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Abstract—The recently developed polyphase-code FM (PCFM) implementation for physical radar waveforms is 

generalized to higher-order representations to facilitate greater design freedom. Being FM, waveforms realized with these 

implementations have the benefit of being readily amenable to a high-power radar transmitter while possessing 

parameterized structures that are advantageous for optimization. Here various attributes of these implementations are 

examined. Specifically, it is shown that higher-order representations can, in special cases, be made equivalent, and through 

these relationships appropriate signal structure attributes can be inferred. Higher-order coding guidelines are also derived 

based on the need to ensure spectral containment. Example waveforms are optimized for each particular implementation 

to highlight their individual properties, towards the ultimate goal of establishing new ways to realize waveform-diverse 

emission structures that are physically realizable. 

Index Terms—radar waveforms, continuous phase modulation, nonlinear FM, waveform implementation, waveform 

diversity 

I. INTRODUCTION 

Frequency modulation (FM) represents one of the earliest [2, 3] and by far most widely used means of generating 

a radar waveform for use in pulse compression. After the establishment of the linear frequency modulated (LFM) 

chirp, the prospective benefits of nonlinear FM (NLFM) waveforms were realized, followed by a litany of important 

contributions (e.g. [4-12], many of which are summarized in [13, 14]). In short, FM waveforms are attractive because 

they can be generated in hardware with very wide bandwidths (particularly LFM), are constant amplitude, and are 

well-contained spectrally, thus making them readily amenable to high-power radar transmitters. Further, in the case 

of LFM the benefits of stretch processing [15] can be leveraged on receive (with recent work [16] demonstrating how 
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chirp-like NLFM can employ stretch processing as well). 

A separate class of waveforms that has attracted significant attention is that of phase-coded sequences (e.g. [17-

20]), particularly with the emergence of waveform diversity [14, 21-23] and the prospect of incorporating the 

dimensions of space (azimuth and elevation), Doppler, polarization, and frequency into the waveform design process 

in new ways. While not directly implementable without distortion (see [14]), phase codes are very important because 

they represent the means with which to parameterize the structure of a signal in a way that can be optimized, an 

attribute that was not readily available for traditional FM waveform design [2-10]. 

It has recently been shown that a modified form [24,25] of the continuous phase modulation (CPM) scheme used 

in some communication applications [26] can be employed to make the connection between the mathematically 

attractive structure of phase codes to the physically realizable structure of FM waveforms. Denoted as polyphase-

coded FM (PCFM) [25], this framework facilitates the conversion of an arbitrary polyphase code into an FM waveform 

that can be readily transmitted by a high-power radar. More importantly, this approach enables the direct design of 

FM waveforms through optimization of the underlying parameterized code structure based on desired properties of 

the resulting FM waveform (i.e. the code-to-waveform implementation is part of the design process) [27]. In so doing, 

undesirable distortion-inducing effects of the transmitter (most notably by the power amplifier) can also be 

incorporated into the waveform design process for at least partial compensation [27,28], and spatial and polarization 

degrees-of-freedom can be physically coupled to waveforms [29-32]. It has recently even been shown that the PCFM 

implementation enables new forms of radar-embedded communication [33,34], the design of FM waveforms via 

gradient descent optimization of the coded parameters [35], the collective optimization of spectrally disjoint FM 

waveforms [36], the optimization of a particular form of FM noise waveform [37], and even the optimization and 

experimental demonstration of complementary FM waveforms [38] that are more robust to Doppler and transmitter 

distortion than traditional complementary codes. The very structure of PCFM itself has also been examined via the 

notion of “over-coding” [39], higher-order implementations [1], and through the use of Legendre polynomials as 

alternative phase basis functions [40].  

In short, while there has been a tremendous amount of work on waveform design (see [13, 14, 21-23] and 

numerous references therein), it has only been recently that a parametrized FM waveform implementation [25] has 

been available with which to explore the myriad ways in which physical waveform diversity could be achieved. 

Because waveform diversity represents a vital enabler to address problems in radar spectrum engineering and 



containment [41], radar spectrum sharing and multi-function operation [42], and cognitive radar [43, 44], it is 

beneficial to determine the ways in which useful waveforms can be optimized and physically generated with as much 

design freedom as possible. As such, here we provide a detailed examination of the higher-order PCFM 

implementations initially described in [1] that were inspired by the polynomial NLFM waveforms proposed by Doerry 

[11]. This examination involves exploration of the relationships between different orders, deriving guidelines for 

permissible higher-order code values based on spectral containment, and exemplifying the performance that can be 

achieved when optimizing waveforms realized by the different PCFM implementation structures.  

Table I describes an order-based categorization of constant amplitude, code-parameterized radar waveforms, 

where the phase codes (e.g. [17-20]) correspond to a zeroth-order representation since they possess constant phase 

chips that undergo abrupt transitions between chips. The PCFM scheme described in [25] and subsequently employed 

in various ways in [27-39, 45-48] can then be viewed as a first-order representation since the use of a rectangular 

shaping filter produces piece-wise linear phase trajectories following the single integration stage. The well-known 

LFM waveform, along with waveforms constructed in a piecewise manner from LFM waveforms having different 

chirp-rates, are specific examples of a second-order representation that correspond to quadratic phase trajectories. A 

parameterized second-order PCFM implementation will likewise be defined here. Finally, third-order and higher 

representations are also possible, with a parameterized third-order PCFM implementation also presented here.  

 

Table I. Waveform Representations (phase structure) 

Waveform   

representation 

Equivalent approaches in radar 

waveform generation / phase structure 

0th order                  

(not differentiable) 

Phase codes / abrupt phase transitions 

1st order         

(differentiable) 
PCFM via [25] / piece-wise linear phase 

trajectories 

2nd order              

(twice differentiable) 

LFM and piecewise NLFM / quadratic 

phase trajectories 

3rd order & higher         

(3+ derivatives exist) 

Higher order NLFM / higher order      

phase trajectories 

 

Given a finite pulsewidth and practical spectral roll-off – noting that the spectral support is theoretically infinite 

for a finite pulsewidth – the possible phase trajectories of a continuous waveform is limited only by the precision with 

which the waveform can be physically generated. Consequently, these additional PCFM implementations, and 

combinations thereof, provide an expansion of the number of possible waveforms that can be physically realized. This 

increased design freedom therefore represents a larger design space within which to construct waveform-diverse 



emission structures such as those discussed above and beyond. 

II. HIGHER-ORDER PCFM IMPLEMENTATIONS 

In [25], it was shown how the CPM implementation that has been used to provide power efficient and spectrally 

efficient communications [26] could be modified to enable the conversion of arbitrary polyphase codes (specifically, 

zeroth-order codes) into physically realizable FM radar waveforms. Such waveforms may also be directly optimized 

by incorporating the code-to-waveform implementation into the design process [27,28,35-38]. Inspired by [11], we 

hereby expand this code-based FM structure to facilitate new ways in which such waveforms can be implemented, 

with the ultimate goal of establishing potential new avenues for physical waveform optimization. 

Due to the nature of this code-to-waveform implementation, the polyphase-coded FM (PCFM) scheme [25] 

corresponds to a first-order representation in which the phase function of waveform 1( ) exp{ ( )}s t j t  can be 

expressed as 
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where the set of phase-change values na  for 1, 2, ,n N  constitute a first-order code (which may or may not be 

derived from a zeroth-order code of length N + 1 per [25]) that produces a continuous waveform of pulsewidth T. The 

term 1( )g t  is a shaping filter that integrates to unity over the time support p[0, ]T  for p / ,T T N  and 1  is the 

initial phase of the waveform. If 1( )g t  is a rectangular filter, the phase function in (1) is piece-wise linear.  

Let the continuous, first-order coded function inside the brackets of (1) be 
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which represents the time-varying frequency of the waveform. Thus (1) can also be written as 
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t

t t dt      .                                       (3) 

From [25], the first-order phase function of (1)-(3) can be implemented as shown in Figure 1 (with the MATLABTM 

script provided in Appendix A). The first-order code  represents the (normalized) time-varying frequency with 

permissible values in [ , ]  . Because 1( )g t  integrates to unity over p[0, ]T , the maximum phase change in pT  

seconds is  . Thus the 3 dB bandwidth is 

na
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or /2B  Hz (at baseband), where we have used the relationship pT NT  and the fact that the time-bandwidth 

product BT is well approximated by N.  Note that the permissible region of [ , ]   for first-order code values can be 

expanded to provide greater design freedom as long as appropriate spectral containment measures are also enforced 

to prevent expansion of the aggregate spectral content (see [38]).  

 

 
Fig. 1. First-order implementation of polyphase-coded FM (PCFM) waveforms                                                      

(see Appendix A for MATLABTM script) 

 

 

A. Formulation of second/third-order PCFM implementations 

By using the same format as (3), and taking inspiration from the polynomial NLFM formulation of [11], 

generalization to second-order and third-order waveform phase functions can be expressed as 
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respectively, where 2  and 2  are the second-order initial phase and frequency, and 3 , 3 , and 3  are the 

third-order initial phase, frequency, and chirp-rate. Like the first-order coded function 1( )t  in (2), the second-order 

coded function from (5) can be defined as 

 2 2 p

1

( ) ( 1)
N

n

n

t b g t n T


                                (7) 

and the third-order coded function from (6) as 
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In (7), the second-order code nb  for 1, 2, ,n N   represents a time-varying chirp-rate. Likewise, the third-order 

code nc  for 1, 2, ,n N  in (8) represents a time-varying chirp-acceleration. As with the first-order formulation, 

2( )g t  and 3( )g t  are shaping filters defined on the interval p[0, ]T . Imposing the same bandwidth as determined by 

(4) onto these higher-order implementations requires that the compounding effect of the additional integration stages 

be taken into account, which impacts the selection of the coding values nb  and nc  as well as the associated shaping 

filters 2( )g t  and 3( )g t . Also note that nb , nc , 2 , 3 , and 3  are in angular units (i.e. scaled by 2 ), with the 

permissible initial frequencies 2 3 p p, [ , ]T T       and chirp-rates 2 2
3 p p[ 2 , 2 ]NT NT     .  

Figures 2 and 3 illustrate the implementation of these second-order and third-order phase functions (with 

MATLABTM scripts provided in Appendix A). Clearly, fourth-order and higher phase functions could also be 

formulated in this manner, though such have not been found to be beneficial with regard to generating useful radar 

waveforms. In fact, it will be shown that while the second-order formulation tends to facilitate the design of waveforms 

with marked sidelobe level improvement relative to the first-order implementation for a commensurate BT, the same 

cannot be said for the third-order scheme, which thus far has been found to provide only a rather modest benefit when 

used in combination with the first and second orders. 

 
Fig. 2. Second-order PCFM waveform implementation                                                                                              

(see Appendix A for MATLABTM script) 

 



 
Fig. 3. Third-order PCFM waveform implementation                                                                                              

(see Appendix A for MATLABTM script) 

 

 

B. Relationships between different PCFM implementations 

The relationships between different implementation orders offer some insight into the relative waveform design 

freedom of each, their permissible code values, and appropriate optimization approaches. Where (3), (5), and (6) 

provide the instantaneous phase function for each of these implementations, the instantaneous frequency function of 

each can be obtained by substituting in the respective coding structures of (2), (7), and (8) and then taking a derivative 

as 

 1

1 1 p

1

( )
( ) ( 1)

N

n

n

d t
t a g t n T

dt






                               (9) 

 2

2 2 p 2

10

( )
( ) ( 1)

t N

n

n

d t
t b g t n T dt

dt


 



 
      

 
                 (10)   

and 

 

3

3

3 p 3 3

10 0 0

( )
( )

( 1)

t t tN

n

n

d t
t

dt

c g t n T dt dt dt




 







 
        

 
 

,                 (11) 



respectively. Likewise, the instantaneous chirp-rate of each implementation is obtained via an additional derivative as 
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and 

 
2

3

3 3 p 32
10

( )
( ) ( 1)

t N

n

n

d t
t c g t n T dt

dt


 



 
      

 
 ,                    (14) 

noting that the first-order representation in (12) necessitates the derivative of the shaping filter 1( )g t , where we 

assume this derivative exists for the purpose of the following analysis. 

As an illustrative example, consider the linear FM (LFM) chirp, which possesses a rather simple structure and is 

an easy waveform to generate in hardware (e.g. via a swept local oscillator). For 3 dB bandwidth B and pulsewidth T, 

the LFM chirp-rate is 

2
LFM

2
Hz/s rad/s

B B

T T


   ,                             (15) 

with associated time-bandwidth product 
2

LFMBT T . Since the LFM phase is known to be quadratic in time, this 

waveform clearly represents a form of second-order implementation (a piece-wise linear approximation to LFM using 

a first-order implementation was presented in [25]). Recalling (4), for an up-chirp LFM at baseband the initial angular 

frequency is pT  and the final angular frequency at the end of the pulse is pT . The waveform therefore 

traverses a total angular frequency interval of p2 T  radians/s over the pulsewidth, for an associated bandwidth of 

p1B T N T   Hz. Substituting this result into (15) yields 2
LFM N T   Hz/s which, when converted to angular 

frequency and again using pT NT , realizes 
2

LFM p2 NT   rad/s2 that can be equated to the right side of (13) 

since LFM has a constant chirp-rate. 

Given the time-bandwidth product BT N , an exact LFM up-chirp could thus be realized with the second-order 

implementation of (5) and (7) by setting 2 pT    and 2nb N  for 1, 2, ,n N  and using a rectangular 

second-order shaping filter defined as 
2

2 p p( ) (1 ) rect[0, ].g t T T   Hence, the amount of angular frequency traversed 



during an interval of pT  seconds is p2 NT  rad/s. The constant chirp-rate code nb  combined with the rectangular 

shaping filter realizes a constant instantaneous chirp-rate via (13) and thus a linear instantaneous frequency in (10), as 

expected for an LFM waveform. Note that the initial phase term 2  from (5) is arbitrary. While this coded 

implementation of an LFM is clearly more complicated than well-known analog waveform generation methods (e.g. 

the swept local oscillator mentioned above) it is useful as a means to establish a well understood basis with which to 

compare different implementation orders and particular waveform implementation structures. 

Now consider generation of the same LFM waveform using a third-order implementation. With 3 pT    

and with 3  again being arbitrary, the obvious way would be to ignore the coding altogether (i.e. set all 0nc  ) by 

simply setting the initial chirp rate to 
2

3 p2 .NT   Alternatively, we could set 
3 0   and determine the code 

values nc  and shaping filter 3( )g t  that, when combined and integrated as in (14), produce a constant LFM chirp rate. 

This result can be accomplished by taking the derivative of the second-order instantaneous chirp rate from (13), where 
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while the coding 2n nc b N   does not change.  Because nc  is a constant, the bracketed term in (14) becomes 
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where all but the first and last impulses over the pulsewidth cancel out. Figure 4 illustrates the normalized frequency 

content of these second-order and third-order implementations of an LFM waveform, which are identical as expected.  

 



 
Fig. 4. Spectral content of second-order and third-order implementations of LFM with BT = 100 

 

 

Now consider how the same could be achieved with first-order PCFM. The first-order implementation of (1) 

using a rectangular shaping filter can only realize a piece-wise linear (small stepped frequency) approximation to 

LFM, and thus the exact generation of LFM requires some modification to the first-order structure. A modified first-

order implementation can be expressed as 
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which includes an initial frequency offset 1  and the new shaping filter 1 p( ( 1) )h t n T  . Comparing (9) with (10) 

and (12) with (13), we find that an exact LFM can be generated using this modified first-order implementation by 

setting 2n na b N   and 1 p ,T    with the new shaping filter defined as 
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which simplifies to the ramp function 

 
p

2
1 p p p p p

p p p

0, 0 ( 1)

( 1) ( ( 1) ) , ( 1)

1 ,

t n T

h t n T t n T T n T t nT

T nT t NT

   


       


 

 .                   (20) 

Figure 5 illustrates the spectral content of this first-order ramp implementation that, once again, is found to be precisely 

that of an LFM waveform. In the next section, we use these LFM-based relationships to establish that the second-

order shaping filter should integrate to p1 T  over 
p[0, ]T . 

More than just arcane new ways of generating an LFM, these different representations are special cases that 

establish how these implementation structures are related. However, the true utility in the different PCFM orders lies 

in the different continuous phase trajectories of physical waveforms that can be realized using finite first-, second-, 

and/or third-order codes and associated shaping filters. Consequently, the general structure of higher-order PCFM 

provides greater freedom to generate physical waveforms that possess desirable attributes. 

 

 
Fig. 5. Spectral content of second-order and first-order (RAMP) implementation of LFM with BT = 100 

 

 



C. Permissible values for higher-order coding 

As discussed in [27], permissible values of the first-order code n
 
lie in [ , ]   and these values correspond to 

normalized instantaneous frequencies, which translate into the (angular) edge frequencies of p .T  As mentioned 

above, additional care must be taken with regard to selection of the code values for higher-order implementations.  

To explore the permissible higher-order code values, let us begin by likewise constraining the derivatives in (9)-

(11) as 
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Starting with the first-order case, due to the requirement that [ , ],n     the condition in (21) therefore necessitates 

that 1 pmax{ ( )} (1 )g t T . Given the additional stipulation that 1( )g t  integrate to unity over the time support p[0, ]T , 

the first-order code constraint is met with equality when 1 p p( ) (1 )rect[0, ]g t T T . Any other shaping filter besides 

rectangular that also integrates to unity over p[0, ]T  would exceed this constraint. Thus a first-order code bound for 

an arbitrary shaping filter that also integrates to unity over p[0, ]T  is 
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For the second-order case, consider the instantaneous angular frequency during the nth code interval by expanding 

the derivative in (10) as 
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where 

 

 

 

p

p

( 1)
1

2, 1 2 p 2

10

1

2 2

1 0

1

2 p 2

1

1

2
p1

( 1)

1

n T
n

n

T
n

n

n

b g t T dt

b g t dt

b h T

b
T

 


























 
     

 

  
    
   

 
  
 

  
    
  



 





                  (26)   

is the angular frequency at the beginning of the nth code interval, with 2,0 2   for n = 1 and 
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Here we have made use of 1) the integration of the shaping filter is the same for each code interval, 2) the finite time 

support of 2 ( )g t  on p[0, ]T  realizes a constant for pt T  when integrated, and 3) this constant value is 2 p p( ) 1h T T  

for consistency with (20). Likewise, evaluation of the integral in (25) over the nth code interval of p p[( 1) , ]t n T nT   

can be written as 

   
p

2 p 2 p

( 1)

( 1) ( 1)

t

n n

n T

b g t n T dt b h t n T



      .                   (28)   

For instance, if 
2

2 p p( ) (1 ) rect[0, ]g t T T , then 2 ( )h t  would be a ramp function just like in (20). In general, if 



2 ( )g t  is non-negative for all time t, then 2 2 p pmax{ ( )} ( ) 1h t h T T   due to monotonicity.  Therefore, the second-

order code constraint in (22) can be simplified to 

1

p p p 2 p

1

(1 ) (1 )
n

nT T b T b T  




 
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 
 ,                 (29)   

yielding the permissible values for the nth element of the second-order code as 

1 1

p 2 p 2
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         

  .           (30)   

As an illustrative example, consider the second-order implementation of an LFM up-chirp waveform as discussed 

in the previous section where 2 pT    and 2nb N  is a constant for 1, 2, ,n N . Using these parameters 

as initialization, we can simplify (30) to determine permissible values for subsequent optimization, where the nth code 

element could take on values in the interval 

2 ( 1) 2 ( 1)
n

n N n
b

N N

        
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   
.                     (31)   

Specifically, for the first element (n = 1) the constraint is 

10 2b                                                (32)   

and for the last element (n = N) the constraint is 

1 1
2 1 2Nb

N N
 
   

       
   

.                           (33)   

Likewise, in the center (n = N/2+1, assuming N is even) the constraint is 

/2 1Nb     .                                      (34)   

Collectively, (32), (33), and (34) imply that, depending on the starting frequency and previous (n–1) code values, the 

permissible values for nb  consist of an interval spanning 2 radians within the overall possible range of 

2 2nb     ,                                      (35)   

based on the hard constraint on frequency content defined by (22).  

Finally, for the third-order case, expand the derivative in (11) for the nth code interval as 
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where 3, 1n   and 3, 1n   will be defined shortly. Note that the integral over the previous (n–1) code intervals can 

be expressed as 
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in which 
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noting the different constant for 
2

3 p p( ) 1h t T T   to remain consistent with the first-order and second-order 

formulations (and since there are still two additional integration stages). Subsequently, the final function in (37) has 

the general form 
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with the constant 
p

3 p0
( ) 1

T
C h t dt T    needed to maintain continuity of 3( )f t  at pt T . For example, if we set

3
3 p p( ) (1 ) rect[0, ]g t T T , then 3( )h t  would again be a ramp function like in (20), albeit scaled by an additional 



factor of p1 .T  As a result, (39) takes on the particular form 
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in this case. In general, for 3( )g t  non-negative for all time t as in the first- and second-order instantiations, then the 

maximum value of 3( )f t  within p[0, ]T  is    
p p

3 30 0 0
.

T T t
h t dt g t dt dt


        For the particular case of a rectangular 

shaping filter in (40), this maximum value is found to be p0.5 T , which we shall use below. 

For pt T , the function 3( )f t  increases linearly regardless of the particular shaping filter employed because it 

encompasses the double integral in (37). In other words, since (37) represents the contribution to instantaneous 

frequency, it is observed that during the nth code interval the previous third-order code values 1c  to 1nc   introduce 

piecewise linear chirping components in addition to constant frequency offsets, which can collectively be expressed 

as 
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.            (41) 

Inserting (41) into (36) and associating the time-varying and constant frequency terms prior to the nth code interval 

therefore yields the preceding chirp-rate 
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and angular frequency 

1

3, 1 p 3

1

( 0.5)
n

n c T 






    
                           (43)   

from the last line of (36), where 
3,0 3   and 3,0 3   for n = 1. The remaining portion of (36) can likewise be 

expressed as 
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for the nth code interval. Using this result along with (42) and (43), the instantaneous frequency from (36) becomes 
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Because the center (chirp) component in (45) changes linearly with time while the first (coded) component 

changes nonlinearly, and assuming 3( )g t  is non-negative for all time t, the point of maximum possible frequency 

deviation during the nth code interval occurs at pt nT . Also using the result 3 p p( ) 0.5f T T  for the rectangular 

shaping filter, the hard frequency constraint from (23) becomes 
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which can be rearranged to establish the permissible code values as 
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As an illustrative example similar to that for the second-order case, set 3 0   and 3 pT   . Applying 

(47), the permissible values for the first term (n = 1) in the third-order code should therefore reside within 

10 4c    .                                       (48)   

If the maximum value of 4 is selected for 1c , the bound on the next term (n = 2) is, via (47), 

212 8c     .                                       (49) 

If the minimum value of 12 is then selected for 2c , the subsequent bound according to (47) for the n = 3 term is 

316 20c     .                                      (50) 

The point of this exercise is to show that the possible values for a given third-order code element span 4 radians 

within an interval that can shift significantly from one element to the next. This possible shifting arises because the 



accrued memory from previous chirp acceleration terms as illustrated in (45) may necessitate successively larger code 

values as compensation to ensure the instantaneous frequency stays within the specified bounds of [ , ]  . Of course, 

small third-order code values require far less compensation by later code terms, which is actually the type of result 

that has (thus far) been obtained in optimization as shown in the next section. It remains to be seen how optimization 

of the third-order parameterization can be exploited to the full extent possible. 

In short, the second-order and third-order implementations become increasingly more complex, particularly with 

regard to determination of their feasible code values. For the second-order case this complexity involves a “frequency 

memory” term 2, 1n   from (26) that includes the effect of previous code values. The third-order case likewise 

involves 3, 1n   from (43), as well as a “chirp memory” term 3, 1n   from (42). Unlike the first-order implementation 

where every code element is established independently, these memory terms for the second and third-order 

implementations can have a significant impact on later code values. 

It is also important to note that the frequency constraints for the second-order and third-order implementations, 

originally stated in (22) and (23), are extensions of the first-order constraint and thus rely on an implicit assumption 

of constant frequency during a code element time interval of pT . However, these higher-order implementations clearly 

permit frequency to change during this interval. Thus for nonlinear chirp-like waveforms that tend to exhibit rapid 

frequency changes near the pulse edges (which typify what are arguably the “best” waveforms in terms of low 

autocorrelation sidelobes based on a conservation of ambiguity notion [14]) these higher-order “constraints” should 

instead be viewed as useful guidelines for parameter selection. Like in [39], aggregate spectral content can be used in 

lieu of hard frequency constraints to provide greater freedom for higher-order code design while maintaining necessary 

spectral containment. 

 

D. Aggregate spectral containment 

While the higher-order constraints derived above provide general guidelines for feasible code values, a more 

practical way to ensure spectral containment is to constrain the aggregate spectral content of the entire waveform. For 

example, in [27] the frequency template error (FTE) metric was defined which takes the form 

 
H

L

FTE
H L

1
( ) ( ) ( )

qf
p p

f

S f S f W f df
f f

 
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 
 ,               (51) 



where ( )S f  is the Fourier transform of waveform ( )s t , the integration limits Lf  and Hf  demarcate the frequency 

interval of interest (including sufficient spectral roll-off beyond the 3-dB bandwidth), and ( )W f  is some desired 

frequency template such as a Gaussian window. The values p  and q  control the emphasis placed on in-band and 

out-of-band frequencies, with 1p   and 2q   defining a frequency-domain mean-square error (MSE) metric. A 

logarithmic version of (51) was similarly employed in [37] and other such frequency domain metrics are likely to be 

useful as well. Paraphrasing [8], a waveform having an aggregate spectral shape that decreases towards the band edges 

is known to also possess low autocorrelation sidelobes, and thus this manner of metric address both spectral 

containment and sidelobe response.  

As discussed in [39] where the notion of PCFM “over-coding” was introduced, it is possible to exceed (even first-

order) frequency constraints as long as the aggregate spectral content still adheres to the desired spectral template. 

This idea is really just an extension of the well-known principle of stationary phase conceived by the earliest 

developers of nonlinear FM (NLFM) waveforms [5] that states that the energy spectral density at a particular 

instantaneous frequency is inversely proportional to the chirp rate at that instant in time. More generally, one can say 

that the amount of time (relative to pulsewidth T) that a waveform resides in a given frequency directly relates to the 

relative amount of energy placed at that frequency. Consequently, where traditional NLFM waveform design has 

focused on the determination of nonlinear time-frequency functions with which to implement the stationary phase 

principle [13], these parameterized PCFM structures permit use of various optimization methods to search for 

waveforms that achieve the desired aggregate spectral content. Of course, the time-frequency functions previously 

developed also provide very good starting points from which to initialize for further optimization. 

It is worth noting that this spectral density design perspective is quite powerful as a means to obtain individual 

waveforms that provide very low sidelobes. For instance, a Gaussian shaped spectrum was used in [49] to jointly 

optimize an FM waveform having BT = 128 and low-loss amplitude taper that was experimentally demonstrated to 

have a peak sidelobe 83 dB below the mainlobe match point while incurring only 0.26 dB of loss relative to a constant 

amplitude pulse (and in simulation the peak sidelobe was 108 dB below the mainlobe).  

However, an even more significant benefit of spectral density based design, emphasizing the necessity to account 

for sufficient over-sampling relative to 3-dB bandwidth so as to preserve spectral roll-off characteristics, is that such 

an approach naturally supports the optimization of numerous waveform-diverse emission schemes that are physically 



realizable. Examples include a variety of FM noise waveform arrangements [37, 50] including the first experimental 

demonstration of practical complementary structure [38] and simultaneous dual-polarized emissions that are separable 

on receive [51], practical spectral notching on transmit for cognitive interference avoidance and associated forms of 

radar-embedded communications [52, 53], a practical form of intermodulation-based nonlinear harmonic radar [54], 

and wideband/widebeam MIMO emissions that avoid “transmission” into the array invisible space that could 

otherwise potentially damage the radar [55]. The obvious practical utility of this spectrum-based design perspective 

to facilitate these and more new sensing capabilities likewise make it rather attractive in the context of higher-order 

PCFM implementations. 

 

E. Multi-order PCFM implementations 

Given the ability to generate higher-order PCFM waveforms as described in the previous sections, it is then also 

possible to combine them in a multi-order formulation to take advantage of the additional design freedom while 

maintaining the same aggregate spectral content. For instance, the first-order and second-order schemes from (3) and 

(5), respectively, can be combined as 

21 1 2 21 21

0 0 0 0

( ) ( ) ( )

t t t t

t t dt t dt dt dt    



            ,              (52) 

for 1( )t  and 2 ( )t  the first-order and second-order coded signals defined in (2) and (7), respectively, and 21  and 

21  the initial frequency and phase. Likewise, all three orders can be employed by combining (6) with (52) as 
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,           (53) 

for 3 ( )t  the third-order coded signals defined in (8) and with 321 , 321 , and 321  now the initial chirp-rate, 

frequency, and phase. In light of the derivation of the code constraints and subsequent discussion regarding their 

complexity and relaxation in Section II.C, it is clear that metrics involving aggregate spectral content as described in 

Section II.D should be employed when designing multi-order waveforms. 

The general form for the multi-order PCFM implementation is depicted in Fig. 6, with the MatlabTM 



implementation provided in Appendix A. Any combination of first, second, and third orders, including single order 

implementations, can be obtained by simply setting the unused code(s) and/or parameters to zero.  

 

 

Fig. 6. Multi-order PCFM implementation for first-order at the bottom up to third-order at the top                                                                                            

(see Appendix A for MATLABTM script) 

 

 

III. HIGHER-ORDER PCFM WAVEFORM DESIGN 

The parameterized structure of the first-order PCFM implementation [25, 27] necessitates determination of the 

underlying code to realize the resulting physical waveform. The same is true for these higher-order and multi-order 

PCFM implementations as well. Determination of the corresponding code(s) and the initial frequency and chirp-rate 

as appropriate requires a search of the high-dimensional space these codes parameterize according to some prescribed 

cost function, which generally involves some measure of the waveform ambiguity function (the zero-Doppler cut is 

typical). There are myriad ways in which this optimization could be performed and it remains to be seen what types 

of waveforms can be obtained. For instance, it has been observed [4-14] that the design of an individual FM waveform 

with low range sidelobes tends to realize one that is relatively chirp-like and has a roughly “sideways S” time-

frequency profile. In contrast, more recent developments involving FM noise [32, 37, 38, 50-54] produce waveforms 

with more random structure that benefit from the incoherent combining of sidelobes in the slow-time Doppler domain 

after pulse compression. With the prospect of many different design metrics, different approaches to optimize those 

metrics, and the different applications (and thus constraints and requirements) to which a waveform or set of 

waveforms may be applied, we shall limit the discussion here to the delineation of general attributes of these new 

physically realizable waveform implementations as opposed to considering how best to use them. 



As an illustrative example to highlight these different structures, the “performance diversity” paradigm introduced 

in [27] was employed to optimize prototype waveforms for each implementation. This approach exploits the fact that 

different ambiguity function metrics that specifically evaluate the waveform autocorrelation tend to complement one 

another. Such metrics include the peak sidelobe level (PSL), the integrated sidelobe level (ISL), and the FTE 

summarized in Section II.D. Simply put, this optimization approach exploits the fact that these metrics respond 

relatively similarly in terms of waveform goodness, yet can be expected to possess different local minima. 

Consequently, a greedy search strategy involving the selection and update of the single code element whose change 

would provide the most improvement can alternate between the metrics to help avoid some of the local minima. Details 

of this particular approach can be found in [27]. No claim is made as to whether this search strategy is better or worse 

than any others. It is used here for the simple reason that it can be performed in essentially the same manner for each 

of the implementations so as to provide a means of comparison between them. 

For waveform ( ) exp{ ( )}s t j t  based on one of the PCFM implementations from (1), (5), (6), (52), or (53), or 

any continuous waveform for that matter, the autocorrelation (matched filter response) is 

0
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as a function of delay T T   , with the interval m m      delimiting the mainlobe. For ease of reference, 

the well-known PSL and ISL metrics are 
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For zeroth-order codes the denominator of (56) is often omitted because it is a constant, but this term is required for 

evaluation of continuous waveforms. 

For all cases considered here a time-bandwidth product of 100BT N   is used and the FTE frequency 

weighting template from (51) is set to have a Gaussian shape. The performance diversity optimization process [27] 



alternates between the metrics of PSL, ISL, and FTE, with the particular metric changed after a predetermined number 

of iterations or once no further improvement is obtained with the current metric. The higher-order implementations 

likewise rely on the frequency template to ensure containment of the aggregate spectral content. In addition, the value 

of the initial frequency for the higher-order implementations is rescaled after each iteration so that the waveform is 

centered on a baseband frequency of 0 prior to comparing the waveform power spectrum within the FTE metric. 

 

A. Optimization of example waveforms for second/third-order PCFM implementations 

For the following optimization results, the first-order case was initialized with a piece-wise LFM waveform, which 

has been found [27] to yield good final results by starting with an established delay-Doppler ridge (based on the 

“conservation of ambiguity” [14]). Leveraging the principle of stationary phase, the second-order waveform 

optimization is initialized with the scaled inverse of Taylor window coefficients possessing 40 dB range sidelobes. 

Likewise, the piece-wise difference of these initial second-order coefficients (thus approximating a derivative) was 

used for the third-order initialization. 

Figures 7-9 illustrate the autocorrelation, aggregate spectral content, and instantaneous frequency (or time-

frequency function) for optimized first-order (red) and second-order (green) PCFM implemented waveforms based on 

(1) and (5), respectively. In Fig. 7 it is observed that, for this example, the second-order waveform exhibits a PSL that 

is ~2.5 dB lower than that of the first-order waveform. While we cannot (yet) say that optimized waveforms obtained 

using the second-order implementation always outperform those using the first-order implementation for the same BT, 

strong anecdotal evidence has been observed to this effect over many different initializations and optimization 

processes (i.e. performance diversity ordering of metrics). 



 
Fig. 7. Autocorrelations of optimized first-order and second-order PCFM implemented waveforms for BT  = 100 

 

 

The spectral content (Fig. 8) for the optimized second-order waveform is also found to exhibit a slightly broader 

roll-off from 15 dB down to about 40 dB. This effect can be explained by examining the instantaneous frequency 

(Fig. 9), where the second-order waveform is shown to possess the rapid chirping behavior typified by NLFM 

waveforms that are designed according to the principle of stationary phase [4, 13]. It is interesting to note, however, 

that unlike traditional smooth time-frequency functions (e.g. [4-12]), the optimized second-order PCFM instantaneous 

frequency does exhibit small perturbations that serve to further break up sidelobe coherence. That said, the second-

order perturbations are less pronounced than for the first-order case due to the presence of the additional integration 

stage (per Fig. 2) that smooths out such effects to some degree. 

A similar broader roll-off of the spectrum was previously observed when using an “over-coded” version of the 

first-order implementation [39], with commensurate sidelobe reduction. In fact, optimization of the over-coded first-

order implementation was found to achieve even greater improvement in terms of sidelobe reduction relative to the 

second-order scheme.  However, while both do require the use of a template to ensure good spectral containment, the 

over-coded arrangement also involves a multiplicative increase in the number of parameters to optimize. The benefits 

of the expanded parameterization (while preserving the same BT), and the associated relationships between spectral 



roll-off and range sidelobes, is part of the justification for exploring these alternative/combined implementations. 

 

 
Fig. 8. Spectral content of optimized first-order and second-order PCFM implemented waveforms for BT  = 100 

 

 

 



 
Fig. 9. Instantaneous frequency of optimized first-order and second-order PCFM implemented waveforms              

for BT  = 100 

 

 

Figures 10-12 subsequently illustrate the autocorrelation, aggregate spectral content, and instantaneous frequency 

for an optimized third-order (blue) PCFM implemented waveform based on (6), with the first-order implemented 

waveform (red) included again for comparison. Where the second-order waveform demonstrated a sidelobe reduction 

relative to first-order in Fig. 7, it is conversely observed in Fig. 10 that the optimized third-order waveform realizes 

poorer performance, with the sidelobes ~5 dB greater than for the first-order waveform. As with the second-order 

implementation, we cannot make the claim that this performance relationship always occurs for the same BT, though 

it has anecdotally been observed in all the cases thus far examined. As discussed with the example via (48)-(50), 

expanding the code search space according to the derived limits could possibly be a way to achieve better performance 

for the third-order implementation.  

 



 
Fig. 10. Autocorrelations of optimized first-order and third-order PCFM implemented waveforms for BT = 100 

 

 

The spectral roll-off (Fig. 11) for third-order does more closely match that of the first-order, albeit with a 

frequency-offset that arises due to the difficulty to optimize the more complex waveform implementation of (6). 

Recalling the implications of the principle of stationary phase, the reason for this frequency offset is observed in the 

instantaneous frequency plot (Fig. 12), where the beginning of the waveform is found to exhibit a slower nonlinear 

chirping behavior than at the end of the waveform. Further, the inclusion of another integration stage (now three) also 

produces an even smoother time-frequency function than either second-order or first-order, which tends to restrict the 

presence of small perturbations that could otherwise break up sidelobe coherence. It stands to reason that other 

methods, such as the gradient descent approach in [35] or other possible search methods, may be better suited for the 

optimization of third-order parameterized FM waveforms due to the increased complexity. 

 



 
Fig. 11. Spectral content of optimized first-order and third-order PCFM waveforms for BT = 100 

 

 

 
Fig. 12. Instantaneous frequency of optimized first-order and third-order PCFM waveforms for BT  = 100 

 



For the particular instantiation using the performance diversity optimization scheme and the initializations 

discussed above, Table II quantifies the PSL and ISL values for the example waveforms resulting from first-order, 

second-order, and third-order implementations for BT = 100, with B the 3-dB bandwidth.  As a useful benchmark, the 

PSL bound for hyperbolic FM (HFM) waveforms, which is 20log10(BT)3 dB [8, 13, 14], is also included for the 

same BT. As observed previously in [27], the first-order implementation is able to exceed the HFM bound by a small 

margin. The second-order implementation, however, surpasses the bound by 3 dB. Of course, while the 3-dB 

bandwidth remains constant across these implementations, Fig. 9 reveals that the second-order case achieves this 

improvement in part due to a greater swept bandwidth arising from the sharp nonlinear chirping at the beginning and 

end of the pulse (about 1.8 greater), which translates into the modest broadening observed in the aggregate spectrum 

of Fig. 8. The associated HFM PSL bound corresponding to that increased bandwidth is 48.1 dB. 

 

Table II.  PSL and ISL for 1st, 2nd and 3rd order optimized waveforms for BT=100 

 1st order  2nd order 3rd order HFM bound 

PSL (dB) 43.4 46.0 38.1 43.0 

ISL (dB) 59.5 63.5 57.4 N/A 

 

 

It is also instructive to examine the structures of the different optimized codes underlying these implementations. 

The first-order code is essentially shown in Figs. 9 and 12 because the values of the code scale the rectangular shaping 

filters, thus yielding a stair-step signal that realizes a continuous, piece-wise linear phase trajectory after the single 

integration stage in (1). While recent work [28-38] has demonstrated just how capable this first-order implementation 

can be for the optimization and generation of physical waveform-diverse emissions, it stands to reason that expansion 

beyond this piece-wise linear phase structure may hold even greater potential due to the increased design freedom, 

smoother phase trajectories, and the prospect of producing more rapid chirping behaviors in a parameterized manner.  

Figure 13 shows the optimized second-order code from the above example along with the associated upper/lower 

derived limits from (30) based on these code values, with the limits spanning an interval of 2 radians. Note that at 

the beginning and end of the pulse, the code values do exceed these limits by a modest amount, which occurs because 

the rapid chirping in these regions (see Fig. 9) provides a sidelobe lowering benefit [8] by facilitating a good match to 

the Gaussian spectral template used for optimization via (51). It is likewise observed that these limits, which as 

discussed at the end of Sect. II.C should instead be viewed as general guidelines, have a shape that would appear to 



typify a good NLFM down-chirp (the optimized second-order NLFM is an up-chirp), if not for the fact that these code 

values represent instantaneous chirp rate instead of instantaneous frequency.  

Further, while the general instantaneous frequency structure (Fig. 9) for this example optimized waveform from 

a second-order implementation is rather typical of NLFM waveforms obtained in the past [4-14], it is observed that 

most of the second-order code values in Fig. 13 are nearly constant, which makes sense given that the central portion 

of the waveform has a near-linear time-frequency relationship like LFM. However, the largely unused freedom of 

movement implied by Fig. 13 also speaks to untapped potential for this implementation as a means to realize new 

agile FM waveform constructs like in [28-39, 44-54]. 

Similar behavior is found in Fig. 14 for the third-order optimized code and limits from (47), where the former 

again modestly exceeds the latter at the ends of the pulse. Here the limits span 4 radians but otherwise still have a 

shape that looks like an NLFM down-chirp, but is in fact related to chirp acceleration. These shapes arise for both of 

these implementations because the actual waveforms associated with the codes in Fig. 13 and 14 are up-chirp NLFM 

and the corresponding code limits subsume the frequency and chirp memory terms that produce those waveforms.  

Note that, as discussed in Sect. II.C, the actual third-order code values obtained by optimization are rather small 

compared to the bounds, yet this code produces a waveform with the instantaneous frequency function depicted in 

Fig. 12, which again is clearly recognizable as the “sideways S” shape one generally associates with a good NLFM 

waveform. Due to the accumulation of memory terms, exploitation of the greater freedom available for the third-order 

implementation, particularly as a means to achieve new agile waveform arrangements such as mentioned above, 

remains a topic of ongoing investigation.  

 



 
Fig. 13. Optimized second-order code (instantaneous chirp rate) and derived upper/lower limits 

 

 

 
Fig. 14. Optimized third-order code (instantaneous chirp acceleration) and derived upper/lower limits 

 

 



B. Optimization of example waveforms for multi-order PCFM implementations 

Using (52) and (53), now consider optimization of waveforms based on the multi-order PCFM implementations 

of the same BT = 100 dimensionality. For joint optimization, either both (for first/second-order combined) or all three 

of the codes are designed according to the same greedy search used above (and in [27]) in which the single code 

element whose change would provide the greatest improvement is updated at each stage. We also examine sequential 

optimization whereby the different order codes are each optimized until no further improvement is possible (with the 

other codes set to 0 initially) and then that code is fixed while the optimization of a different code commences. Perhaps 

not surprising given the results above, it has been found that starting with the second-order code, followed by either 

the first-order or third-order codes, generally realizes waveforms with the best performance in terms of sidelobe 

reduction for the sequential approach. Like before, these resulting waveforms are examples of what could be achieved, 

with the expectation that there are better ways to optimize these structures as well as new agile waveform arrangements 

that could be realized. 

Figures 15-17 depict the autocorrelation, spectral content, and instantaneous frequency, respectively, for joint 

greedy optimization of (52) and (53). Both cases realize PSL values (Fig. 15) that are nearly 8 dB better than the 

previous first-order result and 5 dB better than the second-order result alone. The shape of the spectral content (Fig. 

16) is basically the same as the previous cases, with a small asymmetry caused by inclusion of the third-order coding 

that is present. Finally, the usual “sideways S” shape is again observed for the instantaneous frequency, with 

extensions of the swept bandwidth by factors of 2 and 2.25 for the first/second combined orders and 

first/second/third combined orders, respectively. These bandwidths correspond to HFM PSL bounds of 49.0 dB and 

50.0 dB, respectively. Per Table III, it is interesting to note that the PSL values achieved by these multi-order 

waveforms do in fact surpass these bounds, an effect that can likely be largely attributed to the additional presence of 

the first-order perturbations observed in Fig. 17 that serve to break up sidelobe coherency and arise naturally from the 

optimization process. It remains to be seen whether the second or third-order implementations alone can realize these 

beneficial perturbations through greater exploitation of their individual code design spaces (per Figs. 13 and 14). 

Plots for sequential optimization are not included because they are negligibly different from joint optimization, as 

evidenced by the resulting PSL and ISL values in Table III. However, the sequential optimization is more 

computationally efficient to implement since it does not require a greedy search over all the codes simultaneously.  



The joint first/second/third-order instantiation clearly provides virtually no PSL benefit over the joint first/second-

order case and only a modest ISL improvement. This result is included to demonstrate that little additional 

improvement has been observed by adding the third-order code, which does incur a higher cost to optimize due to 

greater dimensionality. A fourth-order implementation (not shown) has also been examined within this multi-order 

context and it likewise provided no discernible additional benefit. With all that said, it remains to be seen whether 

gradient-based optimization [35] or other possible code search procedures may alter this arrangement. 

 

 
Fig. 15. Autocorrelation of jointly optimized waveforms via (52) and (53) 

 



 
Fig. 16. Spectral content of jointly optimized waveforms via (52) and (53) 

 

 
Fig. 17. Instantaneous frequency of jointly optimized waveforms via (52) and (53). Note the 

small perturbations provided by the first-order coding. 



 

Table III.  PSL and ISL for Sequential and Joint Optimization of multiple orders for BT=100 

 Joint                     
1st & 2nd 

Joint                        
1st, 2nd & 3rd 

Sequential        
1st & 2nd 

Sequential              
1st, 2nd & 3rd 

PSL (dB) 51.1 51.1 50.7 51.2 

ISL (dB) 66.4 67.9 66.0 66.8 

 

 

  By way of comparison with single-order implementations, Figs. 18 and 19 illustrate the optimized codes determined for the 

joint first/second-order implementation. It is interesting to note that the second-order joint code in Fig. 19 is quite similar to the 

structure of the second-order individual code depicted in Fig. 13, with the flared ends corresponding to the rapid chirping observed 

at the ends of the pulse in Fig. 17. However, the first-order joint code in Fig. 18 looks quite different from the first-order individual 

code in Fig. 9 (or 12) because it now only serves to provide a small dithering to the phase to break up sidelobe coherence instead 

of providing the overall waveform structure.  

It is likewise noted that the theoretical limits were derived for the individual implementations and thus are not exactly 

applicable in this multi-order context. That said, as general guidelines they may still be useful when considering the trade-offs 

between different codes (such as observed for Figs. 18 and 19). 

 
Fig. 18. First-order code coefficients for a jointly optimized first/second-order PCFM waveform 
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Fig. 19. Second code coefficients for a jointly optimized first/second-order PCFM waveform 

 

 

 

 

C. Delay-Doppler Ambiguity Function 

Finally, while the purpose of this paper is to explore these higher-order waveform implementation structures, it 

is interesting to examine the delay-Doppler ambiguity functions [13, 14] of the example waveforms that have been 

obtained from optimization. The ambiguity functions for the jointly optimized multi-order PCFM waveforms 

constructed from (52) and (53) are depicted in Figs. 20 and 21. As expected, based on the rather similar instantaneous 

frequency functions for these two waveforms (Fig. 17), the ambiguity functions are likewise quite similar in 

appearance, with small differences only visible across Doppler at a normalized delay of 0.5. Given the fact that they 

had the same initialization and that the third-order component has been found to provide little benefit, this similarity 

is not surprising. Both exhibit the prominent delay-Doppler ridge that is typical of chirp-like waveforms and if one 

were to zoom out the surrounding Fresnel lobes would likewise be visible. While not to the same degree as LFM, 

these waveforms also still provide much of the Doppler tolerance exhibited by LFM, which is to be expected since 

Fig. 17 shows that they have (for the most part) time-frequency responses that are rather linear through the middle of 

the pulse. While there are certainly practical limits to the ambiguity function responses that can be achieved by 

physically realizable waveforms, the expanded design freedom afforded by these new parameterized structures may 
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very well enhance our ability to control the placement of delay/Doppler ambiguity in useful ways (e.g. to leverage 

incoherent sidelobe combining [37] and/or exploit complementary FM structures [38] across both delay and Doppler). 

 

 
Fig. 20. Delay-Doppler ambiguity function for optimized multi-order PCFM waveform implemented via (52) 

 

 

 
Fig. 21. Delay-Doppler ambiguity function for optimized multi-order PCFM waveform implemented via (53) 
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IV. CONCLUSIONS 

The polyphase-coded FM (PCFM) framework for radar waveform implementation/optimization, which was 

previously derived from continuous phase modulation (CPM) used in communication, can be viewed as a first-order 

waveform representation when compared to the zeroth-order representation of a polyphase code by itself. Inspired by 

polynomial nonlinear FM [11], here it has been shown that higher-order schemes can also be employed as a means to 

obtain more degrees of freedom for physical waveform design with which to explore the continuum of possible phase 

trajectories. It has been observed through a variety of trials and anecdotally demonstrated here that waveforms 

designed using the second-order PCFM implementation tend to provide the best performance in terms of sidelobe 

reduction for the different single-order schemes. Multi-order implementations may likewise be employed to provide 

even better PSL/ISL performance, though beyond second-order does not appear to provide much additional benefit. 

The mathematical relationships between these different orders has also been investigated and subsequently used to 

derive general guidelines for selection of appropriate code values according to spectral containment constraints. 

The particular optimization approach from [27] was used here to assess example waveforms obtained using these 

implementation structures. However, the variety and ultimate capabilities of these structures remains to be explored 

given the vast number of optimization strategies that could potentially be employed. Moreover, the emergence of new 

agile waveform-diverse modes establishes a need for greater waveform flexibility and design freedom that is readily 

supported by these alternative parameterizations. Further, these compact coded representations could prove useful for 

on-the-fly waveform design and deployment on low-cost software-defined radar platforms to facilitate cognitive radar 

(e.g. [52]). Finally, when combined with new optimal and adaptive receive processing schemes for FM waveforms 

such as [56-59] truly outstanding sensitivity and flexibility can be achieved for practical sensing applications. 
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APPENDIX A 

The following MATLABTM scripts provide the means to generate waveforms via the PCFM and HO-PCFM 

implementations defined in Section II. Because they are parameterized with codes whose lengths are on the order of 

BT, a diverse set of physically realizable waveforms can be produced from a compact set of parameters that may be 

optimized via arbitrary means. Note that the initial phase terms are omitted since a resulting waveform can simply be 

phase-rotated to achieve any desired starting phase.  

To use these schemes with existing phase codes, a piece-wise phase difference like that described in [25] can be 

employed to obtain first-order codes, and subsequently repeated to obtain higher-order codes. That said, because the 

resulting FM waveforms possess better spectral containment than one can expect from a phase code (i.e. a zeroth-

order representation), attaining good FM waveforms would be better achieved by designing the underlying coding 

with the corresponding code-to-waveform implementation as part of the optimization process (see [27,28,35-38]). 

The resulting discrete vector s for each implementation can be prepared for loading onto an arbitrary waveform 

generator (AWG) in one of two ways. The value of the over-sampling factor over in the script can be set sufficiently 

high to directly produce the AWG-ready version of the discretized waveform. Alternatively, over can be set relatively 

low (but still greater than 1) and then the vector s can be up-sampled using phase interpolation, though this 

interpolation may introduce small errors that may limit the ultimate waveform fidelity that can be achieved. While the 

former approach is more precise, the latter tends to be more conducive to optimization due to the lower number of 

samples needed to represent the quasi-continuous representation of the waveform.  

 

MATLABTM FUNCTION TO IMPLEMENT A FIRST-ORDER PCFM WAVEFORM 

     % a_code: first-order phase-change code, bound between  
     % over: “over-sampling” with respect to 3 dB bandwidth, integer > 1 
     % freq: instantaneous frequency of the waveform 
 
function  [s, freq] = PCFM1(a_code, over) 
     N = length(a_code);          % length of code 
     g = ones(over,1);          % define rectangular shaping filter 
     g1 = g./sum(g) ;          % normalize shaping filter to integrate to unity 
     train = zeros(1,over*N);          % define impulse train 
     train(1:over:end) = a_code;          % weight impulse train with code values 
     chi1 = filter(g1,1,train);          % apply shaping filter to weighted impulse train 
     freq = chi1.*over;                    % instantaneous frequency for plotting 
     phi1 = filter(1,[1 -1],chi1);      % integrate frequency to phase 
     s = exp(j*phi1);                      % resulting complex baseband waveform 
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MATLABTM FUNCTION TO IMPLEMENT A SECOND-ORDER PCFM WAVEFORM 

     % b_code: second-order frequency-change code, bound between 2 
     % over: “over-sampling” with respect to 3 dB bandwidth, integer > 1 
     % omega2: second-order initial frequency (in radians/Tp), here Tp = over 
     % freq: instantaneous frequency of the waveform 
 
function  [s, freq] = PCFM2(b_code, omega2, over) 
     N = length(b_code);          % length of code 
     g = ones(over,1);          % define rectangular shaping filter 
     g2 = g./(sum(g))^2;          % normalize shaping filter to integrate to unity 
     train2 = zeros(1,over*N);          % define impulse train 
     train2(1:over:end) = b_code;          % weight impulse train with code values 
     chi2 = filter(g2,1,train2);         % apply shaping filter to weighted impulse train 
     chi2dt = filter(1,[1 -1],chi2);          % integrate chirp rate to frequency 
     freq = (chi2dt + omega2) .*over;     % instantaneous frequency for plotting 
     phi2 = filter(1,[1 -1], (chi2dt + omega2));          % integrate frequency to phase 
     s = exp(j*phi2);                             % resulting complex baseband waveform 

 

MATLABTM FUNCTION TO IMPLEMENT A THIRD-ORDER PCFM WAVEFORM 

     % c_code: third-order chirp-change code, bound between 4 
     % over: “over-sampling” with respect to 3 dB bandwidth, integer > 1 
     % omega3: third-order initial frequency (in radians/Tp), here Tp = over 
     % beta3: third-order initial chirp rate (in radians/N/Tp^2) 
     % freq: instantaneous frequency of the waveform 
 
function  [s, freq] = PCFM3(c_code, omega3, beta3, over) 
     N = length(c_code);          % length of code 
     g = ones(over,1);          % define rectangular shaping filter 
     g3 = g./(sum(g))^3;          % normalize shaping filter to integrate to unity 
     train3 = zeros(1,over*N);          % define impulse train 
     train3(1:over:end) = c_code;          % weight impulse train with code values 
     chi3 = filter(g3,1,train3);          % apply shaping filter to weighted impulse train 
     chi3dt = filter(1,[1 -1],chi3);          % integrate chirp acceleration to chirp rate 
     chi3dtdt = filter(1,[1 -1], (chi3dt + beta3));          % integrate chirp rate to frequency 
     freq = (chi3dtdt + omega3) .*over;     % instantaneous frequency for plotting 
     phi3 = filter(1,[1 -1], (chi3dtdt + omega3));          % integrate frequency to phase 
     s = exp(j*phi3);                             % resulting complex baseband waveform 

 

As discussed in Section II.B, an LFM up-chirp with time-bandwidth product BT  N could be exactly realized 

using the second-order PCFM function above by setting b_code = 2*pi/N.*ones(N,1) and omega2 = − pi/over, for 

the value of over an arbitrary integer greater than 1. Precisely the same waveform could be obtained using the third-

order PCFM function by setting c_code = zeros(N,1), the intial frequency omega3 = − pi/over, and the chirp rate to 

beta3 = 2*pi/N/over^2. To use the coded form of the third-order implementation from Sect. II.B would require 

changing the shaping filter in the MATLABTM script. These values should provide a sense of what is required to 

realize arbitrary waveforms with these implementations. Scripts for the mixed-order implementations are also 

provided below. 
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MATLABTM FUNCTION TO IMPLEMENT MIXED SECOND+FIRST-ORDER PCFM WAVEFORM 

     % a_code: first-order phase-change code, bound between  

     % b_code: second-order frequency-change code, bound between 2 
     % over: “over-sampling” with respect to 3 dB bandwidth, integer > 1 
     % omega21: initial frequency 
     % freq: instantaneous frequency of the waveform 
     % this implementation requires that a_code and b_code are the same length 
 
function  s = PCFM21(a_code, b_code, omega21, over) 
     N = length(a_code);          % length of code 
     g = ones(over,1);             % define rectangular shaping filter 
     g1 = g./sum(g);            % normalize 1st order shaping filter to integrate to unity 
     g2 = g./(sum(g))^2;            % normalize 2nd order shaping filter 
     train1 = zeros(1,over*N);    % define impulse train 
     train2 = zeros(1,over*N);    % define impulse train 
     train1(1:over:end) = a_code;      % weight impulse train with 1st order code values 
     train2(1:over:end) = b_code;      % weight impulse train with 2nd order code values 
     chi1 = filter(g1,1,train1);          % apply shaping filter to 1st order weighted impulse train 
     chi2 = filter(g2,1,train2);         % apply shaping filter to 2nd order weighted impulse train 
     chi2dt = filter(1,[1 -1],chi2);          % integrate chirp rate to frequency 
     freq = (chi1 + chi2dt + omega21).*over;     % instantaneous frequency for plotting 
     phi21 = filter(1,[1 -1], (chi1 + chi2dt + omega21));       % integrate frequency to phase 
     s = exp(j*phi21);                             % resulting complex baseband waveform 

 

MATLABTM FUNCTION TO IMPLEMENT MIXED THIRD+SECOND+FIRST-ORDER PCFM WAVEFORM 

     % a_code: first-order phase-change code, bound between  

     % b_code: second-order frequency-change code, bound between 2 

     % c_code: third-order chirp-change code, bound between 4 
     % omega321: initial frequency 
     % beta321: initial chirp rate 
     % over: “over-sampling” with respect to 3 dB bandwidth, integer > 1 
     % freq: instantaneous frequency of the waveform 
     % this implementation requires that a_code, b_code, and c_code are the same length 
 
function  s = PCFM321(a_code, b_code, c_code, beta321, omega321, over) 
     N = length(a_code);          % length of code 
     g = ones(over,1);              % define rectangular shaping filter 
     g1 = g./sum(g);            % normalize 1st order shaping filter to integrate to unity 
     g2 = g./(sum(g))^2;            % normalize 2nd order shaping filter 
     g3 = g./(sum(g))^3;            % normalize 3rd order shaping filter 
     train1 = zeros(1,over*N);    % define impulse train 
     train2 = zeros(1,over*N);    % define impulse train 
     train3 = zeros(1,over*N);    % define impulse train 
     train1(1:over:end) = a_code;      % weight impulse train with 1st order code values 
     train2(1:over:end) = b_code;      % weight impulse train with 2nd order code values 
     train3(1:over:end) = c_code;      % weight impulse train with 3rd order code values 
     chi1 = filter(g1,1,train1);          % apply shaping filter to 1st order weighted impulse train 
     chi2 = filter(g2,1,train2);         % apply shaping filter to 2nd order weighted impulse train 
     chi3 = filter(g3,1,train3);          % apply shaping filter to 3rd order weighted impulse train 
     chi3dt = filter(1,[1 -1],chi3);          % integrate 3rd order chirp acceleration to chirp rate 
     chi32dt = filter(1,[1 -1], (chi2 + chi3dt + beta321));     % integrate chirp rate to frequency 
     freq = (chi1 + chi32dt + omega321).*over;     % instantaneous frequency for plotting      
     phi321 = filter(1,[1 -1], (chi1 + chi32dt + omega321));       % integrate frequency to phase 
     s = exp(j*phi321);                             % resulting complex baseband waveform 
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