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Abstract—Inspired by the fixational movements of the human 

eye, fast-time spatial modulation was recently demonstrated as a 

particular physically-realizable form of a multiple-input 

multiple-output (MIMO) radar emission. The attendant coupling 

of the delay and angle dimensions has been shown to provide a 

modest improvement in spatial separation, even when using non-

adaptive pulse compression and beamforming. Here this 

continuous emission paradigm is appropriately discretized and a 

joint delay-angle adaptive filtering strategy is developed that 

exploits the physical waveform-diverse emission structure to 

realize significant enhancement in target separability. 

 
Index Terms— adaptive filtering, MIMO radar, waveform 

diversity 

I. INTRODUCTION 

n [1,2] the waveform-diverse array (WDA) emission 

structure was developed which subsumes the frequency-

diverse array (FDA) framework [3-7] for pulsed radar.  The 

WDA scheme leverages the recent development of physically-

realizable polyphase-coded frequency modulated (PCFM) 

waveforms [8,9] that is based on continuous phase modulation 

(CPM), commonly employed for aeronautical telemetry [10], 

deep-space communications [11], and the Bluetooth
TM

 

wireless standard [12]. The WDA structure was inspired by 

the biological process of the human eye (and of other animals 

possessing fovea) known as fixational eye movement in which 

the eye performs slow movements known as drift and rapid 

movements known as microsaccades [13,14]. The current 

scientific consensus is that such movements enhance contrast 

and aid in resolving spatial ambiguities. There is even 

evidence [15] that these eye movements adapt according to 

environmental conditions (e.g. amount of lighting) and the 

active attention of the observer, thus suggesting a connection 
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to cognitive sensing [16] within the visual cortex for this 

waveform-diverse emission paradigm [17-19].   

The WDA was a step towards mimicking the passive 

sensing behavior of the eye within the active sensing paradigm 

of radar. It was demonstrated in [1,2] that, using only standard 

(non-adaptive) pulse compression and beamforming, spatial 

resolution and target discrimination could be enhanced by as 

much as 30%, albeit with a commensurate trade-off in range 

resolution as a result of spreading the illuminating waveform 

across a band of spatial angles.  It is worth noting that WDA 

represents a special case of MIMO radar that maintains a 

focused mainbeam (at least at each instant in time during the 

pulse) and is physically realizable for a high-power radar 

having arbitrary waveform generation capability at each 

antenna element. It was also observed in [2] that the 

“goodness” of a particular WDA delay-angle emission is 

dependent on the underlying waveform and the specific nature 

of the spatial modulation. For example, use of a linear 

frequency modulated (LFM) chirp combined with relatively 

linear intra-pulse spatial steering provides what amounts to a 

tapering effect in the range domain that realizes significant 

range sidelobe suppression (with the associated range 

resolution degradation as well).  It was also found that intra-

pulse beamsteering exceeding the nominal beamwidth of the 

array yielded lost signal-to-noise ratio (SNR) without any 

compensating improvement in spatial resolution. Thus, like 

the eye, it is desirable for the WDA to maintain sufficient 

spatial focus on target (or set of proximate targets). 

Where [1,2] focused on the physical emission structure of 

WDA, here we consider how joint adaptive delay-angle 

receive processing can exploit this coupled emission, since 

dimensional coupling is known in general to provide a 

multiplicative increase in degrees of freedom (Space-Time 

Adaptive Processing (STAP) being a prominent example of 

such in radar). To accomplish this goal, two separate adaptive 

approaches for pulse compression and beamforming are 

unified, along with necessary measures to address the physical 

nature of the emission. Specifically, the Adaptive Pulse 

Compression (APC) algorithm was developed using reiterative 

minimum mean-square error (RMMSE) estimation to suppress 

range sidelobes generated by radar codes [20] and has recently 

been generalized for application to arbitrary FM waveforms 

[21]. The same underlying RMMSE approach was likewise 

used to develop the Re-Iterative Super-Resolution (RISR) 

algorithm [22] for adaptive beamforming that also inherently 
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permits the inclusion of calibration uncertainty. Because they 

are based on the same estimation framework, it is shown that a 

coupled delay-angle estimator denoted as Space-Range 

Adaptive Processing (SRAP) can be obtained that is 

applicable to such coupled emission schemes (i.e. MIMO). 

II. WAVEFORM-DIVERSE ARRAY 

The formulation for the WDA was derived in [1,2]. Here 

the derivation is briefly reprised to illustrate the linkage 

between the joint delay-angle emission and subsequent 

adaptive receive processing. In particular, the impact of 

sampling must be considered since the emission is, in theory, 

not bandlimited (though good spectral roll-off is achieved [8]) 

and to address straddling effects in range and angle (also 

known as the “off-grid” problem).   

While the WDA concept is applicable to any array 

geometry, the following is based on the assumption of a 

uniform linear array (ULA). The array element spacing is 

denoted as d with spatial angle   defined relative to array 

boresight (where 0   ).  It is assumed that emitted/received 

signals satisfy the array narrowband assumption and thus the 

associated electrical angle is 2 sin( ) /d    , with   the 

wavelength associated with the carrier frequency. 

A. WDA Definition 

The waveform diverse array (WDA) concept necessitates a 

dedicated waveform generator at each antenna element.  We 

consider physical waveforms that are amenable to high-power 

transmitters and thus restrict attention to the class of 

polyphase-coded FM (PCFM) waveforms (Fig. 1) [8,9] that 

are enabled by a continuous phase modulation (CPM) 

implementation, and thus are constant modulus and 

differentiable (i.e. continuous). 

 

 
 

Given a traditional polyphase radar code with 1N   chip 

phase values 0 1, , , N   , a train of N  impulses with time 

separation pT  are formed such that the total pulsewidth is 

pT NT .  The nth impulse is weighted by n , which is the 

phase change between successive chips of the polyphase code 

as determined by 
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where 

1n n n          for     1, ,n N ,              (2) 

and sgn( )  is the signum operation. The shaping filter ( )g t  

may, for example, be rectangular (RECT) or raised cosine 

(RC) with the requirements 1) that it integrates to unity over 

the real line; and 2) that it has time support on [0, ]pT .  Per 

Fig. 1, the PCFM waveform is thus defined as [8] 
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where   denotes convolution, 0  is the initial phase value of 

the code, and the sequence of phase changes are collected into 

the vector w 1 2[ ]TN  x  that parameterizes the 

complex baseband waveform. If the phase change values in 

the waveform code adequately cover the interval [ , ]  , then 

the dimensionality of wx  is a good approximation to the time 

bandwidth product of the continuous waveform w( ; )s t x . 

In [2] this physical waveform implementation was extended 

to likewise parameterize physically a form of fast-time spatial 

modulation during the pulse by controlling the relative phases 

across the antenna array. Here a set of 1N   values 

0 1, , , N    is defined as a sequence of spatial angle 

offsets relative to center direction C . The subsequent spatial 

phase-change sequence (as a function of code index n) for use 

with the PCFM implementation and a uniform linear array is  
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noting that each n  can be positive or negative. It shall be 

assumed that the values of n  are sufficiently small to avoid 

steering the beam beyond the endfire direction and thereby 

inducing a spatial wrap-around effect.  With a structure similar 

to (3), the spatial phase modulation as a function of continuous 

time is represented as 
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where the sequence of spatial phase changes from (4) are 

collected in the spatial modulation code s 1 2[ ]TN  x  

and  
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is the initial electrical angle. The leading negative sign of the 

spatial modulation in (5), relative to the waveform modulation 

of (3), reflects the phase delay compensation for spatial 

beamsteering on transmit. 

The signal generated by the mth antenna element is thus 

C w s w s

1
( , ; , ) ( ; ) ( ; )m

ms t s t b t
T

 x x x x ,            (7) 

where the normalization term provides unit transmit energy 

 
Fig. 1.  Polyphase-coded FM (PCFM) waveforms implementation using 
waveform code xw [8] 



per antenna element. The Vandermonde-like form ( )m  across 

the uniform linear array yields, from (7), 
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for ( 1)/2, ( 1)/2 1,  ... , ( 1)/2m M M M       . As discussed 

in [2], the array is defined such that index 0m   is in the 

center of the array for the notational convenience of 

symmetry.  

In the case of no spatial modulation, the set of spatial offsets 

are 0 1 0N      , such that the resulting N  phase 

changes are likewise 1 2 0N      . As a result, (8) 

simplifies to s 0( ; ) exp{ }mb t jm  x , which is simply the 

phase delay on the mth antenna element needed to steer a 

stationary beam in the direction of spatial angle C , thus 

realizing standard beamforming. 

Combining (3) and (8) into a single per-element emission 

yields 
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where , ( )n m n nm     is the joint waveform/spatial code 

for the mth element and 0, 0 0( )m m     is the joint initial 

phase for the mth element. Care must be taken to avoid 

extending the instantaneous phase difference between 

emissions generated by adjacent antenna elements to the point 

where the array radiates into “imaginary” or “invisible” space, 

which could cause severe damage to the radar [23].  Such an 

event occurs when the instantaneous element spacing is less 

than / 2  for any wavelength corresponding to the 

upconverted bandwidth of the emission and the mainlobe is 

steered towards or near endfire. Thus, a portion of the 

emission is no longer radiated but stored in the near field due 

to a dominant reactive component of the array impedance and 

can result in damage to the transmitter [24]. Such an effect 

does not occur if the spatial angle spread is kept sufficiently 

small (e.g. not exceeding the first-null beamwidth with respect 

to C ). 

B. Far-Field WDA Emission 

An accurate assessment of the far-field emission requires 

incorporation of array mutual coupling and calibration effects 

(to the degree known). Such knowledge is particularly 

important for MIMO radar since the intrinsic coupling of 

delay and angle subsequently couples the waveforms to these 

antenna effects [25,26].  We shall not address these effects 

here but they may be readily inserted as available. 

A composite far-field emission for time t and spatial angle 

  can be expressed as 
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where C( , )ms t   is taken from (9) and the exponential term is 

the delay resulting from path length differences as a function 

of angle  .  Note that the dependence on the waveform code 

wx  and spatial modulation code sx  have been suppressed for 

brevity. Using (10), a time-varying beampattern (TVBP) can 

be defined as  

      , , , , , ,TV C C CB t g t g t              (11) 

for 0 t T  , where *( )  denotes complex conjugation.  The 

TVBP thus allows for a view of the instantaneous spatial 

attributes of the emission as a function of time over the 

pulsewidth T.  

On receive, the reflected signal incident upon the mth 

antenna element can be expressed as 
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where ( , )x t   is the complex scattering as a function of time 

(delay) and spatial angle. Receive beamforming (for spatial 

angle  ) and pulse compression can be represented as  
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and 

  *ˆ( , , ) , , ( , , )C C Cx z t h t dt         ,       (14) 

respectively. In (14), ( , , )Ch t    is the pulse compression 

filter for the incident signal from spatial angle   and is a 

function of the far-field emission ( , , )Cg t    in that same 

angle.  Due to the modulation of the mainbeam (and sidelobes) 

on transmit, the emission in any given spatial direction is 

amplitude modulated and thus the power is spread unevenly in 

space. Therefore, it is useful to normalize the angle-dependent 

filters to unity gain to avoid artificially scaling the estimated 

scattering response. As such, we define a unity-gain 

normalized matched filter as 
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so that (14) actually yields the illumination-scaled response 
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In [2] it was shown that enhanced separability of proximate 

targets was enabled through this coupled delay-angle emission 

using standard non-adaptive beamforming and pulse 

compression of (13) and (14), respectively.  However, it is 

well known that such coupling induces a multiplicative 

increase in degrees of freedom.  As such, we now consider 

how to realize (13)-(16) with a filter that is jointly adaptive in 

delay and angle.  



III. JOINT ADAPTIVE PROCESSING IN DELAY-ANGLE 

Here the Space-Range Adaptive Processing (SRAP) 

algorithm is developed for application to the above physical 

delay-angle coupled emission.  It should be noted that the 

SRAP algorithm is applicable to any physically realizable 

MIMO emission, though in this paper we shall limit attention 

to the WDA structure, which is expected to be more robust to 

imperfect array calibration and mutual calibration by virtue of 

forming a coherent beam (that moves during the pulsewidth). 

The SRAP algorithm extends the recursive MMSE-based 

approach previously employed to perform adaptive pulse 

compression [20] and direction of arrival estimation [22] to a 

joint delay-angle framework in which a unique receive filter is 

adaptively determined for each range-angle cell. A 

preliminary instantiation of SRAP was presented in [27], 

albeit for an emission scheme that lacks the physical attributes 

of the WDA scheme described above.  

To derive a joint delay-angle filter structure it is first 

necessary to define discretized versions of the continuous 

emission and received signal model described in Section II.  

We then consider the impact of this discretization on the 

subsequent adaptive filtering. 

A. Discretized Signal Model 

The waveforms C( , )ms t   from (9), transmitted from the 

M elements of a uniform linear array, can be collectively 

represented in a discretized manner as the KN M  matrix 

C( )S . The mth column of this matrix contains the length-

KN  discretized waveform C( )m s  associated with the mth 

element of the array. For standard beamforming the columns 

of C( )S  are identical aside from the phase shift for spatial 

beamforming in direction C .  

Recall that N  is the length of the waveform code wx  and 

that it approximates the time-bandwidth product of the 

waveform. The scalar K (1) is the amount of “over-

sampling” relative to the 3-dB bandwidth of C( , )ms t  , noting 

that true over-sampling is not possible since a pulsed emission 

is not bandlimited in theory.  Increasing K reduces the effect 

of range straddling (or cusping) effects for pulse compression 

[8, 21], though doing so also increases the computation cost 

(due to higher dimensionality) and could lead to ill-

conditioning effects for adaptive processing.  Some degree of 

such “over-sampling” is necessary to obtain a sufficiently 

high-fidelity representation of the received signal to permit 

accurate receive estimation and we shall discuss an 

appropriate way in which to contend with the deleterious 

effects that subsequently arise. 

Again using the center of the array as reference, define the 

spatial steering vector associated with electrical angle   as 
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with ( )T  the transpose operation.  A discretized version of 

the far-field emission C( , , )g t    from (10) can thus be 

expressed as the column vector 

 C C

1
( , ) ( )

M
  g S v .                      (18) 

For convenience we shall henceforth suppress the inherent 

dependence on the center look direction C  so that the 

emission structure in (18) is expressed simply as ( )g . 

By discretization of (12) and expansion to M  antenna 

elements, the response at the array from a single far-field 

scatterer in spatial direction   can be written as a complex 

scaling of the matrix ( ) T
g v , the mth column of which 

corresponds to the reflected far-field emission that is received 

by the mth antenna element.  Therefore, at a given discrete 

time delay  the incident response upon the array can be 

approximated as the length M  row vector 

disc disc( ) ( , ) ( ) ( )T T

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In (19), ( , ) [ ( , ) ( 1, ) ( 1, )]Tx x x KN      x  is a 

contiguous collection of discretized complex scattering 

coefficients in range corresponding to angle   with which the 

associated far-field emission convolves at delay , and 

disc ( )u  is a 1 M  vector of complex additive noise samples.  

The representation in (19) is an approximation because true 

Nyquist sampling cannot be achieved for pulsed radar echoes, 

though the physical emissions based on PCFM waveforms do 

provide excellent spectral roll-off [8].  For such waveforms 

the pulse rise/fall-time becomes the limiting factor with regard 

to spectral containment [28]. 

The collection of KN  contiguous fast-time snapshots of 

(19) can be expressed as the KN M  matrix 
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is a KN KN  matrix containing ( , )x   and the 2 2KN   

surrounding range cells.  To make the received signal model 

amenable for joint delay-angle processing, the KN M  

matrix representation in (20) is reorganized as the 1KNM   

vector 

 ( ) ( , ) ( ) ( )


   y X g v u ,       (22) 

where the symbol   denotes the Kronecker product and 

( ) vec[ ( )]Tu U .   

The receive beamforming (in direction  ) and unity-gain 

pulse compression from (13)-(16) can be jointly expressed for 

this discrete representation as the delay-angle matched filter 
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where 1/2( ) [ ( ) ( )]H  g g g  and with ( )H  the complex-

conjugate transpose operation. The discrete illumination-

scaled matched filter response is thus 

MF MF
ˆ ( , ) ( ) ( )Hx   w y .                 (24) 

As with (16), the matched filter response in (24) is an estimate 

of ( , ) ( , ) ( )x x   g , where ( )g  is the intensity of 

the radar illumination that varies with spatial angle. The unity-

gain pulse compression filtering defined in (15) and 

discretized in (23) ensures that the resulting amplitude scaling 

of the filter output is due to the scattering and filter correlation 

response, as opposed to variations in the receive filter gain as 

a function of spatial angle. 

B. Space-Range Adaptive Processing 

The recursive minimum mean-square error (RMMSE) 

based filtering approach was previously developed to enable 

adaptive pulse compression of radar codes [20] and was 

subsequently also demonstrated to provide adaptive 

beamforming that is robust to calibration errors [22] and high-

resolution EEG/MEG brain imaging of measured data [29].  

For radar pulse compression it has only recently been 

determined how this estimation scheme may be applied to 

continuous FM waveforms [21] which necessitates both “over-

sampling” with respect to 3 dB bandwidth (as discussed 

above) in combination with a down-sampled (polyphase 

decomposed) filter structure [30] that, collectively, provide 

robustness to range straddling effects. This approach will here 

be used to facilitate the joint adaptive delay-angle receive 

processing of physical MIMO emissions. 

For notational convenience, the angle-dependent adaptive 

filters will now be expressed in terms of electrical angle   

according to the well-known relation 

 
2

sin
d

 


 .                            (25) 

Using the discretized MIMO received signal model from (22) 

in combination with the decomposed structure of [30], the 

MMSE cost function for the (scaled) complex amplitude in the 

range-angle cell corresponding to delay  and receive 

electrical angle   is given as 

       
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for down-sampling by the factor K (i.e. same as the amount of 

“over-sampling” with respect to 3 dB bandwidth). In (26), 

[ ]E   is expectation and ( , )k w  is the kth length-NM down-

sampled adaptive filter for the ( , )  range-angle cell.  

Further,  

       ,k k k


    
 y X g v u       (27) 

is the kth length-NM down-sampled version of the received 

signal from (22) where 
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 (28) 

is likewise the kth N KN  down-sampled version of (21).  

Note that the down-sampled model depicted in (27) and (28) is 

defined in terms of electrical angle   and that 

 
 

 







g
g

g
                             (29) 

is the unity-gain normalized far field emission so that (28) 

could likewise be written as ( , )  || ( ) || ( , )k k  X g X . This 

normalized scaling of the emissions within the received signal 

model prevents noise enhancement problems in the adaptive 

processing due to artificial compensation of scattering that 

received little radar illumination power.  

Down-sampling is only performed in the range dimension 

to accommodate the need for waveform “over-sampling”. 

Therefore, due to the Kronecker product structure involving 

the length M spatial steering vector 


v , (27) can also be 

expressed in the partitioned form 
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                            (30) 

where , ( )k ny  is the nth 1M   component that comprises the 

kth down-sampled receive vector. The entire 1KNM   receive 

signal defined in (22) can thus be shown as the collection of 

the interleaved down-sampled receive signals as 

0,0
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.                   (31) 

The final 1KNM   delay-angle filter ( , )w  is comprised of 

down-sampled filter components in a similar manner. 

In addition to the normalization in (29), a unity gain 

constraint for the overall delay-angle adaptive filter is 

enforced as 

     , 1H


   w g v .            (32) 

Noting that (32) could be expressed as the sum of K down-



sampled components, the constraint is incorporated as a 

Lagrange multiplier into the cost function of (26) as 

       

     
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where  is the Lagrange multiplier, Re{ }  denotes the real 

part of the argument, and ( )k g is the kth length-N down-

sampled version of the normalized far-field emission ( )g .  

Minimization of (33) with respect to ( , )k 
w  yields  
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(34) 

Assuming the delay-angle cells are uncorrelated with one 

another and with the noise, the filter in (34) simplifies to 
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     (35) 

where 
2( , ) [| ( , )| ]E x    is the expected power in the 

emission-normalized delay-angle cell corresponding to delay 

 and electrical angle  , and ( )kR  is the kth NM NM  

down-sampled noise covariance matrix, which can be 

simplified assuming white noise to 
2( )k k u NM NM  R R I  

for noise power 
2
u .  The term 
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is the kth N N  structured signal covariance matrix where the 

1N   vector , ( )k  g  is a   delay-shifted (and zero-padded) 

version of the normalized and down-sampled far-field 

emission as 
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with the down-sampled delay factor 
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and     the floor operation. 

An additional modification is administered to (36) in which, 

specifically for determination of the ( , )  filter, a portion of 

the surrounding delay-angle indices are set to zero. This 

modification, previously used for optimal mismatched filtering 

[8] actually reduces the degree of super-resolution in delay 

and angle. It thus has the benefit of greatly reducing straddling 

effects in both dimensions and thereby mitigating the ensuing 

mismatch loss (i.e. “off-grid” effects). 

The surrounding region for zero-filling is defined as 

    beam beam
beam beam

,      if    and =
,

0          otherwise                      
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 
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  (39) 

for 

 beam BW BW,    and beam BW BW,        
, 

  (40) 

where BW  and BW  specify the peak-to-null beamwidths in 

the range and electrical angle after adaptive processing.  

The Lagrange multiplier from (35) is, as usual, determined 

by evaluating the constraint, which in this case becomes 
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(41) 

Subsequently solving for  results in  
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(42) 

such that the SRAP filter takes the familiar MVDR-like form  
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(43)  

Clearly (43) is a function of ( , )x   and the surrounding 

delay-angle cells, the very values it is intended to estimate.  

Thus a bootstrapping implementation is needed. 

 



C. SRAP Implementation 

Like its predecessors [20,22,27], SRAP relies on the 

RMMSE structure involving alternating estimation of the 

delay-angle specific filters and the delay-angle scattering 

coefficients (inclusive of illumination scaling), in this regard 

philosophically similar to the implementation of expectation-

maximization [31]. Thus an initial scattering estimate is 

required that can be obtained by applying the delay-angle 

coupled matched filter from (23). The expected delay-angle 

cell powers therefore become the current estimates 
2ˆˆ( , ) | ( , )|x                             (44)  

for use in determination of the updated filters, that then 

subsequently update the scattering estimates. Each iteration 

enhances target visibility and generally after 3 or 4 iterations 

no further improvement is realized. The implementation 

procedure is delineated in Table I. Per iteration, the 

computational cost of SRAP is O((NM)
3
) for the estimation of 

each range-angle cell. 

 

 
Estimation of the scattering in the pulse-eclipsed regions 

[19,32] has become an integral part of the previous APC 

algorithm since doing so provides visibility of more of the 

illuminated region and thereby enhances overall estimation 

accuracy.  To incorporate estimation of the eclipsed scattering 

into SRAP denote the delay indices corresponding to the non-

eclipsed receive interval as 0,1, , 1Q  , so that 0  

and 1Q   correspond to eclipsed range indices. Using (43) 

and [19, Chap. 8], the eclipsed region delay-angle filters can 

thus be defined as 
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(45) 

for the 1, 2, , 1q KN   “early” eclipsed delay indices and 
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(46) 

for the 1, 2, , 1q KN   “late” eclipsed delay indices, 

where , ( )k q g  and , ( )k q g  have the delay-shift structure 

of (37). The terms in the ratios at the front of (44) and (45) are 

defined as   
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to prevent over-compensation by the previous gain-constraint 

of (32) when an eclipsed echo is present. The superscript 
( )( )  in (45) and (46) signifies that the delay-angle indices 

that are zeroed (via (39) and (40)) surround the particular 

eclipsed range index under consideration and not 0  as in 

(45) or 1Q   as in (46). The eclipsed delay-angle filters of 

(45) and (46) are applied to the portions of the received signal 

indexed as (0)y and ( 1)Qy , respectively. 

IV. SIMULATION OF PHYSICAL EMISSIONS & PROCESSING 

Using the physical emission structure described in Section 

II the utility of adaptive receive processing is demonstrated.  

We consider a length 20N   code wx  that realizes a 

commensurate time-bandwidth product when implemented as 

a continuous waveform via (3).  The phase-change values of 

wx  are randomly generated from a uniform distribution on 

[ ,  ]  . For an array of 10M   elements with half-

wavelength spacing and C 0    (i.e. boresight), the spatial 

code sx  is defined such that the beam steers linearly (in the 

spatial domain) from first null to first null (Fig. 2), where the 

first nulls lie at electrical angles 36  . As one would expect, 

the resulting emission has poor autocorrelation properties in 

the range domain, but serves to highlight the sidelobe 

 

TABLE I 

IMPLEMENTATION OF SRAP ALGORITHM 

1. Collect KN range samples corresponding to range index over M 

antenna elements and arrange into 1KNM   vector  y . 

2. Obtain initial range-angle profile estimate MF
ˆ ( , )x  via (23) and (24).  

3. Compute power estimates 
2ˆˆ( , ) | ( , )|x    and use to calculate the 

K down-sampled structured covariance matrices,  ,k G  for k = 0, 

1, … , K-1, for all  using (36) - (38) while implementing the zero-

filling constraint for ˆ( , )   described in (39) and (40). 

4. Find the K down-sampled SRAP filters,  ,k w  for k = 0, … , K-1, 

for all  using (43) (or (45) - (48) if in eclipsed region) . 

5. Interleave the down-sampled filters,   ,k w  for k = 0, … , K-1,  for 

each value of  using the structure shown in (30) and (31) to obtain 

the range-angle SRAP filters ( , )w . 

6. Apply the SRAP filters to the data vector  y to obtain the updated 

range-angle profile estimate ( , ) ( , ) ( )Hx  w y . 

7. Go to step 3 until convergence or desired suppression is achieved. 

 



suppression capabilities of SRAP.  

 

Using this physically realizable emission, we shall consider 

various scenarios of scatterers in noise in the absence of 

clutter (e.g. moving targets after Doppler clutter cancellation). 

The receive data are processed using the SRAP algorithm as 

described in Table I. For this first scenario, consider a single 

point scatterer at range index 30, angle 0   , and an ideal 

SNR of 25 dB after all coherent integration (pulse 

compression, standard focused beamforming, and prior 

Doppler processing). The noise is additive white Gaussian 

with power 0 dB (after integration). The “over-sampling” 

factor is 3K   for the emission and the spatial domain is 

partitioned on a 2  electrical angle grid.  

 
Figures 3 and 4 show the delay-angle matched filter 

response and the SRAP estimate after 2 adaptive iterations 

(following initial matched filtering), respectively. This case 

involved no straddling in delay or angle (i.e. on grid) and 

employing no zeroing of the surrounding delay-angle cells via 

(36). The SRAP response is clearly superior with regard to 

determination of scatterer location in both delay and angle, 

and also provides complete suppression of surrounding 

sidelobes.  Compared to the ideal 25 dB SNR (based on 

standard beamforming) the delay-angle matched filter for this 

coupled emission yields a target peak power of 22.6 dB while 

SRAP results in 21.7 dB, a 0.9 dB loss relative to the matched 

filter. 

 

 

In contrast to the no-straddling case, Figs. 5 and 6 show the 

case in which the receive data has the worst-case straddling in 

delay for 3K   and in angle for the 2  grid (i.e. worst-case 

off grid: halfway between samples). SRAP again uses 2 

adaptive iterations after matched filtering. Figure 5 shows the 

use of SRAP without zeroing the surrounding delay-angle 

cells.  Compared to Fig. 4, the SRAP response is now slightly 

blurred due to mismatch, producing an SNR of 20.8 dB, a 

further 0.9 dB loss relative to Fig. 4. However, by setting 

BW 1 2K    and BW 2 / 5 36M       from (39) 

and (40) to insert surrounding zeros produces the SRAP 

 
Fig. 2.  Time-varying beampattern (TVBP) of a first null to first null steered 

beam with M=10 elements. 

 
Fig. 3. Delay-angle matched filter response for a single scatterer.  No delay or 
angle straddling.  Target peak power is 22.6 dB (2.4 dB loss relative to 

standard beamforming) 

 
Fig. 4. SRAP response for a single scatterer.  No delay or angle straddling.  

No delay-angle zeroing.  Target peak power is 21.7 dB (3.3 dB loss relative 
to standard beamforming) 

 

 
Fig. 5. SRAP response for a single scatterer.  Worst-case delay and angle 

straddling.  No delay-angle zeroing.  Target peak power is 20.8 dB (4.2 dB 
loss relative to standard beamforming) 

 



response in Fig. 6 in which the delay-angle resolution is now 

comparable to that of matched filtering with a target SNR of 

22.6 dB, thus mitigating the straddling mismatch loss. The 

increase of SNR using the zero-filling technique shows that 

there exists a trade-off between enhancing resolution versus 

being robust to straddling effects and maximizing SNR that 

can be controlled by setting the amount of delay-angle “beam 

spoiling”.   

 

 

Next consider the case of 5 targets in an ‘X’ pattern where 

two targets occupy the same range index 34 at electrical 

angles 25  , a center target resides at range 30 and angle 0 , 

and two more targets occupying the same range index 26 at 

electrical angles 25  . All targets have an SNR of 25 dB 

(based on individual standard beamforming for each target) 

and have independent random phase. The center target 

exhibits no straddling (on grid) while the other 4 targets 

exhibit worst-case straddling in both delay and angle. For a 

complete comparison, both the standard emission (no spatial 

modulation) and that from Fig. 2 are examined. The SRAP 

zeroing parameters in this case are set to BW 1 2K    and 

BW 20 9     (4 narrower than the previous example).  

 

Figures 7 and 8 depict the delay-angle matched filter 

responses to the standard beamforming emission and to the 

spatial modulation emission from Fig. 2, respectively.  The 

former in Fig. 7 clearly shows the central target but the outer 

four could be characterized as ambiguous peaks.  The spatial 

modulation case in Fig. 8, however, shows the five targets 

with relatively the same SNR, though their visibility is limited 

by the matched filter resolution capability. 

 

Using SRAP for this same five target scenario, Fig. 9 

illustrates the enhancement that is achieved after 2 iterations 

of the SRAP algorithm when the standard beamforming 

emission is employed.  The five targets can now be identified, 

though the outer four targets again exhibit an SNR loss due to 

the spatially focused emission.  The vertical lines that appear 

in Figs. 7 and 9 at angles 36   and 72   correspond to the 

nulls in the transmit beampattern. 

 
Fig. 6. SRAP response for a single scatterer.  Worst-case delay and angle 

straddling.  Delay-angle zeroing to produce nominal MF resolution.  Target 

peak power is 22.6 dB SNR (2.4 dB loss relative to standard beamforming) 

 
Fig. 7. Delay-angle matched filter response from standard beamforming for 5 

targets in an ‘X’ formation.  

 
Fig. 8. Delay-angle matched filter response from spatial modulation for 5 

targets in an ‘X’ formation.  

 
Fig. 9. SRAP response to standard beamforming for 5 targets in an ‘X’ 
formation.  

 



In contrast Fig. 10 shows the range-angle profile after 2 

iterations of SRAP with the spatial modulation emission. Now 

all five targets exhibit the same SNR, implying that the four 

outside targets do not exhibit deleterious effects after adaptive 

processing due to straddling.  

The reduction of the parameter BW  for Figs. 9 and 10 

limit the width of the mainbeam (in the electrical domain) by a 

significant amount without sacrificing much mismatch loss 

due to delay-angle straddling.  Just as the human eye behaves 

according to lighting conditions (i.e. SNR) it is apparent that 

adaptive receive processing can likewise trade some loss for 

enhanced acuity when SNR is sufficiently high. 

The RMSE values of the 5 target locations for Figures 9 and 

10 are 0.3 range cells for both cases and 3.23 and 1.73 

degrees, respectively. The spatial modulation transmission 

scheme reduced the RMSE of the target location to almost half 

that of standard beamforming for this particular case. 

Although anecdotal, these results are encouraging. 

 
Now consider a target profile containing a large target at 

range index 30 and angle 0 with an SNR of 40 dB and two 

smaller targets at ranges 30 and 35 and angles  36  and 0 , 

respectively, each with an SNR of 20 dB. Recall that the stated 

SNR value is based on individual beamforming for each target 

after coherent integration (thus representing an ideal 

condition). The “over-sampling” factor is 3K   for the 

emission and the spatial domain is partitioned on a 2  

electrical angle grid. All three targets exhibit worst-case 

straddling in range and no straddling in angle. For this 

example the spatially modulated emission from Fig. 2 is once 

again used. 

Figures 11 and 12 show the target responses of the 

aforementioned range-angle profile at an angle cut of 0  

and range cut of 30, respectively, for four different receive 

processing scenarios: matched filtering and 3 SRAP scenarios 

with varying parameters. The parameters chosen for the 

different SRAP scenarios are listed in Table II. 

        

 

 
 

All three scenario of SRAP suppress the sidelobes in range 

and angle that otherwise result from standard matched filtering 

beamforming. Through this suppression, the smaller target in 

range (identified by the black arrow) is clearly shown in all 

three SRAP scenarios (Fig. 11), and the smaller target in angle 

is revealed in SRAP cases 2 and 3 (Fig. 12). The zero-padding 

in angle parameterized by BW  widens the mainlobe of SRAP 

case 1 to the extent that it masks the smaller target, however 

this is the case that exhibits the least loss on the dominant 

target. Table III shows the losses of the dominant target and 

 
Fig. 10. SRAP response from spatial modulation for 5 targets in an ‘X’ 
formation.  

 

TABLE II 

SRAP PARAMETERS FOR FIGS. 11 AND 12 

Case 
BW  BW  

 

Iterations 

SRAP1 5 36  

 

K-1=2 2 

SRAP2 20 9  

 

K-1=2 2 

SRAP3 0 0 2 

 

 
Fig. 11. 0    cut of target profile using multiple receive processing 

methods. Targets located at ranges 30 and 35. 

 

 
Fig. 12. Range = 30 cut of target profile using multiple receive processing 

methods. Targets located at 0  and 36    . 

 



smaller target (when applicable) for each case. The trade-off 

between target loss and resolution demonstrates the ability of 

SRAP to adapt to the current situation.  

     

V. CONCLUSIONS 

Delay-angle coupled radar emissions, often referred to as 

co-located MIMO, may enhance target discrimination 

capability much like the human eye. Using the recent 

demonstration of a physical implementation of a particular 

form of MIMO involving spatial modulation of the focused 

mainbeam direction in fast-time, an adaptive receive filter 

structure has been developed that jointly estimates the delay-

angle response of the illuminated scene.  It is shown that the 

Space-Range Adaptive Processing (SRAP) structure permits 

variable delay-angle resolution to account for possible 

straddling effects that otherwise induce mismatch loss.  As 

such, the combination of spatially modulated emission and 

SRAP receive processing provide the means with which to 

realize a physically implementable delay-angle imaging 

scheme that may have possible application to various radar 

sensing modalities. While not considered here, fast-time 

Doppler for high-speed targets and/or high operating 

frequency could also be addressed by incorporating [33,34]. 

Likewise, dual-polarization effects could be addressed by 

incorporating the adaptive processing extension in [35]. 
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TABLE III 
TARGET PROPERTIES FOR FIGS. 11 AND 12 

Case 
Loss on 

dominant 

target* 

Visible small 
target in 

(range/angle)? 

Loss on small 
target in  

(range/angle)* 

MF 3.69 dB n/n -/- 

SRAP1 4.23 dB y/n 5.82/- dB 
SRAP2 5.27 dB y/y 6.15/6.78 dB 

SRAP3 8.31 dB y/y 6.12/6.96 dB 

* Loss compared to a standard focused beam on target 
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