω.  

The RUWO algorithm [20] is iterated L times according to 

( )( )1
, 1,expl m l mj

−
−= ∠x W x ,        (6) 

such that the final result ,L mx , due to being sufficiently “over-

sampled” with respect to 3 dB bandwidth, very accurately 

translates into the continuous signal , ( )L mx t  following D/A 

conversion. This signal is amenable to emission by a high-
power transmitter due to being constant modulus and spectrally 
well-contained as discussed in [22]. Finally, to prevent phase 
discontinuities, this mth optimized signal is phase rotated to 
yield the mth waveform segment as 

( )end, 1 ,( ) exp ( )m m L ms t j x tφ −= ,    (7) 

where end, 1mφ −  is the phase at the end of the (m ‒1)th segment.  

This optimization procedure can be implemented efficiently 
using FFTs and a GPU. The structured matrix in (4) only needs 
to be modified when the spectral environment changes. 
Receive processing can be performed in the same manner as in 
[18] by separating the received signal into the constituent 
segments for matched filter pulse compression and subsequent 
Doppler processing across the segments.  

III. SIMULATION RESULTS 

The ultimate goal for this scheme is to facilitate “on the 
fly” waveform responsiveness to a dynamic environmental 
interference. However, the focus here is on the impact these 
hopping spectral gaps have upon radar performance. As such, 
the gapped PRO-FMCW scheme is demonstrated using four 
test cases in simulation.  

In the first case a single stationary spectral gap exists. In the 
second case the effect of two stationary gaps of non-equal 
width is considered. In the third case, a spectral gap hops 
sequentially through the radar bandwidth during a single 
coherent processing interval (CPI) for Doppler processing.  
Finally, in the fourth case a spectral gap is hopped randomly to 
represent responsiveness to a changing spectral environment 
(albeit a simple one with a single interferer). For all cases, the 
overall waveform has a length of Tw = 200 ms with M = 104 

segments. Each segment has length T = 20 µs and a 3 dB 
bandwidth of B = 80 MHz, yielding an effective time-
bandwidth product of 1600 for each segment. 

For case 1), the single gap is placed near the edge of the 3 
dB bandwidth, with a gap width of B/5. The optimization is 
able to achieve a gap null depth of ‒70 dB relative to the 
spectral peak (center frequency) as illustrated in Fig. 1. It is 
generally known and was demonstrated experimentally in [15] 
that inserting gaps into the radar passband degrades sensitivity 
due to increased range sidelobes. Figure 2 depicts the 
integrated autocorrelation which is obtained via coherent 
integration across the 104 segments after pulse compression 
matched filtering. Because the segments are unique, since each 
is initialized with an independent random phase signal, the 
range sidelobes destructively interfere when the segment 
matched filter responses are combined. Thus, while this 
response is degraded relative to the non-gapped result depicted 
in [18] for the same parameters, the original PRO-FMCW 
approach achieved such significant range sidelobe suppression 
that the degraded response in Fig. 2 is still quite good. 



Figures 1 and 2 also depict the PSD and integrated 
autocorrelation for case 2) in which there are two spectral gaps: 
the previous one with gap width of B/5 and an additional gap 
on the other side of the center frequency (though not 
symmetric) with a gap spectral width of B/8. From Fig. 1 it is 
observed that the addition of the second gap degrades the gap 
depth by about 10 dB relative to the single gap case. Further, 
the integrated autocorrelation in Fig. 2 shows that the two-gap 
case realizes a range sidelobe degradation of roughly 10 dB 
relative to the single gap case.  

 

 
Fig. 1. Mean power spectral density of the 1 and 2 gap cases 

 

 
Fig. 2. Integrated autocorrelation of the 1 and 2 gap cases 

 

Now consider the impact of a hopping spectral gap, such as 
to address non-stationary in-band interference or perhaps to 
accommodate a frequency hopped communication system that 
is coordinated with the radar system. Figure 3 shows the PSD 
for each of 10 different spectral gaps of width B/8. Each gap is 
used in 1/10th (or 103) of the total 104 waveform segments (so 

each gap persists for 20 ms). Aside from a specified gap, each 
segment is otherwise unique due to independent random 
initialization as previously discussed. Note that the notch 
depths essentially follow the envelope of the overall PSD. 

When the PSD for the entire waveform is considered (all 
104 segments together) as shown in Fig. 4, a response quite 
close to the original Gaussian PSD is obtained due to the fact 
that the different gaps average out. The important of this fact is 
readily apparent when examining the integrated autocorrelation 
as depicted in Fig. 5. Whereas the fixed gap cases from Fig. 2 
realized an LFM-like range sidelobe roll-off with a peak 
sidelobe in the neighborhood of ‒30 dB, the sequential gap 
case in Fig. 5 realizes a peak sidelobe around ‒50 dB.   
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Fig. 3. Mean power spectral density for each of 10 sequentially hopped gaps 

 

 
Fig. 4. Mean power spectral density for the sequential and random hopping 

gap cases 

 

Finally, we consider the effect of a randomly hopped 
spectral gap of width B/8 that can reside over the same 
frequency interval as depicted in Fig. 3 for the sequential gap 



case. Here, 100 different gap locations are randomly generated, 
each pertaining to 102 out of the total 104 segments (so each 
gap persists for 2 ms). In Fig. 4 it is observed that the mean 
PSD over the entire waveform (all 104 segments together) is 
now smoother than that obtained for the sequential case, 
particularly at the peak of the passband. As a result, the 
integrated autocorrelation in Fig. 5 reveals a significant overall 
reduction in range sidelobes, though the peak sidelobe remains 
roughly the same.  

If the rate of spectral gap hopping were even higher, one 
could expect further sidelobe reduction that could perhaps 
ultimately converge to the no-gap case from [18]. Simply put, 
the hopping of spectral gaps serves to smooth out the overall 
PSD to something closer to that which is desired, thus 
producing lower integrated autocorrelation sidelobes relative to 
when a static gap is present. 
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Fig. 5. Integrated autocorrelation of the sequential and random hopping gap 

case 

 

IV. CONCLUSIONS 

The design of a nonrecurrent nonlinear FMCW waveform 
with hopping spectral gaps was demonstrated. Gap null depths 
of at least ‒60 dB were achieved in all cases. As expected, 
static spectral gaps realize degradation in range sidelobes, 
though the resulting performance may still be acceptable since 
the original no-gap performance was quite good to begin with 
so some degradation margin could be tolerated. When the 
spectral gaps are allowed to hop the overall PSD of the 
waveform is smoothed out thereby improving range sidelobes 
relative to the static gap case.  Further, as the rate of gap 
hopping increases the degree of PSD smoothing is likewise 
improved. From the standpoint of interference avoidance it is 
thus preferable for the interference to vary in frequency, as 
long as the tasks of spectrum monitoring and subsequent 
segment optimization can be performed in time to respond. In 
contrast, the notion of a tandem hopped communication signal 
residing in the radar spectral gaps could be quite well suited to 
fast hopping. Ongoing work is exploring shaping of gap edges 

to further reduce range sidelobes, assessment of the impact on 
Doppler processing due to hopping gaps, and characterization 
of transmitter distortion on gap depth due to spectral regrowth. 
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