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Abstract—While a number of signal structures have been 

proposed for radar, frequency modulation (FM) remains the 

most common in practice because it is well-suited to high-

power transmitters, which tend to introduce significant 

distortion to other waveform classes. That said, various 

forms of coding provide useful parameterizations for which 

a variety of optimization methods can be readily applied to 

accomplish different operational goals. To that end, the 

polyphase-coded FM (PCFM) implementation was 

previously devised as a means to bridge this gap between 

optimizable parameters and physically realizable 

waveforms. 

However, the original method employed to optimize 

PCFM waveforms involved a piece-wise greedy search that, 

while relatively effective, was rather slow and cumbersome. 

Here the continuous nature of this framework is leveraged 

to formulate a gradient-based optimization approach that 

updates all parameters simultaneously and can be 

efficiently performed using fast Fourier transforms (FFTs), 

thus facilitating a general design methodology for practical 

waveforms that is directly extensible to myriad waveform-

diverse arrangements. Results include a large number of 

optimization assessments to discern performance trends in 

aggregate and detailed analysis of specific cases, as well as 

both loopback and free-space experimental measurements 

to demonstrate practical efficacy. 

 

Index Terms—frequency modulation, radar waveform 

design, gradient-based optimization, waveform diversity 
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I. INTRODUCTION 

The litany of radar waveform classes, signal structures, and 

design methodologies continues to grow (e.g. see [1-5] and 

references therein), and yet the very first waveform class based 

on frequency modulation (FM) [6-9] continues to be the 

workhorse of a majority of radar systems fielded today. Indeed, 

the simple and well-known linear FM (LFM) chirp is the 

standard performance benchmark and is still widely used due to 

its inherent Doppler tolerance and ease of implementation, 

which permits the generation of extremely wide bandwidths 

and the use of stretch processing [10, 11] on receive. Moreover, 

its primary limitation of high sidelobes can be largely addressed 

using receive tapering to shape the spectrum [1, 5], assuming 

the associated trade-offs in signal-to-noise ratio (SNR) loss and 

range resolution degradation are acceptable.  

This spectral shaping concept has also been examined 

through various forms of nonlinear FM (NLFM) [1] that avoid 

the SNR loss, where the primary design goal is to determine a 

monotonic frequency function of time that is antisymmetric 

about its midpoint (see [12] for a recent summary and analysis). 

It was also recently shown that a compensated form of stretch 

processing can likewise be applied to these forms of NLFM 

[13]. Thus, in general, FM waveforms remain attractive because 

they provide relatively good spectral containment and possess 
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a constant amplitude, both of which are attributes necessary for 

high-power transmitters. 

For more benign environments where the spectrum is 

relatively quiet and operational time-scales are relatively long 

(e.g. scientific remote sensing applications), the LFM chirp will 

likely remain in widespread use for some time to come (e.g. 

[14, 15]). However, most other radar applications continue to 

experience a dynamic “complexification” of the radio 

frequency (RF) spectrum while concurrently having a 

conflicting need to achieve ever greater sensitivity, 

maneuverability, and adaptability in real-time. Consequently, 

there has been a tremendous amount of research under the 

heading of “waveform diversity” (e.g. [2-5]) to identify signals 

and design methodologies that provide further sophistication 

and flexibility. 

At the hardware level this demand is being addressed by the 

enabling technologies of high-fidelity arbitrary waveform 

generation (AWG) capabilities [16], as well as emerging 

software defined radio/radar (SDR) systems [17] and RF 

system-on-a-chip (RF-SoC) modules [18]. However, realizing 

waveforms that achieve the above goals while likewise being 

suitable for these waveform generation systems, along with the 

more strenuous high-power transmitter effects that follow, 

remains a topic of ongoing investigation. 

To that end the polyphase-coded FM (PCFM) waveform 

implementation [19, 20], a conceptual off-shoot of the digital 

FM communication structure known as continuous phase 

modulation (CPM) [21], was proposed as a means to make the 

linkage between goal-oriented parameter optimization and 

physically-realizable radar waveforms that are transmitter-

amenable [22, 23]. It was subsequently demonstrated 

experimentally [23, 24] that transmitter distortion effects could 

be incorporated into the waveform design process, thereby 

further facilitating the prospect of joint transmitter/waveform 

optimization (e.g. [25-27]), a consequence of which could 

potentially be the effective mimicry (and the associated 

advanced sensing/discrimination proficiency) of biosonar 

capabilities found in nature [28-30].  

The PCFM framework has likewise been recently leveraged 

to realize complementary FM waveforms [31], different forms 

of radar/communication spectrum sharing [32, 33], and 

nonlinear intermodulation radar [34]. Owing to their 

physically-realizable construction as FM waveforms, all of 

these applications of PCFM have been experimentally 

demonstrated in hardware as well. 

While some amount of structure is needed to ensure that a 

given signal conforms to the FM form, the PCFM framework 

can arguably be viewed as a “maximally parameterized” 

structure relative to other NLFM arrangements. The 

justification for this statement relies on the fact that PCFM can 

employ multiple “orders” [35] as well as “over-coding” [36] 

that greatly exceeds the waveform time-bandwidth product 

(BT), where B is bandwidth (usually 3-dB) and T is pulsewidth. 

Moreover, PCFM is not constrained to frequency functions that 

are monotonic or symmetric (though the latter is found to still 

be roughly approximated for individual optimized FM 

waveforms that achieve a particular performance bound). 

The piece-wise, greedy search over the PCFM parameter 

space described in [22-24] has been shown to yield effective 

results. However, it is also rather slow, thereby hindering the 

optimization of waveforms with high BT or applications 

requiring real-time waveform design/modification. Moreover, 

it is not readily extensible to multi-waveform modalities. To 

address these limitations, here we exploit the continuous nature 

of the PCFM waveform design problem to formulate a gradient-

based optimization approach. Gradient methods have been used 

before to design waveforms belonging to the class of discrete 

sequences (e.g. [37-44]). The key difference here is that we are 

considering parameterized FM waveforms, whose constant 

amplitude and continuous structure are readily amenable to 

high-power transmitters. Consequently, experimental 

measurements will also be used to demonstrate the resulting 

optimized FM waveforms. 

A particular benefit of gradient-based FM waveform 

optimization, relative to the greedy search of [22-24], is that all 

parameters are updated in parallel at each iteration. Thus this 

formulation is naturally extensible to the joint design of 

multiple waveforms, such as arises for waveform-diverse 

arrangements like multiple-input multiple-output (MIMO) or 

pulse agility. Moreover, as posited in [38, 43, 44], the gradient 

of some cost functions permits simplified computation through 

the use of FFTs. Consequently, optimization of these FM 

waveforms can be performed quite efficiently, thus enabling 

application to sensing modes involving large BT or the need for 

real-time, on-the-fly design. 

Note that some applications of gradient-based FM waveform 

optimization were recently presented by the authors in 

[31, 33, 34, 45-47] for the particular class of random FM 

waveforms, which involves the generation of a stream of unique, 

nonrepeating waveforms (see [48] for a survey). In contrast, here 

we expand upon the approach of [49] by examining the 

underlying mathematical structure of this general design 

approach for individual waveforms (i.e. not part of a 

nonrepeating set) and assess the achievable performance when 

operating in the traditional mode of repeating the same waveform 

throughout the coherent processing interval (CPI). In other 

words, we are asking the question: “for a given initialization and 

(possibly quite large) set of parameters, what is the single best 

FM waveform that can be designed?” Of course, global 

optimality cannot be guaranteed due to the size of the solution 

space and its nonconvex nature. However, there does exist a 

judicious initialization selection that provides rather good results 

after the application of gradient descent, in many cases attaining 

a performance bound that exists when the continuous waveform 

is discretized for optimization and/or digital receive filtering.  

The rest of the paper is organized as follows. Section II 

introduces and discusses the salient aspects of the PCFM 

implementation used for optimization of physically realizable 

waveforms, followed by a description of the Generalized 

Integrated Sidelobe Level (GISL) metric in Sect. III and its 

efficient gradient-descent solution in Sect. IV. In Sect. V the 

results of several optimization runs are examined to assess the 

complicated interplay between various parameters in the PCFM 

waveform implementation. Finally, loopback and open-air 

experimental measurements using selected optimized FM 

waveforms are presented in Sect. VI to demonstrate practical 

efficacy. 



 

Page 3 of 20 

 

 

II. PCFM RADAR WAVEFORM IMPLEMENTATION  

The PCFM signal structure [20] (Fig. 1) was adapted from 

the CPM communication framework that is used for 

aeronautical telemetry, deep-space communications, and is the 

basis for the BluetoothTM wireless standard [21]. Being a form 

of digital FM, CPM (and thus also PCFM) has the desirable 

attributes of being both continuous and constant amplitude. The 

former facilitates good spectral containment (given appropriate 

coding) and the combination of both mitigates most of the 

distortion that would otherwise be imparted by a high-power 

transmitter (particularly the high-power amplifier (HPA) [50]).  

 

 
Fig. 1.  Polyphase-coded FM (PCFM) radar waveform 

implementation [20] 

 

In brief, the PCFM waveform implementation takes a vector 

of N parameters x = [1 2 ⋯ N]T, for (⦁)𝑇 the vector transpose 

operation, and uses them to weight a train of N impulses 

separated in time by 𝑇p. This weighted impulse train is 

convolved with (frequency) shaping filter g(t), which has time 

support on [0, 𝑇p], and is then integrated to obtain the 

continuous phase function of time  (t ; x). This phase function 

is subsequently exponentiated to produce the complex, 

baseband waveform of pulsewidth 𝑇 = 𝑁𝑇p. The process in 

Fig. 1 can be written succinctly as [20] 
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where  denotes convolution. For this “first-order” PCFM 

implementation (since there is a single integration stage) the 

values in x can be viewed as piece-wise, instantaneous digital 

frequencies that lie within [−, +], though the notion of “over-

coding” [36] provides a way to expand those limits for greater 

design freedom. While beyond the scope of this paper, “second-

order” and higher PCFM implementations have also been 

examined [35] in which the coding is in terms of instantaneous 

digital chirp-rate (or higher). It remains to be seen how 

gradient-based optimization can likewise be applied to these 

higher-order implementations. For the remainder of the paper 

we shall only consider the first-order case. The reader should 

note, however, that MatlabTM code for the various PCFM 

implementation orders can be found in the appendix of [35]. 

Besides the power efficiency (constant amplitude), spectral 

containment (continuous phase), and transmitter-amenable 

implementation advantages of PCFM, the discrete set of 

underlying parameters also provides a convenient mechanism 

with which to perform waveform optimization, such as was first 

explored in [22-24]. More recent work by the authors 

[31, 34, 35, 45] takes advantage of the linearity of the phase 

construction in (1). By evaluating the convolution and integral, 

the phase component of (1) can be equivalently expressed as 
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is the integral of the shaping filter and delay-shifted by an 

integer multiple of 𝑇p. For example, for first-order PCFM 𝑔(𝑡) 

is a rectangular shaping filter with amplitude 1/𝑇p , and thus 

the nth basis function is the delay-shifted ramp function  
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The PCFM phase is therefore constructed from a linear 

combination of these N continuous basis functions, with each 

weighted by the corresponding PCFM parameter 𝛼𝑛.  

Additionally, (2) can be viewed in a more general sense 

where the continuous phase function of all manner of coded FM 

waveforms is comprised of a weighted sum of continuous basis 

functions. One such example is the construction in [51], where 

orthogonal basis functions derived from Legendre polynomials 

were used to design FM waveforms. Moreover, this perspective 

is a variant of that previously taken by the seminal work of 

Wilcox [52-54] in which a formulation similar to (2) was used 

to represent the entire waveform s(t) through a combination of 

orthonormal basis functions. In contrast, the construction in (2) 

is specific to the waveform’s continuous phase component ( )t  

and the constituent basis functions thereof are continuous but 

otherwise arbitrary. While the Legendre polynomial approach 

of [51] does rely on orthogonality of phase basis functions for 

compactness, the PCFM framework in (4) using a rectangular 

shaping filter clearly does not. 

For the purposes of this paper, the representation in (2) is also 

important because it facilitates computationally efficient 

gradient-descent optimization. By casting the continuous 

PCFM phase in this way, it can easily be discretized by 

sampling the N continuous-time basis functions in (3). From 

there, the discretized PCFM form can be evaluated via a single 

matrix/vector multiply. Thus the length-M ( > N) discretized 

PCFM waveform can be expressed as 

 ( )exp j= Bxs ,                                  (5) 

where 𝐁 is an 𝑀 × 𝑁 matrix consisting of the length-M sampled 

versions of the 𝑁 basis functions. Given that a time-limited 

pulse cannot be bandlimited, thereby preventing true Nyquist 

sampling, the appropriate value for M bears closer examination. 

Further, while we are focusing on optimization of the PCFM 

implementation, note that the gradient-descent approach 

developed here is likewise applicable to any coded FM 

waveform that can be parameterized in the form of (2) and 

discretized with sufficient fidelity via (5). 

In the original PCFM formulation [20], 𝑀 took on a rigid 

definition with respect to the number of PCFM parameters 𝑁 

and the “oversampling” factor 𝐾 relative to 3-dB bandwidth B, 
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where 𝑀 = 𝐾𝑁 such that 𝐾 was also the number of samples per 

𝑇p interval. When the PCFM parameters in x are allowed to 

span the digital frequency space of [−𝜋, +𝜋], then (1/𝑇p) ≈ 𝐵 

and subsequently  𝐵𝑇 ≈ (1/𝑇p)𝑁𝑇p = 𝑁. Consequently, the 

number of waveform samples can also be determined by setting 

𝑀 = 𝐾(𝐵𝑇). The authors have observed that selecting K as low 

as 2 or 3 is generally sufficient for the discretized representation 

to possess a high enough dimensionality to adequately limit the 

amount of unavoidable aliasing (though in general the 

necessary value for K depends on the rate of spectral roll-off for 

a given waveform).  

If much higher fidelity (i.e. much less aliasing) is required, 

such as in the case of transmit spectral notching [55], then a 

higher value of K may be necessary. Alternatively, 

discretization (for the purpose of optimization) could be 

performed in the frequency domain based on the analytical 

spectral representation of PCFM derived in [33] (further 

investigation of aliasing can be found in this reference). 

In [36] it was shown that even better waveforms (based on 

sidelobe metrics) can be obtained by subdividing each 𝑇p 

interval by a factor L, thereby increasing the number of PCFM 

parameters 𝑁 and consequently the available degrees of 

freedom. Crucially though, while the number of PCFM 

parameters is increased, the relationship 𝑀 = 𝐾(𝐵𝑇) is 

maintained to preserve the same general spectral content. This 

subdivision of the code intervals, denoted as “over-coding” 

[36], therefore partially decouples the number of PCFM 

parameters 𝑁 from 𝐵𝑇, such that 𝐵𝑇  𝑁  𝑀 and we can now 

set 𝑁 = 𝑀𝐿/𝐾 = 𝐿(𝐵𝑇). Consequently, 𝐾 is no longer the 

number of samples per 𝑇𝑝 interval. 

Of course, decoupling 𝑁 from 𝐵𝑇 introduces a requirement 

to in some way constrain the PCFM values in x, or to at least 

pay special attention to how x is optimized, such that the 

relationship 𝑀 = 𝐾(𝐵𝑇) is maintained. In [36], this 

requirement was met explicitly by limiting the span of each 

(over-coded) 𝛼𝑛 to [−/L, +/L]. Alternatively, in [45] the 

optimization metric implicitly constrained the span of each 𝛼𝑛 

by shaping the waveform spectrum directly. This latter 

approach worked well enough that “maximal over-coding” (i.e. 

setting 𝑀 = 𝑁, or 𝐿 = 𝐾) could be used to exploit the 

maximum available degrees of freedom for the given 

discretized representation, while still preserving sufficient 

spectral containment. Table I provides a summary of these 

various PCFM terms and their relationships. 

Finally, here we shall intentionally relax strict control on 

spectral containment and rely instead upon 1) setting the 

autocorrelation mainlobe width to effectively dictate the 

optimized waveform’s 3-dB bandwidth and 2) the choice of 

initialization prior to optimization. Clearly the former will only 

impact the passband of the waveform and have little/no 

influence on spectral roll-off. The latter will only affect spectral 

containment insofar that the highly non-convex optimization 

problem may converge to local minima whose spectral content 

is similar to the initialization. Specifically, it has been observed 

through multiple trials that initializations exhibiting “chirping” 

behavior similar to LFM or many of the good NLFM 

waveforms do tend to retain much of their good spectral 

containment after optimization. This result is a consequence of 

the “conservation of ambiguity” phenomenon as it is 

instantiated in the prominent delay-Doppler sheared ridge for 

chirped waveforms. In contrast, random initializations 

generally do not enjoy this natural absorber of ambiguity and 

thus exhibit quite different optimization behavior (and would 

thereby otherwise require more explicit spectral control, e.g. 

[45]). 

 

TABLE I 

SUMMARY OF PCFM TERMS 

Term Description Relationships 

𝑀 Number of PCFM    

waveform samples 

 

𝑀 =
𝑁𝐾

𝐿
= 𝐾(𝐵𝑇) 

𝑁 Number of optimizable 

PCFM parameters 

 

𝑁 =
𝑀𝐿

𝐾
= 𝐿(𝐵𝑇) 

𝐾 PCFM oversampling factor 

with respect to 3-dB 

bandwidth 

𝐾 =
𝑀𝐿

𝑁
=

𝑀

(𝐵𝑇)
 

𝐿 PCFM over-coding factor 𝐿 =
𝑁𝐾

𝑀
=

𝑁

(𝐵𝑇)
 

 

III. GENERALIZED INTEGRATED SIDELOBE LEVEL 

Fast-time Doppler effects notwithstanding, metrics involving 

evaluation of the waveform autocorrelation  

 ( () ) ( ) tr s t s t d 
−




= + ,                       (6) 

where (⦁)∗ denotes complex conjugation, are the litmus tests by 

which waveform goodness is generally assessed. The two most 

well-known metrics are the integrated sidelobe level (ISL) ratio, 

which compares the total energy of the autocorrelation sidelobe 

region to the total energy in the mainlobe region, and the peak 

sidelobe level (PSL) ratio, which compares the peak value of 

the largest autocorrelation sidelobe to the value at the peak of 

the mainlobe. Mathematically, these metrics can be expressed 

as 
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where the mainlobe extends over −∆𝑡 < 0 < +∆𝑡 and making 

use of 𝑟(−) = 𝑟∗(). The latter form in (8) is the version of 

PSL most commonly used where, with proper normalization, 

the denominator can be set to unity and thereby removed 

altogether. 

Lower values of ISL and PSL generally correspond to better 

radar waveforms. By lowering ISL the average energy in the 

sidelobes is diminished, thus reducing the overall sidelobe 

response of the waveform. In contrast, lowering PSL tends to 

have the effect of flattening the sidelobes, thus helping to 

reducing the probability of a false alarm due to a sidelobe, 

though the average sidelobe level in this case may be higher 

than for an ISL-minimized waveform. 

These two metrics assess the problem of sidelobe 

minimization in different ways, yet whether one is better than 
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the other depends on the application (and transmitter effects as 

demonstrated in Sect. VI). The question remains, however, of 

how best to reduce ISL and/or PSL values through waveform 

optimization. To answer this question it is helpful to examine 

(7) and (8) in further detail. 

Generally speaking, it is easier to optimize (minimize in this 

case) “well-behaved” cost functions; i.e. those having attributes 

of convexity, linearity, and continuity. Neither (7) nor (8) have 

all of these properties, with (8) being especially problematic 

due to the max{⋅} operator that prevents differentiation in a 

conventional manner. Consequently, we can rewrite (8) as 
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which takes advantage of the infinity norm that is equivalent to 

evaluating the max {⋅} operator. Consequently, (7) and (9) can 

(effectively) be subsumed into [49] 
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that realizes the generalized integrated sidelobe level (GISL) 

ratio for 2 ≤ 𝑝 < ∞. Specifically, when setting 𝑝 = 2 the GISL 

metric of (10) becomes ISL from (7). Likewise, if 𝑝 → ∞, (10) 

approaches the PSL metric of (8) or (9). Similar metrics have 

likewise been considered for discrete sequence design (see 

[41, 42, 56, 57]). 

Values in between the extremes of 𝑝 = 2 and ∞ provide a 

measure in between ISL and PSL. Further, while the GISL 

metric does not actually permit optimization according to PSL 

(𝑝 = ∞) in a strict sense, large (yet finite) values of p serve this 

intent for all practical purposes. In fact, anecdotal results thus 

far seem to indicate that there is little discernible benefit to 

setting p greater than 15 to 20. 

 Note that the autocorrelation 𝑟(𝜏) is already a second-order 

function of the waveform 𝑠(𝑡). The exponent p in (10) therefore 

realizes an optimization metric that is a 2p-order function of 

𝑠(𝑡). Given that, at the very least (for ISL), this metric could be 

a fourth-order function or higher, it is clearly nonlinear and non-

convex with respect to waveform optimization. Hence the local 

minima achieved will depend on the choice of initialization. 

Fortunately, it is already known that (generally speaking, at 

least) good waveforms tend to possess a “sideways-S” [1, 5] 

frequency function of time, and thus classical chirped 

waveforms provide a good source of initialization. Moreover, 

since the PCFM representation in (1) is a continuous function 

of the parameters in x, the subsequent autocorrelation via (6) 

and GISL evaluation via (10) likewise remain continuous, thus 

permitting the use of gradient-based optimization that can be 

performed efficiently due to the discretized form of (2) and (5), 

and FFT operations that arise from the gradient derivation. 

 

IV. GISL OPTIMIZATION OF PCFM 

As noted above, the GISL cost function is nonlinear and non-

convex, which precludes global optimality, particularly as the 

number of optimizable parameters N grows large. Where for 

many types of problems this situation would subsequently 

necessitate the investigation of approaches/modifications 

whereby convexity could be imposed [58, 59], a useful attribute 

of waveform diversity [2-5] is in fact the wide assortment of 

options that could be employed as a consequence of all these 

local minima. Thus, while we are presently seeking to 

determine the single best FM waveform that can be achieved 

(for a given initialization and set of parameters), it is beneficial 

for the methodology to be extensible to the generation of more 

diverse waveform sets as well (e.g. see [48]). 

In [31, 33, 34, 37-47, 49, 51] a variety of gradient-descent 

methods were used to optimize different types of radar signals. 

Specifically, in [49] the authors applied nonlinear conjugate 

gradient (NLCG) methods, of which numerous variants exist 

[60], to the particular problem of parameterized FM waveform 

optimization. The simpler, yet quite effective, “heavy ball” 

gradient descent technique was subsequently employed for 

many of these waveform design applications [31, 33, 34, 45-

47]. It is this latter formulation that shall be used here as well. 

 

A. Discretizing the GISL Cost Function 

To numerically optimize the GISL cost function with respect 

to the parameter vector x for a particular integer value of p, it is 

first necessary to discretize (10), and therefore (6), in a manner 

consistent with (5) as discussed in Sect. II. In so doing the 

continuous autocorrelation of (6) becomes the discretized 

version 
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with 𝑠[𝑚] = 0 for 𝑚 ≤ 0 and 𝑚 > 𝑀, and retaining the 

relationship 𝑟[−ℓ] = 𝑟∗[ℓ] for delay index ℓ. Taking advantage 

of the Fourier relationship between the autocorrelation and 

spectral density, the vectorized form of (11) can be expressed 

as 

 [( ) ( ) ]H =r A As As ,                       (12) 

where the zero-padded version of the length-M discretized 

waveform 

 1 ( 1)[ ]T
M

T
 −=s s 0                              (13) 

has the same (2𝑀 − 1) length as the corresponding 

autocorrelation. Further, the (2𝑀 − 1)  (2𝑀 − 1) matrices 𝐀 

and 𝐀𝐻 perform the discrete Fourier transform (DFT) and 

inverse DFT (IDFT), respectively, and ʘ is the Hadamard 

product. 

Using (12), the discretized GISL cost function can then be 

written as  

 
2

ML

2

SL p

p

p

J =
w

w

r

r
                              (14) 

where ‖⋅‖𝑝 is the discrete p-norm and 𝐰SL and 𝐰ML are length 

(2𝑀 − 1) vectors comprised of zeros and ones that select the 

sidelobe and mainlobe regions of r, respectively. The mainlobe 

portion of 𝐫, as extracted by the non-zero central portion of 

𝐰ML, is set explicitly by the 3-dB bandwidth oversampling 

factor 𝐾, such that the central (2𝐾 − 1) samples of 𝐫 are taken 

as the mainlobe. It was shown in [49, 51] that this approach is 

an effective way to control the desired bandwidth during 
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optimization, though it does not regulate the degree of 

containment in the spectral roll-off region. 

Finally, discretization of the autocorrelation imposes a lower 

bound on the achievable PSL value for constant amplitude 

waveforms. Specifically, at the outer delay indices of ℓ =
±(𝑀 − 1), the corresponding 𝑟[ℓ] in (11) consists of a single 

term, meaning the result can only be as small as the magnitude 

of this value. If the discretized waveform is normalized such 

that 𝑟[0] = 1, then the PSL lower bound is [49] 

  sampled bound 10 10

1
PSL 20log 20log ( )M

M

 
= = − 

 
    (15) 

since the ℓ = ±(𝑀 − 1) terms in 𝑟[ℓ] will therefore be equal to 

1/𝑀. This bound serves as a useful benchmark by assessing 

how close a given discretized waveform is to reaching this PSL 

value. 

 

B. GISL Gradient Descent 

For the discretized representation of the GISL cost function 

in (14) we now wish to compute the gradient with respect to the 

elements of x, the operator for which is the length-N vector 

 
1 2

T

N  

  


 

 
= 





x .                   (16) 

When (16) is applied to (14), it is shown in Appendix A that the 

gradient ultimately becomes 

( 2)SL ML

SL ML

4

( )

T
p p

pH

p pT T

J J

−

 = 

           − 
          

x B

w w
s A A r r As

w r w r

 

                     (17) 

where we have expanded 

 ( 1)

T
T

N M −
 =  B B 0 ,                        (18) 

the operator }{   extracts the imaginary part of the argument, 

and |⦁| realizes the magnitude of each element in the vector 

argument. The matrix 𝐁, containing the N discretized basis 

functions for the waveform construction in (5), is zero-padded 

in (18) in a manner consistent with the discretized waveform in 

(13). Critically, the gradient in (17) can be calculated using only 

FFTs/IFFTs and matrix/vector multiplies, thus permitting 

efficient computation for fast optimization. Specifically, the 

per-iteration cost is O(M  3N ), which can also be expressed as      

O(N 4 (K 3/L3 )) via the relationships in Table I. 

In general, gradient-based methods operate by iteratively 

updating the parameters being optimized such that the cost 

function is reduced at each iteration. At the ith iteration, this 

arrangement can be represented as 

 1i i i i−= +x x q ,                             (19) 

where 𝐪𝑖 is the current search direction and 𝜇𝑖 is the current 

step-size. The search direction 𝐪𝑖 is explicitly a function of the 

current gradient ∇𝐱𝐽𝑝(𝐱𝑖−1), and can also incorporate past 

search directions such that 

 
1

1 1

( ) when 0

( ) otherwise

p i

i

p i i

J i

J 

−

− −

− =
= 

− +

x

x

x
q

x q
,              (20) 

where the gradient itself is a function of the current waveform 

𝐬𝑖−1 (and thus 𝐱𝑖−1) obtained in the previous iteration.  

While any of the various gradient-descent methods could 

be used, in the results presented we employ the heavy ball 

method [61] for which 0 < 𝛽 < 1. Where other 

implementations may be more sophisticated, and perhaps 

realize faster convergence, the simplicity of heavy ball (which 

relies on gradient “inertia” to dampen abrupt changes) makes it 

attractive from a computational perspective. As denoted in 

Table II, which shows the individual steps of the optimization 

process employed here, if the current search direction 𝐪𝑖 is not 

actually a descent direction relative to the current gradient 

∇𝐱𝐽𝑝(𝐱𝑖−1) (step 5), then the search direction is reset to the 

current gradient (step 6), thereby completely forgetting the past 

gradients (𝛽 can also be thought of as a “forgetting factor”). 

 

TABLE II 

GISL GRADIENT OPTIMIZATION OF PCFM WAVEFORMS 

1:  Initialize: 𝑀, 𝐵𝑇, 𝐿, 𝐁, 𝐱0, 𝑝 (norm), 𝑁 = 𝐿(𝐵𝑇),  
      𝐪0 = 𝟎𝑁×1,  𝛽, 𝜇, 𝜌up, 𝜌down, 𝑐, and set 𝑖 = 1 

2: Repeat 

3:       Evaluate: 𝐽𝑝(𝐱𝑖−1) and ∇𝐱𝐽𝑝(𝐱𝑖−1) via (14) and (17) 

4:        𝐪𝑖 = −∇𝐱𝐽𝑝(𝐱𝑖−1) + 𝛽𝐪𝑖−1 

5:        If (∇𝐱𝐽𝑝(𝐱𝑖−1))
𝑇

𝐪𝑖 ≥ 𝟎 

6:              𝐪𝑖 = −∇𝐱𝐽𝑝(𝐱𝑖−1) 

7:       End (If) 

8: 
      While 𝐽𝑝(𝐱𝑖−1 + 𝜇𝐪𝑖) > 𝐽𝑝(𝐱𝑖−1) +

                                                            𝑐𝜇 (∇𝐱𝐽𝑝(𝐱𝑖−1))
𝑇

𝐪𝑖 

9:              𝜇 = 𝜌down  𝜇 

10:       End (While) 

11:        𝐱𝑖 = 𝐱𝑖−1 + 𝜇𝐪𝑖 ,    𝜇 = 𝜌up 𝜇 

12:        𝑖 = 𝑖 + 1 

13: Until 𝑖 = 𝐼 or ‖∇𝐱𝐽𝑝(𝐱𝑖)‖ < 𝑔min 

 

The current step-size 𝜇 is determined via a simple 

backtracking approach that satisfies the Armijo condition [62] 

(otherwise known as the first Wolfe condition) with the 

“sufficient decrease” parameter c that is applied in step 8. In 

addition, a “step-size increase” parameter 𝜌up (slightly > 1) is 

applied in step 11 and “backtracking” parameter 𝜌down (slightly 

< 1) is applied in step 9 when the step-size is too large. The 

combination of ensuring descent (steps 5 and 6) and sufficient 

decrease (step 8), which triggers backtracking when necessary 

(step 9), serve the purpose of keeping the optimization within 

the local minimum region of the waveform initialization 

(perhaps not important in general but useful to assess the impact 

of the initialization). 

The overall process is then run until either some maximum 

number of iterations I is reached or the magnitude of the 

gradient goes below some prescribed minimum gmin. Finally, 

note that we do not consider the second Wolfe condition of 
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“curvature” to avoid the higher computation cost it would incur 

as a trade-off for faster convergence.  

 

V. ASSESSMENT OF GRADIENT-BASED PCFM OPTIMIZATION 

There are a large number of parameter combinations that 

could be considered when performing an evaluation of 

gradient-based optimization of the GISL cost function for 

PCFM waveforms. Specifically, there are the parameters of 

time-bandwidth product 𝐵𝑇, the 3-dB oversampling factor 𝐾, 

and the over-coding factor 𝐿 for the waveforms themselves. As 

described in Table I, these values collectively determine the 

number of optimizable PCFM parameters N, as well as the 

number of samples M in the discretized representation. There is 

likewise the waveform initialization, which we shall examine 

throughout this section. 

From the cost function perspective, there is the particular 

norm value p to consider, along with the number of iterations 

of (19) to perform. As noted in the previous section, there is 

likewise the choice of gradient-descent formulation, though we 

restrict consideration here to the heavy ball approach for 

simplicity. 

Clearly, exploring the complicated interplay between all 

these different parameters, implementation approaches, and 

initializations in an exhaustive manner is infeasible. Instead, we 

shall evaluate portions of the design space to ascertain 

meaningful trends, while showing an even smaller subsequent 

sampling of illustrative results in greater detail. Specifically, we 

shall fix M to be 1024 so that a variety of combinations of BT, 

K, and L can be assessed with a common basis for comparison. 

We also consider integer values of p ranging from 2 up to 20 to 

provide adequate breadth for appraisal.  

Because no explicit constraint is being placed on spectral 

containment here (e.g. by imposing limits on 𝑛 [23, 36] or 

shaping of the spectral roll-off [23, 45-47]), it is appropriate to 

set a limit on the allowable degree of over-coding. Specifically, 

to ensure at least two samples per 𝑇p interval, the value of L is 

constrained such that (𝐵𝑇)(𝐿)  ≤  𝑀/2. Of course, it is 

important to note that the generation of these discretized PCFM 

waveforms in hardware may necessitate resampling relative to 

the digital-to-analog converter (DAC) rate of the system, where 

phase interpolation (instead of standard sinc interpolation or the 

like) must be used to avoid unnecessary amplitude distortion. 

Table III summarizes 228 different combinations of 

parameters that have been examined and are presented here. In 

each case the optimization was initialized either with a 

discretized LFM waveform or a discretized random FM 

waveform, with the initial coding values for either case 

bounded on [− 𝜋 𝐿⁄ , +𝜋 𝐿⁄ ] for the given value of L.  

 

TABLE III 

OPTIMIZATION PARAMETERS 

  M      P  BT     L 

1024  2 to 20 64 1 to 8 

1024  2 to 20 128 1 to 4 

 

In the results that follow we set 𝛽 = 0.95, which has been 

found empirically to provide a good trade-off between gradient 

“inertia” (smoothing) and responsiveness for the given cost 

function. The starting step-size is set smaller than is expected 

to be necessary for this problem (to 𝜇 = 10−4) to support the 

goal of staying within the local region of the waveform 

initialization, which matters for the LFM cases (attempting to 

preserve the chirp-like structure) but not so much for the 

random FM cases. The step-size increase (𝜌up) and 

backtracking (𝜌down) parameters are set to 1.01 and 0.9, 

respectively, as a crude balance between seeking the largest 

feasible step-size (for faster convergence) while keeping the 

number of backtracking steps low (maintain lower computation 

due to re-evaluations of the cost-function). Finally, empirical 

observation was also used to set the sufficient decrease 

parameter to 𝑐 = 10−2, the minimum gradient magnitude to 

𝑔min = 10−5, and the maximum number of iterations to 𝐼 =
106. 

 

A. General Results 

The final PSL and ISL values of the 228 individual 

optimization runs using LFM initialization are tabulated in 

Appendix B, where Tables V and VI correspond to BT = 64 and 

Tables VII and VIII correspond to BT = 128. The tables have 

been shaded such that the lower values (better) are darker. 

Additionally for the PSL tables, the entries that meet the PSL 

bound of (15) are bordered in black, which for 𝑀 = 1024 is a 

PSL value of −60.2 dB. 

A couple trends are immediately apparent from these results. 

First, a higher degree of over-coding (larger 𝐿), which 

corresponds to an increase in the number of independent 

parameters, tends to realize improved ISL and PSL regardless 

of 𝐵𝑇 (aside from a few modest outlier cases for p > 17 in 

Tables VII and VIII, which may be a result of finite precision 

effects in the gradient calculation at higher values of p). From 

an optimization standpoint this general trend is not surprising 

since greater design degrees of freedom tend to provide better 

performance. From a waveform design standpoint, however, 

this outcome indicates that PSL and ISL can be decoupled from 

the value of BT for a given degree of oversampling. A similar 

result was observed in [49, 51]. 

 Second, lower values of 𝑝 tend to provide better final values 

of ISL, while higher values of p tend to provide better final 

values of PSL. For example, in Tables V and VII the best ISL 

values (for each N) correspond to p = 2, 3, or 4. In fact, once L 

exceeds 3 or 4 we find that p = 2 provides the best ISL results 

for all higher values of L. Conversely, Tables VI and VIII show 

that, in nearly all cases, PSL improves as p increases, though 

the incremental benefit of higher p is diminished as L increases. 

Indeed, Table VI demonstrates that when N = 512 (L = 8), the 

PSL bound is achieved for all cases where p  3. 

In light of these observed trends one can surmise that, to the 

degree that it is possible for a given sampling rate, higher L 

(more over-coding) is always desirable, with the selection of p 

then determined by the preferred emphasis on ISL or PSL. If 

the latter achieves the bound in (15), the lowest value of p to do 

so would therefore benefit both criteria. Given the clear benefit 

to higher L we shall henceforth select the largest value of L 

possible for the remaining cases examined. 

 

B. Specific Cases 

The tables in Appendix B survey the results of performing 

gradient-descent optimization for a PCFM waveform via the 
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GISL cost function for an LFM initialization. While results are 

for specific values of BT = 64 (or 128) and M = 1024 samples, 

the observed performance trends also provide indications of 

what one could expect in general for different BT, albeit with 

similar relational values of N, K, and L, per Table I. 

Having considered the large-scale trends we now examine 

some specific cases in greater detail to discern particular aspects 

such as general autocorrelation attributes, spectral shape and 

containment, optimization convergence behavior, and the 

frequency function of time. Specifically, from Tables VII and 

VIII (where BT = 128), and focusing on N = 512 (L = 4), we 

select the cases p = 2 (best ISL), p = 20 (meets the PSL bound 

and largest value of p), and p = 8 (best ISL while also meeting 

the PSL bound). 

 
Fig. 2. Autocorrelations of optimized PCFM waveforms 

using LFM initialization with BT = 128, for M = 1024, L = 4, 

and p = 2, 8, and 20 

 

Figure 2 depicts the one-sided autocorrelation for these three 

waveforms along with the initializing LFM, with the inset 

providing a close-up of the response near the outer edge where 

the PSL bound at −60.2 dB (dashed horizontal line) is 

applicable for every constant amplitude waveform discretized 

by M (= 1024 in this case). As the results in Table VIII indicate, 

the bound value is indeed the PSL value attained for the p = 8 

(red trace) and p = 20 (blue trace) optimized waveforms since 

neither surpass the bound anywhere else. In contrast, the p = 2 

optimized waveform (yellow trace) does exceed the bound in a 

few localized places (around normalized delays of 0.85 and 

0.99, and the shoulder-lobes visible in Fig. 3), though it also has 

a much lower response between normalized delays of roughly 

0.15 and 0.85, which serves to facilitate the lower ISL value 

(average sidelobe level).  

Thus, as expected, PSL-focused (or at least larger p-norm) 

optimization leads to FM waveforms with flatter 

autocorrelation responses than those optimized for ISL. 

Moreover, the value of p does not need to be all that large (e.g. 

p = 8) to achieve this flattened result that is beneficial from the 

perspective of mitigating sidelobe-induced false alarms at the 

detection stage of the radar receiver. 

Figure 3 likewise provides a detailed view of the 

autocorrelation mainlobe for the LFM initialization and the 

three optimization results. Here we observe a modest narrowing 

at the top, though the peak-to-null width is the same for all four 

cases due to specification of the mainlobe and sidelobe 

selection vectors from (14), which likewise conforms to the 

LFM mainlobe. 

In Fig. 4 the delay-Doppler ambiguity function for the p = 8 

optimized waveform is shown (the p = 2 and 20 cases are 

negligibly different). The presence of low range sidelobes is 

visible via to the narrow vertical notches at zero-Doppler 

above/below the mainlobe at zero-delay. The prominent 

sheared ridge of chirped waveforms is also clearly evident, 

along with the Fresnel lobes around it. Thus, this waveform 

(along with the other LFM-initialized optimization cases) 

retains some degree of Doppler tolerance from LFM, albeit with 

some increase in sidelobes as Doppler increases, as is the case 

with all NLFM waveforms. 

 
Fig. 3. Mainlobe autocorrelation detail of optimized PCFM 

waveforms using LFM initialization with BT = 128, for 

M = 1024, L = 4, and p = 2, 8, and 20 

 

 
Fig. 4.  Delay-Doppler ambiguity function of optimized 

PCFM waveform using LFM initialization with BT = 128, 

for M = 1024, L = 4, and p = 8 

 

The degree of Doppler tolerance can be examined further by 

plotting the delay-Doppler ridge (or more generally, the 

ambiguity function peak value) as a function of normalized 

Doppler. Figure 5 illustrates this response for LFM, these three 

optimized waveforms based on LFM initialization, and another 
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optimized waveform based on random initialization (discussed 

further in Sect. V.D). With LFM the benchmark for Doppler 

tolerance (see Chap. 20 of [63]), we observe that the three 

optimized waveforms above do incur a trade-off penalty for the 

far lower sidelobes attained, though compared to the 

thumbtack-like response of the optimized random FM 

waveform these three do still preserve at least some of the 

Doppler tolerance. 

 
Fig. 5.  Ambiguity function peak value as a function of 

normalized Doppler 

 

A useful way in which to quantify the degree of Doppler 

tolerance is to measure the rate   of roll-off in Fig. 5 near the 

peak, since the amount of normalized Doppler encountered in 

practice tends to be small. Because the ambiguity function’s 

Doppler response at zero delay is a sinc2(•) function for 

constant-amplitude waveforms like FM, we can choose the first 

null of this response as a convenient standard. Specifically, at 

the boundary established by the first Doppler null of the zero-

delay cut, determine the maximum normalized ambiguity 

function response as 
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is the ambiguity function. 

For the normalized Doppler depiction below, and BT = 128 

for these waveforms, the first Doppler null occurs at 𝑓𝑑 =
±0.0078𝐵, which is shown in the detail view of Fig. 5. 

Consequently, the values of   from (21) are −0.07 dB for LFM, 

−0.49 dB for the p = 20 optimized waveform, −0.50 dB for the 

p = 2 and 8 optimized waveforms, and a whopping −14.00 dB 

for the optimized random waveform (that is clearly not Doppler 

tolerant). Because the roll-off is quasi-linear in this small 

Doppler regime (see detail inset of Fig. 5), these values can be 

used to approximate the rate of loss one incurs for a given 

waveform as a linear function of normalized Doppler 

frequency. 

Now consider the power spectra of these three optimized 

waveforms (see Fig. 6) relative to the power spectrum of the 

initializing LFM, along with a normalized Gaussian power 

spectrum having the same 3-dB bandwidth for comparison. 

Unlike in related work [23, 45-48], the latter was not used here, 

though it is interesting to observe that all three of the optimized 

waveforms realize power spectra that nonetheless closely 

conform to the upper 20 dB of the Gaussian. Anecdotally at 

least, this outcome reaffirms the use of a Gaussian power 

spectral template [64] for these other forms of waveform design 

that instead rely on spectrum matching. While not explored 

here, one could also relate this result to the spectral 

concentration problem that ultimately realizes the Slepian 

window [65], the mainlobe of which is likewise quite similar to 

the observed upper portion of the power spectrum in Fig. 6.  

The 3-dB bandwidth is achieved indirectly by setting the 

autocorrelation mainlobe width via 𝐰ML and 𝐰SL in (14), thus 

establishing the range resolution. Specifically, the null-to-null 

autocorrelation width is preserved in this manner (relative to the 

LFM initialization), though the spectral shape changes 

somewhat. Indeed, it is clear from Fig. 6 that to achieve 

significant sidelobe reduction relative to LFM necessitates 

accepting more gradual spectral roll-off compared to LFM, 

which provides quite good spectral containment. Outside the 

Gaussian-like roll-off (about 20 dB below the peak), each 

optimized spectrum expands further, a direct consequence of 

using over-coding. Indeed, this “spectral fuzz” (as it was called 

in [36]) only appears when L > 1. 

 
Fig. 6. Power spectra of optimized PCFM waveforms using 

LFM initialization with BT = 128, for M = 1024, L = 4, and 

p = 2, 8, and 20 

 

Figure 7 depicts a discretization of the instantaneous 

frequency function of time (i.e. the values in x) for each 

waveform, and in so doing illustrates the reason behind the 

expanded spectral content of Fig. 6. While the general chirping 

trend relative to LFM (in black) is maintained, along with the 

accelerated chirping at the pulse edges like in classical NLFM 

(the “sideways S” [5]), these optimized waveforms exhibit 

unique behavior by way of non-monotonic ringing at localized 

regions throughout each waveform (i.e. a “perturbed sideways 

S”). The p = 2 (yellow trace) ringing is the most localized, yet 

also has the most significant deviation from the classical 

monotonic NFLM form. The p = 20 case (blue trace) has a 

marginally greater distribution of ringing than the p = 8 case 

(red trace), yet both exhibit a slightly lower degree of deviation 
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from classical NLFM than p = 2. All three waveforms also have 

small variations throughout (most visible at the pulse edges) 

that are likewise non-monotonic. 

 
Fig. 7.  Normalized instantaneous frequency function for 

the p = 2, 8, and 20 optimized waveforms using LFM 

initialization 

 

It is also interesting to note that the p = 2 case appears to be 

closer to the typical anti-symmetry arrangement than the p = 8 

or p = 20 cases, though the structure is at least approximately 

maintained for all of them. Clearly one take-away here is that 

monotonicity and symmetry are not necessarily requirements 

for good NLFM waveforms, though some degradation of 

spectral containment may be the trade-off, per Fig. 6.  

Figure 8 shows the convergence in terms of ISL (dashed 

traces) and PSL (solid traces) when these three LFM-initialized 

waveforms were optimized using p = 2, 8, and 20. An 

interesting observation is that all these cases realize 

logarithmically increasing numbers of iterations in which the 

performance enhancement is quite small, interspersed by 

shorter intervals of significant improvement, which might 

indicate proximity to saddle points in the cost function surface. 

 
Fig. 8.  PSL and ISL convergence when optimizing for p = 2, 

8, and 20, with LFM initialization 

 

It is instructive to examine the PSL convergence in Fig. 6 for 

the p = 2 case (solid yellow trace). Unlike the rest of the results 

in Fig. 8, this particular trace does not decrease monotonically, 

though overall it does clearly reduce significantly from its 

initial value. The reason for this distinction is that, while ISL 

and PSL both measure sidelobe performance in general, their 

cost functions also possess different local minima. It is this 

similar, yet different, relationship that was exploited by the 

“performance diversity” paradigm in [23] for a greedy search. 

It remains to be seen how this concept could also be applied to 

gradient-based optimization, though the similar prospect of 

cycling between different values of p [57] could certainly be 

considered. 

Finally, to gain insight into how the instantaneous frequency 

features in Fig. 7 provide PSL/ISL improvement, Fig. 9 plots 

several intermediate instantaneous frequency functions for the 

p = 8 case taken at different points along the optimization 

process. The specific points were chosen to be the iteration 

indices immediately following significant reductions in either 

PSL or ISL (the solid/dashed orange traces in Fig. 8). For 

instance, after 2  102 iterations the frequency function (blue 

trace in Fig. 9) has begun to deviate somewhat from LFM. After 

2  103 iterations (orange trace) we see a clear sideways-S 

trend, along with small perturbations. Then 2  104 roughly 

marks the point on Fig. 8 at which the last significant decrease 

in both PSL and ISL has recently occurred, and we observe in 

Fig. 9 (purple trace) that the frequency function has only 

changed a small amount further, now possessing even smaller 

perturbations. Interestingly, it is the rather miniscule remaining 

improvement (about 0.54 dB), during which the optimization 

reaches the PSL bound of (15), that introduces the large 

perturbations that appear almost speech-like (yellow trace). 

Consequently, it is not surprising that this attribute of optimal 

FM waveforms (in a PSL sense when discretized) has not been 

seen before. 

 
Fig. 9.  Normalized instantaneous frequency function for 

the p = 8 optimized waveform using LFM initialization at 

several points during optimization 

 

C. Other Chirped Initializations 

For non-convex problems choosing the particular 

optimization parameters is often a heuristic process of trial and 

error. This concept likewise extends to the choice of 

initialization, where one set of optimized results may provide 

insight into better initialization choices.  
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For instance, consider the optimized frequency functions in 

Fig. 7. Ignoring the flared tails and small perturbations, one can 

perceive a general quasi-linear central frequency slope that is 

steeper than the initial LFM. This result begs the question: 

“would it be better to initialize with an LFM that has a wider 

bandwidth than that which is desired after optimization?” After 

all, it is the autocorrelation mainlobe selection vector 𝐰ML that 

ultimately determines the 3-dB bandwidth, and presumably 

setting the chirp-slope initialization closer to the expected final 

result should provide faster convergence. 

In fact, we can take this line of thought a step further. 

Perturbations notwithstanding, these optimized frequency 

functions bear a strong resemblance to the inverse error 

function. Would this initialization yield even faster 

convergence?  

To evaluate this comparison of chirp initializations, Fig. 10 

illustrates the frequency function of the p = 8 optimization (gray 

trace) from Fig. 7 that relied on what we shall refer to as the 

“Old LFM” initialization (black trace). A best line fit to this 

optimization result is likewise shown (blue trace) and denoted 

as “New LFM”. Finally, an inverse error function (orange trace) 

is included that is scaled to also follow the p = 8 optimized 

frequency function. These three initializations are subsequently 

employed to optimize using p = 8 (obviously yielding the same 

result in the Old LFM case). 

 
Fig. 10.  Normalized instantaneous frequency functions 

used for initialization comparison, along with that for the    

p = 8 optimized waveform from Fig. 5 

 

Figure 11 illustrates the PSL/ISL convergence for each of 

these initializations. All cases realize nearly the same final 

PSL/ISL values, with differences of less than 1 dB, and 

essentially identical power spectra and ambiguity functions. 

Relative to these converged final values, where the Old LFM 

initialization required roughly 104 iterations, the New LFM and 

inverse error function initializations need only about 3  103 

iterations, or roughly a 3-fold improvement. Interestingly, 

while the inverse error function clearly starts with the best 

ISL/PSL, it still takes the same number of iterations to converge 

as New LFM. It should also be noted that the final waveforms 

obtained are quite similar, yet not identical, due to the non-

convex cost function and the continuum of possible waveform 

structures.   

 
Fig. 11. PSL and ISL convergence when optimizing for      

p = 8 with different chirped initializations 

 

D. Randomized Initialization 

Up to this point we have focused only on chirped 

initializations because doing so leverages the sheared 

delay/Doppler ridge in a “conservation of ambiguity” sense [5]. 

We now consider various random initializations to determine 

how gradient-based optimization performs in general and to 

serve as a point of comparison with the results above. 

Since introducing Monte Carlo trials over a set of random 

waveforms introduces even more complexity into the analysis, 

we shall focus on cases similar to the previous examples. 

Specifically, 2000 random FM waveforms with BT = 128 and L 

= 4 (so N = 512) were generated with M = 1024 samples. To 

prevent spectral expansion, each contiguous sequence of L 

PCFM parameters in x is identical (initially) and drawn from a 

uniform distribution on [−𝜋, +𝜋], then divided by L, thus 

providing a reasonable (but in no means optimized) random FM 

waveform for the given BT. 

 
Fig. 12. ISL histograms for 2000 waveforms optimized using 

p = 2, 8, or 20 based on independent random initializations 
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Fig. 13. PSL histograms for 2000 waveforms optimized 

using p = 2, 8, or 20 based on independent random 

initializations 

 

Each of the 2000 random initializations were optimized using 

p = 2, 8, and 20 according to the approach in Table II (same as 

before). The resulting ISL and PSL values are plotted as 

histograms in Figs. 12 and 13, respectively. Generally speaking, 

the ISL values (Fig. 12) improve by roughly 17 to 20 dB over 

the initial values. More significantly, the PSL values improve 

by roughly 23 to 30 dB. However, comparing these results to 

what was achieved using a chirped initialization above, given 

the same parameters, shows that random initialization is clearly 

inferior on a per-waveform basis. 

Comparisons to chirped initialization aside, it is interesting 

to note that similar trends are observed in the random 

initialization cases. Specifically, smaller values of p tend to 

provide better final ISL values (Fig. 12) while larger values of 

p tend to realize better final PSL values (Fig. 13). 

An additional observation can be made with regard to 

distribution variances. Figure 13 reveals that random 

initializations tend to produce a relative wide PSL variance that 

is tightened considerably following optimization using higher p 

values. This behavior is linked to the flattening of sidelobes that 

occurs for PSL-based optimization. 

Moreover, the useful metric −20 log10 (BT) dB, which is 

related (by a further –3 dB) to a PSL bound specific to 

hyperbolic FM waveforms [66], is found to be −42.1 dB here 

(for BT = 128). In Fig. 13 we find this value to be quite close to 

the center of the PSL distribution for p = 20 optimized 

waveforms. Thus it can be inferred that the sidelobe 

performance for random FM waveforms may at best approach 

a limit determined by BT, for B the 3-dB bandwidth. In other 

words, the additional dimensionality provided by over-coding 

(L > 1), which had such a significant impact for LFM 

initialization in the previous section, may have a less 

discernible effect on random waveforms. 

Like with the LFM initializations, it is also instructive to 

examine the characteristics of individual waveforms arising 

from optimization of random initializations. Figure 14 depicts 

the autocorrelation of an arbitrarily selected initialization from 

the Monte Carlo trials when optimized for p = 2, 8, and 20. As 

expected based on Figs. 12 and 13, the initial random waveform 

(gray trace) has a rather mediocre autocorrelation in terms of 

sidelobe level. All three optimization cases significantly 

improve upon this initialization, though the sidelobes are still 

considerably higher than what was achieved previously using 

LFM initialization. Interestingly, the p = 8 and 20 cases again 

do a good job of flattening the sidelobe response, even if the 

level is ~20 dB higher than that demonstrated in Fig. 2. Note 

that the mainlobe responses here (not shown) are 

indistinguishable from those in Fig. 3 (same null-to-null width). 

 
Fig. 14. Autocorrelations of optimized PCFM waveforms 

using random initialization with BT = 128, for M = 1024, 

L = 4, and p = 2, 8, and 20 

 

Figure 15 depicts the delay-Doppler ambiguity function for 

the p = 8 case. Compared to the result in Fig. 4, which retains 

the sheared ridge structure of the LFM chirp, the response here 

has very little structure. The presence of lower range sidelobes 

(relatively speaking) on the vertical axis at zero Doppler is 

clearly visible in this case due to the diffusion of ambiguity over 

the delay-Doppler surface, again emphasizing the benefit of the 

sheared ridge for Doppler tolerant waveforms to serve as an 

absorber of ambiguity. 

 
Fig. 15.  Delay-Doppler ambiguity function of optimized 

PCFM waveform using random initialization with 

BT = 128, for M = 1024, L = 4, and p = 8 
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Fig. 16. Power spectra of optimized PCFM waveforms using 

random initialization with BT = 128, for M = 1024, L = 4, 

and p = 2, 8, and 20 

 

 
Fig. 17. Normalized instantaneous frequency function for 

the p = 2, 8, and 20 optimized waveforms using random 

initialization 

  

Figures 16 and 17 show the power spectra and frequency 

functions of time, respectively, of the random initialization and 

optimized waveforms. Per Fig. 16, it is interesting to note that 

the random initialization has relatively good containment in the 

spectral roll-off region (based on how the initialization was 

performed) yet is clearly rather jagged in the passband. In 

contrast, the three optimized random spectra possess (again) a 

Gaussian-like response in the passband but exhibit greatly 

expanded roll-off. The latter is directly related to the rather wild 

instantaneous frequency excursions depicted in Fig. 17, which 

in contrast to Fig. 6, have no obvious anti-symmetry.  

To quantify this observation, we can apply a normalized 

bilateral anti-symmetry (BAS) metric to the baseband 

waveform as 

 

/2

0

2
BAS ( ) ( )

T

s t s T t dt
T

= − ,                    (23) 

where values near 1 indicate the waveform is almost perfectly 

anti-symmetric (integration of a near constant in (23)), while 

values near 0 indicate a lack of anti-symmetry. In Fig. 17, the 

BAS metric was calculated for all of the randomly initialized 

optimized waveforms and plotted as a histogram. The BAS 

values for the waveforms optimized from LFM initialization 

(Sect. V.B) have likewise been assessed and included. 

Clearly the LFM-initialized waveforms retain a high degree 

of anti-symmetric structure, which was also qualitatively 

observed in Fig. 8. In contrast, the randomly initialized 

waveforms possess almost no BAS structure since they are 

concentrated between 0 and 0.2. This result further confirms 

previous observations regarding the importance of anti-

symmetric structure, though it need not be perfect to achieve 

the best PSL results. 

 
Fig 18. Normalized bilateral anti-symmetry (BAS) 

correlation via (23) of optimized PCFM waveforms based 

on random or LFM initializations 

 

These random initialization results rather strongly indicate 

the need for spectral shaping when performing optimization of 

arbitrary FM waveforms. Specifically, the poorly contained 

spectra in Fig. 16 would be distorted by the (linear) transfer 

function of most transmitters, followed by further nonlinear 

distortion due the associated loss of constant amplitude. 

Methods to perform spectral shaping of FM waveforms have 

been examined in [23, 45-48].  

It is also worth noting that, while these individual optimized 

FM waveforms obtained via random initialization are clearly 

inferior to those produced by LFM initialization, the single-

waveform perspective is only one way to look at the sensing 

problem. It was discussed in [48] (and references therein) that 

generating a nonrepeating sequence of random FM waveforms 

has the benefit of substantially increasing design degrees of 

freedom and signal dimensionality (translates into an 

“aggregate BT ” over the coherent processing interval instead 

of the BT for a single waveform). Consequently, this trade-off 

in performance for individual waveforms can actually facilitate 

new sensing capabilities when part of a larger set of different 

waveforms. Further investigation of that topic is, however, 

beyond the scope of this paper. 

 

VI. EXPERIMENTAL RESULTS 

As described in [20, 23], the PCFM waveform 

implementation was developed as a means to leverage the 

parameter optimization benefits of coding while preserving a 

physical structure that is amenable to the rigors of a high-power 
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radar transmitter. Thus we now examine how these gradient-

descent optimized waveforms perform when implemented in 

hardware, which is necessary to understand their behavior in 

practice. Specifically, hardware implementation introduces 

unavoidable distortion due to the imposition of component 

transfer functions (i.e. filtering), nonlinear effects, and range 

straddling effects (non-ideal receive sampling). See [23, 51] for 

further details on the influence of distortion on optimized 

waveforms. 

Here the impact of hardware is assessed in two ways. First, 

the three optimized waveforms using LFM initialization from 

Sect. V.B. are evaluated in a loopback configuration to 

determine how well their low sidelobe attributes are maintained 

after transmitter distortion. Based on this evaluation, the p = 20 

waveform from this group was selected to illuminate a free-

space scene that contains traffic traversing an intersection, 

thereby demonstrating practical utility for radar operation. 

 

A. Loopback Assessment 

To implement them in hardware the three LFM-initialized 

waveforms were up-sampled to 10 GSamples/sec using phase 

interpolation and then loaded onto a Tektronix AWG70000A 

arbitrary waveform generator (AWG), with each having a pulse 

width of 𝑇 = 5.12 μs and a 3-dB bandwidth of 25 MHz (so 

range resolution of ~6 m). The signal produced by the AWG 

was passed through a Mini-Circuits TVA-82-213 RF amplifier 

(operating in saturation) and a subsequent Mini-Circuits BW-

S40W2+ 40 dB attenuator to emulate an open-air environment 

before being captured in loopback (wired connection) and 

recorded on a Rohde & Schwarz real-time spectrum analyzer 

(RSA) at a receive sampling rate of 200 MHz. 

Figure 19 presents autocorrelations of the loopback captured 

versions of the three optimized waveforms. Comparing against 

the ideal responses in Fig. 2, some modest degradation can be 

observed, with the most significant seeming to be with the p = 2 

case, for which the lower regions from Fig. 2 are now filled in 

to roughly the same level as the p = 8 and 20 cases.  

Table IV provides a quantitative comparison between the 

ideal responses obtained by optimization and the resulting 

loopback-measured responses. In terms of ISL, the p = 2, 8, and 

20 cases respectively realize degradations of 7.0 dB, 4.4 dB, 

and 2.7 dB.  Moreover, the 2-3 dB ISL advantage of the p = 2 

case under ideal conditions has now become a 0.1-0.3 dB 

disadvantage, which is not necessarily surprising given the 

“filling in” observation above. 

 

TABLE IV 

IDEAL VS. LOOPBACK COMPARISON  

𝑝 ISL PSL 

    Ideal Measured   Ideal Measured 

2 −42.8 −35.8 −46.5 −41.7 

8 −40.3 −35.9 −60.2 −53.8 

20 −38.8 −36.1 −60.2 −55.1 

 

 With regard to PSL, first note that the value for the p = 2 

case is dictated by a shoulder lobe just outside the mainlobe that 

is present both before and after transmitter distortion. While the 

degradation trend for PSL is a bit more even across the three 

cases (4.8 dB, 6.4 dB, and 5.1 dB, respectively) the clear winner 

is still p = 20, which retains a PSL value of −55.1 dB. These 

results therefore imply (at least anecdotally) that flattened 

autocorrelation responses realized by PSL-optimized 

waveforms (or least via sufficiently large p) may be more robust 

to transmitter distortion. Consequently, we shall use the p = 20 

waveform for subsequent free-space measurements. 

 
Fig. 19. Autocorrelations of loopback captured versions of 

optimized PCFM waveforms using LFM initialization with 

BT = 128, for M = 1024, L = 4, and p = 2, 8, and 20 

 

It is also instructive to examine the power spectra of the 

loopback captured waveforms, as shown in Fig. 20. Comparing 

with the ideal power spectra in Fig. 6 it is observed that the three 

traces appear to be identical between normalized frequency 

values of roughly 3. Beyond this point the loopback 

measurements experience a sharper roll-off, though this result 

is due to the anti-aliasing filter of our RSA “receiver” as 

opposed to any significant effects from the “transmitter” (the 

AWG in this context). Thus, one can conclude that this 

bandlimiting effect upon the high-frequency components may 

be the primary reason behind the modest autocorrelation 

degradation observed in Fig. 19 and Table IV.  

 
Fig. 20. Power spectra of loopback captured versions of 

optimized PCFM waveforms using LFM initialization with 

BT = 128, for M = 1024, L = 4, and p = 2, 8, and 20 

 

For high-power operation the impact of the power amplifier 

(Class C or higher) is generally the main source of transmitter 
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distortion. Thus, further work is needed to explore how the 

incorporation of predistortion [50] and/or hardware-in-the-loop 

optimization [23] can be incorporated into gradient-descent 

based waveform design. Moreover, there exist a variety of 

distortion models such as memory polynomial, Volterra, 

Hammerstein, etc. (see [67]) that, with sufficient determination 

of the transmitter model parameters, could potentially be 

incorporated into this gradient formulation to design waveforms 

tuned to a particular transmitter. 

 

B. Open-Air Assessment 

Each of the three waveforms implemented on the AWG was 

also transmitted in free-space at a center frequency of 3.55 GHz 

from the roof of a building on the University of Kansas campus 

toward the intersection of 23rd and Iowa streets in Lawrence, 

KS (a distance of about 1 km). Two parabolic dish antennas 

were used to facilitate simultaneous transmit and receive. 

Consequently, the direct path leakage between these antennas 

becomes the dominant received signal component (normalized 

to 0 dB), as shown in Fig. 21. The sidelobes induced by this 

direct path establish the floor at around −60 dB that extends out 

to almost 800 m, which agrees with the loopback-measured 

autocorrelation responses observed in Fig. 19. 

 
Fig. 21. Range profile (zero-Doppler cut) obtained from 

matched filtering the open-air emission of the p = 2, 8, and 

20 optimized waveforms obtained using LFM initialization 

with BT = 128, M = 1024, and L = 4 (normalized to direct 

path response) 

 

At the interval from about 1.0 to 1.4 km several scatterers are 

visible in Fig. 21. The traffic intersection residing at roughly 

1.0 to 1.2 km contains multiple moving vehicles, with the rest 

being buildings on the other side of the intersection. Figure 22 

then shows the range-Doppler response to a CPI of 1000 pulses 

modulated with the p = 20 waveform after standard two-pulse 

clutter cancellation and application of a Tukey taper to reduce 

Doppler sidelobes. The responses for the p = 2 and 8 

waveforms are negligibly different and are therefore omitted. 

The pulse repetition frequency (PRF) here is 8.33 kHz and the 

dwell time is 120 ms, yielding an unambiguous velocity of 

176.1 m/s and a Doppler resolution of (8.33 Hz) 0.35 m/s. 

 
Fig. 22. Open-air range-Doppler response (direct path 

normalized) after standard two-pulse clutter cancellation 

when illuminating a traffic intersection with 1000 pulses 

modulated by the p = 20 optimized waveform obtained 

using LFM initialization with BT = 128, M = 1024, and L = 4 

 

Multiple approaching and receding moving targets (cars and 

trucks) appear to be visible in Fig. 22. In fact, the dynamic range 

of about 30 dB between the scattering from the largest mover 

and the noise floor is not high enough for the range sidelobes to 

be observed because they all reside well below the noise. Thus 

the key take-away from this result is that these optimized FM 

waveforms can indeed be physically produced with high 

fidelity to enable practical radar operation with low sidelobes, 

and thus high sensitivity. 

 

VII. CONCLUSIONS 

A gradient-descent approach to optimizing physically 

realizable PCFM waveforms has been developed and 

demonstrated, both in terms of ideal performance and through 

experimental measurements. The approach optimizes all 

waveform parameters simultaneously in a computationally 

efficient manner that can be performed using FFT operations 

and matrix/vector multiplications. It is therefore extensible to a 

variety of higher dimensional, waveform-diverse applications 

such as MIMO and pulse agility. 

It was observed that optimization using higher (but still 

relatively modest) values of the p-norm provide a practical 

surrogate to PSL-based optimization. Moreover, the flattened 

autocorrelation that results from using a higher p-norm appears 

to be more robust to transmitter distortion effects than when 

lower values of p are employed. Ongoing research involves the 

compensation of transmitter distortion effects (e.g. 

predistortion and/or hardware-in-the-loop design) and the 

appropriate inclusion of spectral shaping so that gradient 

descent can also be used to design arbitrary, random FM 

waveforms. 

 

APPENDIX A. DERIVATION OF GISL GRADIENT 

The gradient of the discretized GISL cost function in (14) can 

be evaluated in a number of ways. The approach taken here 

involves differentiating with respect to a single PCFM 

parameter 𝛼𝑛 and then arranging the result in such a way that 
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the derivative with respect to all N PCFM parameters can be 

computed in parallel. 

Begin by rewriting (14) as 
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making use of the fact that the elements of 𝐰SL and 𝐰ML contain 

only ones and zeroes. By the chain rule, the partial derivative of 

(24) with respect to 𝛼𝑛 is 
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where we have employed the relationship 
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to maintain compact notation. Subsequent application of the 

quotient rule to (25) then yields 
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since 
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The partial derivative of |𝐫|𝑝 in (27) can be rewritten and 

evaluated using both the chain and product rules as 
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where the imaginary parts in the summation cancel and }{   

extracts the real part of the argument. 

Now recall the definition of 𝐫 in (12) based on the spectral 

density. Since the DFT and IDFT are linear operations, the 

derivative in (29) becomes 
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after once again invoking the product rule. Thus the final 

derivative involves the PCFM waveform itself. Using the 

compact representation in (5), the non-zero portion of the 

derivative in (30) is 
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where 𝐛𝑛 is the nth column of 𝐁. The zero-padded form of the 

derivative in (30) can then be easily obtained via  
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in which  
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and the collection of all N of these zero-padded basis vectors 

produces the zero-padded matrix in (18). Thus (30) becomes 
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At this point we can substitute (34) back into (29), and then 

substitute that result into (27). Beginning with the sidelobe 

derivative term of (27) this substitution process yields 
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with the last step taking advantage of the fact that 𝐰SL and 

|𝐫|(𝑝−2) are already real-valued and so can be subsumed inside 

the real operator. Because the term 
( 2)

SL( )
p− 

w r r  in (35) 
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is conjugate-symmetric about zero-delay, the DFT response 

resulting from 
( 2)

SL( ) Hp T− 
w r r A  is also necessarily 

real-valued. Moreover, with the vector 

{( ) ( ( )) }n
 As A b s  likewise being real-valued, the 

subsequent inner product of these terms is itself real-valued, 

thereby making application of the real operation in (35) 

unnecessary. In fact, since the DFT response term above is real-

valued, the imaginary operator on the latter term of (35) can 

subsume the entire equation. Thus we can write 
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                         (36) 

sequentially making use of the real-valued nature of this DFT 

response to rearrange its terms (and AH r = A r), associating 

the As  component with the result, and then bringing the 

complex conjugation inside the final term. The outcome of (36) 

can be further manipulated as 
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based on attributes of the transpose operation. Because they are 

identical aside from the selection weighting, the mainlobe 

derivative term from (27) can likewise employ (37) to write 
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Inserting (37) and (38) into (27) therefore realizes the 

derivative 
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by linearity. Note that, aside from the particular basis function 

𝐛𝑛, the components of (39) are the same regardless of PCFM 

code index n. Consequently, the scalar partial derivative of (39) 

can be easily generalized by collecting the basis functions into 

B  per (18) to form the final N-length gradient vector 
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that is reproduced in (17). 
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APPENDIX B. GRADIENT-DESCENT OPTIMIZATION RESULTS 

TABLE V: ISL FOR M = 1024, BT = 64 

 

Number of Independent Parameters (N = BT  L) 

64 128 192 256 320 384 448 512 
 O

p
ti

m
iz

ed
 G

IS
L

 p
-N

o
rm

 

2 −24.0 −31.6 −35.8 −42.7 −47.6 −49.8 −51.3 −52.0 

3 −27.8 −31.8 −37.3 −42.2 −46.8 −48.8 −50.2 −51.0 

4 −27.2 −32.7 −36.8 −41.4 −45.6 −47.6 −49.3 −50.0 

5 −26.7 −32.4 −36.2 −40.8 −44.6 −46.7 −48.2 −49.1 

6 −26.3 −32.1 −35.8 −40.3 −44.0 −46.0 −47.7 −48.5 

7 −26.9 −31.8 −35.4 −39.9 −43.4 −45.4 −47.1 −47.9 

8 −27.6 −31.6 −35.1 −39.5 −42.9 −45.0 −46.7 −47.6 

9 −27.4 −31.4 −34.8 −39.3 −42.7 −44.6 −46.5 −47.2 

10 −27.3 −31.3 −34.6 −39.1 −42.5 −44.3 −46.3 −47.0 

11 −27.2 −31.1 −34.4 −38.9 −42.3 −44.1 −45.9 −46.8 

12 −27.0 −31.0 −34.2 −38.8 −42.1 −43.8 −45.6 −46.5 

13 −26.9 −30.9 −34.1 −38.7 −41.8 −43.5 −45.4 −46.0 

14 −26.8 −30.8 −34.0 −38.5 −41.7 −43.4 −45.0 −45.6 

15 −26.7 −30.7 −33.9 −38.4 −41.6 −43.2 −44.8 −45.2 

16 −26.5 −30.7 −33.8 −38.5 −41.5 −43.1 −44.6 −44.9 

17 −26.5 −30.6 −33.7 −38.3 −41.4 −43.0 −44.4 −44.7 

18 −26.4 −30.5 −33.6 −38.3 −41.3 −42.8 −44.2 −44.4 

19 −26.4 −30.5 −33.5 −38.2 −41.3 −42.9 −43.9 −44.1 

20 −26.3 −30.4 −33.5 −38.2 −41.2 −42.7 −43.8 −44.1 

 

 

TABLE VI: PSL FOR M = 1024, BT = 64 

   Number of Independent Parameters (N = BT  L) 

   64 128 192 256 320 384 448 512 

O
p

ti
m

iz
ed

 G
IS

L
 p

-N
o

rm
 

2 −20.8 −32.2 −35.8 −51.8 −52.0 −52.1 −52.9 −53.9 

3 −33.6 −37.1 −48.9 −53.7 −55.8 −57.4 −59.3 −60.2 

4 −36.1 −46.1 −50.8 −54.2 −57.0 −58.3 −60.2 −60.2 

5 −37.3 −47.1 −51.7 −55.4 −57.2 −58.7 −60.2 −60.2 

6 −38.1 −47.7 −52.0 −55.7 −57.5 −59.1 −60.2 −60.2 

7 −40.5 −48.2 −52.1 −55.8 −58.2 −59.6 −60.2 −60.2 

8 −42.7 −48.5 −52.3 −56.2 −58.6 −60.0 −60.2 −60.2 

9 −43.0 −48.8 −52.4 −56.3 −58.6 −60.2 −60.2 −60.2 

10 −43.2 −49.0 −52.5 −56.5 −58.6 −60.2 −60.2 −60.2 

11 −43.5 −49.1 −52.6 −56.5 −58.6 −60.2 −60.2 −60.2 

12 −43.6 −49.3 −52.7 −56.5 −58.6 −60.2 −60.2 −60.2 

13 −43.8 −49.4 −52.7 −56.5 −58.6 −60.2 −60.2 −60.2 

14 −44.0 −49.5 −52.7 −56.5 −58.6 −60.2 −60.2 −60.2 

15 −44.1 −49.6 −52.7 −56.4 −58.7 −60.2 −60.2 −60.2 

16 −44.2 −49.7 −52.7 −56.5 −58.7 −60.2 −60.2 −60.2 

17 −44.3 −49.8 −52.7 −56.5 −58.7 −60.2 −60.2 −60.2 

18 −44.4 −49.8 −52.8 −56.5 −58.7 −60.2 −60.2 −60.2 

19 −44.5 −49.9 −52.8 −56.5 −58.8 −60.2 −60.2 −60.2 

20 −44.5 −49.9 −52.8 −56.5 −58.8 −60.2 −60.2 −60.2 
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TABLE VII: 

ISL FOR M = 1024, BT = 128 

   # Independent Parameters (N = BT  L) 

   128 256 384 512 

O
p

ti
m

iz
ed

 G
IS

L
 p

-N
o

rm
 

2 −24.3 −32.4 −38.6 −42.8 

3 −29.5 −34.8 −38.0 −41.1 

4 −31.2 −34.2 −36.5 −41.9 

5 −30.2 −33.5 −37.6 −41.4 

6 −30.7 −33.2 −37.3 −41.0 

7 −30.4 −33.8 −37.1 −40.6 

8 −30.2 −33.7 −36.9 −40.3 

9 −30.0 −34.1 −36.8 −40.3 

10 −29.9 −34.0 −36.6 −39.5 

11 −29.7 −33.9 −36.5 −39.3 

12 −29.5 −33.8 −36.4 −39.7 

13 −29.3 −33.7 −36.3 −39.5 

14 −29.2 −33.7 −36.2 −-37.4 

15 −29.0 −33.6 −36.1 −39.2 

16 −28.9 −33.5 −36.0 −39.1 

17 −28.8 −33.5 −35.9 −38.9 

18 −28.7 −33.4 −33.4 −38.8 

19 −28.6 −33.4 −33.2 −38.8 

20 −28.5 −33.3 −33.2 −38.8 

TABLE VIII: 

PSL FOR M = 1024, BT = 128 

   # Independent Parameters (N = BT  L) 

   128 256 384 512 

O
p

ti
m

iz
ed

 G
IS

L
 p

-N
o

rm
 

2 −20.9 −33.0 −45.2 −46.5 

3 −35.7 −45.9 −46.8 −50.8 

4 −43.2 −46.7 −49.2 −58.6 

5 −44.7 −47.3 −57.7 −59.1 

6 −46.8 −49.1 −57.7 −59.6 

7 −47.3 −52.9 −57.7 −60.0 

8 −47.6 −53.3 −57.7 −60.2 

9 −47.8 −55.7 −57.8 −60.2 

10 −48.0 −55.8 −57.8 −59.4 

11 −48.2 −55.9 −57.9 −59.5 

12 −48.3 −55.9 −57.9 −60.2 

13 −48.4 −55.9 −58.0 −60.2 

14 −48.5 −55.9 −58.0 −59.1 

15 −48.6 −55.9 −58.1 −60.2 

16 −48.6 −56.0 −58.1 −60.2 

17 −48.7 −56.0 −58.2 −60.2 

18 −48.7 −56.0 −55.3 −60.2 

19 −48.8 −56.0 −55.4 −60.2 

20 −48.8 −56.0 −55.5 −60.2 
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