
Abstract--The Doppler tolerance of a waveform refers to its 

behavior when subjected to fast-time Doppler shift imposed 

by scattering that involves nonnegligible radial velocity. 

The delay/Doppler ambiguity function characterizes this 

behavior, with notable attributes of Doppler-dependent 

mismatch loss (relative to zero Doppler) and possible offset 

in delay estimation. Previous effort has gone into 

establishing decision-based criteria where a binary 

judgement of being Doppler tolerant or not is made. 

 Here, we consider the utility of a simple, yet effective 

measure of the degree of Doppler tolerance arising from a 

fundamental attribute of the ambiguity function that is also 

convenient to extract. This metric is examined in the context 

of a variety of different waveform classes including 

traditional linear/nonlinear chirps, noise-like signals, and 

phase codes. Extension to wideband operation is likewise 

considered. The purpose in doing so is to establish a 

consistent standard that can be readily applied, thereby 

permitting easy assessment across different 

parameterizations, as well as introducing a Doppler “quasi-

tolerant” trade-space that can ultimately inform 

automated/cognitive waveform design in increasingly 

complex and dynamic radio frequency (RF) environments. 

 

I. INTRODUCTION 

A Doppler tolerant waveform is one that is 

approximately invariant – from a scattering signal-to-

noise ratio (SNR) perspective – in the presence of 

appreciable radial velocity between the platform and 

scatterer, thereby directly impacting the radar receiver’s 

ability to maintain accurate detection and localization. 

Understanding of Doppler tolerance is achieved through 

evaluation of the well-known delay/Doppler ambiguity 

function [1-5], which is formed by correlating the 

transmitted waveform (having zero Doppler shift) with 

reflected versions thereof over a span of anticipated 

Doppler frequency shifts and possibly temporal dilation 

or contraction (if wideband). These frequency/temporal 

changes to the reflected waveform introduce a mismatch 

loss as a function of Doppler, the assessment of which 

generally dictates whether a given waveform is deemed 

Doppler tolerant or not. 

When waveform bandwidth is sufficiently 

narrowband [6,7] temporal distortion is conveniently 

negligible, resulting in Woodward’s ambiguity function 

[1]. Alternatively, the wideband ambiguity function is a 

general model that accounts for both Doppler frequency 

and temporal changes [2-5]. The degree of loss resulting 

from Doppler is also dependent on the radar waveform, 

where more complex signal structures tend to be 

associated with less Doppler tolerance. 

A variety of criteria have been posed to decide 

whether or not a given waveform is Doppler tolerant. A 

general definition in the wideband context is given in [5], 

where a waveform is categorized as Doppler tolerant if 

the delay/Doppler ridge (presumed present) across some 

Doppler span is nearly equal to the value at zero Doppler. 

In [8], a Doppler tolerance definition is posed based on 

an approximation of the maximum target velocity at 

which the linear frequency modulation (LFM) waveform 

incurs 3 dB of mismatch loss. A similar fixed-loss 

perspective is taken in [9] specific to orthogonal 

frequency-division multiplexing (OFDM) signals, albeit 

with respect to the expected loss since this signal is 

random. For such random signals, this X-dB loss 

approach is effectively just evaluating the mainlobe in 

Doppler, which is actually waveform-invariant in the 

constant amplitude case. A formal definition relying on 

set theory is proposed in [10], where tolerance depends 

on the Doppler span within which the ambiguity function 

meets a chosen threshold, with this formal definition 

recently being applied to Costas and Sudoku codes [11]. 

A common theme across these approaches is the 

setting of some manner of threshold to demarcate 

Doppler tolerance or not. While doing so is certainly 

useful, the growing complexity of the radio frequency 

(RF) environment and the drive toward increasingly 

dynamic and multifunction radar operation also suggests 

the need for a measurable degree of Doppler tolerance 

that relaxes the binary decision condition and can be 

readily factored into the growing design trade-space for 

waveforms that are likewise becoming more complex. 
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A useful Doppler tolerance metric also needs to be 

broadly applicable since a growing litany of possible 

radar signals may be employed depending on the 

particular objective [12]. The well-known LFM 

waveform is widely regarded as Doppler tolerant [2,5] 

since its matched filter response exhibits sufficiently low 

loss as a function of Doppler, albeit with an attendant 

offset in the range estimate. A subclass of nonlinear FM 

(NLFM) waveforms known as hyperbolic FM (HFM) 

exhibits wideband Doppler tolerance [13,14] and has 

recently been experimentally demonstrated to detect 

high-speed projectiles (bullets) [15]. When hunting for 

food [16] bats have also been observed to emit HFM 

waveforms in the acoustic regime, where sensitivity to 

Doppler is far greater.  

In passive radar, examination of the ambiguity 

function is needed for transmitter source selection [17-

19] and rapid evaluation may be necessary in some cases 

[20]. Extension of ambiguity function analysis to 

multiple-input multiple output (MIMO) systems is also 

of recent interest [21-23]. 

Waveforms such as orthogonal frequency division 

multiplexing (OFDM) [9], amplitude modulated (AM) 

noise [24,25], and phase/frequency coded waveforms 

[26-28] are widely considered to be Doppler intolerant – 

or more precisely, Doppler selective – and exhibit a near-

thumbtack ambiguity function response. Such signals 

may be beneficial for precise range/Doppler estimation at 

the cost of requiring a bank of Doppler-tuned matched 

filters to address mismatch loss. Random FM (RFM) 

waveforms [29-31] and more recent spectrally-shaped 

versions thereof [32], possess noise-like characteristics 

within an FM structure amenable to high power 

transmission, and have likewise been shown to exhibit a 

near-thumbtack ambiguity function [33]. Certain forms 

of hybrid radar/ communication waveforms (e.g. [34-36]) 

even combine attributes of both Doppler tolerant and 

selective structures, further complicating the distinction. 

As recently noted in [37]:  

“True waveform diversity necessarily requires that 

we be able to use waveforms that may be Doppler 

intolerant. This is exacerbated by the fact that 

radars are migrating to higher and higher 

frequencies; in addition, emerging threats call for 

detecting and tracking very high-speed targets such 

as hypersonic weapons that travel at speeds 

exceeding Mach 5.” 

Consequently, establishing a convenient and effective 

way to measure the degree of Doppler tolerance should 

prove useful from a waveform design/selection 

standpoint, particularly in increasingly complex and 

stressing environments. 

Recently, as part of the development of a gradient-

based FM waveform optimization approach [38], it 

became useful to pose a simple measure of Doppler 

tolerance to facilitate comparison between the resulting 

waveforms. Here we generalize that metric to a form 

compatible with other waveform design objectives that 

provides a loss measure of a waveform’s degree of 

Doppler tolerance. We then examine the metric’s 

behavior for a variety of waveform classes, which in turn 

leads to broad inferences about the Doppler “quasi-

tolerant” trade-space. 

II. DOPPLER TOLERANCE METRIC  

For a given waveform s(t), the narrowband 

(magnitude-squared) ambiguity function characterizes 

the matched filter response as a function of relative delay 

 and Doppler shift fD via 

D

2
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Doppler tolerance as an attribute is then conceptually 

understood [5] to indicate D( , ) (0,0)A f A   for 

meaningful values of fD in the given context. The most 

well-known example is the LFM chirp, which exhibits a 

prominent delay-Doppler ridge that decreases gradually 

as a function of Doppler. Because the presence (or 

absence) of this ridge is the prevailing factor that 

determines Doppler tolerance (or not), it stands to reason 

that capturing some measurable aspect of it that can be 

distilled into a single value would be useful. Of course, 

this approach does raise the question: what is appropriate 

to measure when no clear ridge is present? 

 
Fig. 1. LFM ambiguity function for TB = 10 indicating fD = 0 (left black 

line) and fD = +1/T (right black line), where the first Doppler null occurs 

at the black dot, and with the maximum value determined across delay 

over the fD = +1/T line to capture the ridge (if it exists). 

 

In [38] this question was answered by selecting a 

reference point on the ambiguity function that is common 

to any constant amplitude waveform (a typical 

requirement to maximize power efficiency). Specifically, 

for such waveforms the zero-delay cut of (1) across 

Doppler is a sinc2 function regardless of the particular 

waveform. The chosen reference point [38] is then at the 

first Doppler null of this zero-delay cut, which occurs at 

1/T for T the pulse width, since the response at that 

location is zero (the black dot in Fig. 1). The maximum 

value of (1) across delay  is then determined for this 



particular Doppler, with D( 0, 1/ ) 0A f T = = =  ensuring 

that said maximum is not due to the sinc2 function, 

thereby enabling capture of the ridge (if it exists). 

If a delay/Doppler ridge does not exist for a given 

waveform, then the largest delay/Doppler sidelobe along 

this D 1/f T=   cut is obtained, which may very well be far 

from the mainlobe in range. For any practical values of 

time-bandwidth (TB) product this sidelobe would be 

considerably lower than the peak at (0,0),A  thus 

indicating poor Doppler tolerance. 

As a function of fD we can attempt to capture the 

delay/Doppler ridge (if it exists) by first determining 
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which is useful to define for the waveform assessments 

to follow. The metric from [38] is then realized via 

( )10 D10log ( 1/ )f T = =  dB.                  (3)          

We can subsequently approximate the Doppler loss roll-

off as a line (in dB per unit Doppler) that runs between 

(fD = 0, loss = 0 dB) and (fD = 1/T, loss =   dB) via 

D D
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as depicted for various different waveforms in the next 

section. Thus  T (for positive/negative fD) represents 

the slope for this loss line approximation, with   being 

the waveform-dependent portion.  

While determining the maximum response over  at 

the reference point fD = 1/T does allow (3) to avoid the 

sinc2 response (by evaluating at D( 0, 1/ ) 0,A f T = = =  or 

−∞ dB), it can also be instructive to perform a similar 

assessment at different points along the interval (0, 1/T ] 

in Doppler. Consequently, we can generalize (3) as 

( )10 D10log ( / )f T  = =  dB             (5)          

for (0,1]  , where deviation from collinearity across 

the ensuing line approximations provides further insight 

into measuring Doppler tolerance. Moreover, one could 

easily consider the values realized by (5), or their 

associated loss line approximations, in comparison to the 

zero-delay sinc2 Doppler mainlobe roll-off as another 

means to characterize tolerance since the latter would 

clearly dominate for a thumbtack ambiguity function. 

It is also sometimes the case that an amplitude taper 

is applied to some form of chirped waveform on transmit 

(to be match filtered on receive) or on receive-only (as a 

mismatched filter), with the latter being more common 

due to transmitter considerations. Because the taper is 

known, its impact on the zero-delay cut across Doppler 

(i.e. deviation from sinc2) is likewise known and can be 

readily accounted for when determining the first null 

location. Doing so simply entails replacing T with T  in 

(3)-(5), where /T T =  and    1. For instance, 

rectangular, Hamming, and 30-dB Taylor windows 

involve setting   = 1, 2, or 1.509, respectively.  

Accounting for (5) and tapering generalizes the loss 

line approximation of (4) to    
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               (6)          

Now the overall slope is  T / (  ), with  / 

comprising the waveform+taper dependent portion. 

Consequently, we can use this notion of line-

approximated slope to compare the degree of Doppler 

tolerance for all manner of constant amplitude and 

tapered waveforms, including forms in which tapering is 

performed only on receive (mismatched filtering). 

Finally, note that waveforms with non-deterministic 

amplitude envelopes, such as random noise or orthogonal 

frequency division multiplexing (OFDM), do not adhere 

to a sinc2 structure for their entire zero-delay Doppler cut, 

which instead is variable outside the Doppler mainlobe. 

However, taking the expectation of (1) for these random 

signals still yields a first Doppler null at 1/T [9,25], and 

thus (2)-(6) remain applicable. 

III. DOPPLER TOLERANCE ANALYSIS OF WAVEFORMS 

The following examines the application of the simple 

Doppler tolerance metric from Sect. II for a variety of 

different waveform classes, including linear/nonlinear 

chirps, noise-like signals, and phase codes. Since these 

various signals have different spectral shapes, there are 

myriad ways in which consistent bandwidth B could be 

imposed. Here we select B to be 3-dB bandwidth because 

it is convenient to establish for all the waveform classes. 

Unless the impact of time-bandwidth product (TB) is 

being specifically varied, it is set to TB = 100 in all cases. 

A. Linear/Nonlinear Chirps 

We first consider a comparison between LFM, which 

for narrowband operation represents the benchmark for 

Doppler tolerance, and three different NLFM 

waveforms; namely LFM/tan-FM [39], tansec-FM [40], 

and tan-FM [41]. Fig. 2 illustrates the delay-Doppler 

ridge projected onto the Doppler axis (obtained via (2)) 

for each of these chirped waveforms (solid traces) and 

associated loss line approximations (dashed traces) via 

(3) and (4). The sinc2 zero-delay response (black trace) is 

also depicted, with the gray vertical line denoting where 

the metric is assessed. Noting symmetry, only positive 

Doppler is shown.  

The LFM ridge is almost identical to its loss line 

approximation (indistinguishable blue traces), while the 

others deviate more quickly beyond fDT = 1 (gray line). 

Depending on the Doppler span one expects for a given 

application, these NLFM waveforms may be considered 

marginally tolerant, with the LFM/tan-FM case (red 

traces) being noticeably more tolerant than the others 

(yellow and purple traces). Moreover, while all of them 

appear to exceed the sinc2 response, the line 



approximations (using (3) and (4)) for these latter two 

waveforms cut through the sinc2 mainlobe for fDT less 

than roughly 0.25, another indication of poorer tolerance. 

Viewed another way, the loss lines for the latter two 

waveforms (yellow/purple) fall below their respective 

ridges for fDT > 1, while the LFM/tan-FM (red) loss line 

trends above its ridge. Such behavior illustrates the 

inherent slope deflection across the ridge itself, which 

could be a way to classify quasi-tolerant waveforms. 

 
Fig. 2. Delay/Doppler ridge  (solid traces) via (2) and loss line 

approximation (dashed traces) via (3) and (4) for LFM and NLFM 

chirps at TB = 100. The black trace is the zero-delay sinc2 response and 

the gray line denotes where fD = 1/T is evaluated. 

 

It is also useful to examine the loss progression via 

(5) for these waveforms, along with the associated sinc2 

roll-off. Specifically, for  set to 0.25, 0.50, and 1.0, 

Table I lists the resulting  values, where we observe 

that LFM clearly exhibits the most gradual loss 

progression (as expected) and appears to follow a linear 

trend (in dB). The LFM/tan-FM loss is only 1.5 greater 

than LFM at  = 0.25, but grows to 2.2 and 3.4 at 

0.5 then 1.0 (i.e. not a linear trend). The tansec-FM and 

tan-FM waveforms exhibit even greater loss, in a manner 

that is even more nonlinear. 

 
TABLE I 

COMPARISON OF LOSS  FROM (5) AT DIFFERENT  VALUES FOR 

LFM AND NLFM WAVEFORMS AT TB = 100 

  ,  = 0.25  ,  = 0.5  ,  = 1.0 

LFM −0.02004 dB −0.04019 dB −0.08084 dB 

LFM/tan-FM −0.03022 dB −0.08765 dB −0.2733 dB 

tansec-FM −0.2157 dB −0.8686 dB −2.815 dB 

tan-FM −0.3773 dB −1.26 dB −2.479 dB 

 

If we alternatively pose Table I in terms of the slope 

values ( / )  as shown in Table II, we observe that 

LFM indeed realizes a nearly linear progression since the 

slope is almost invariant. The nonlinear slope trend for 

the other waveforms is now evident, though the nature of 

the nonlinearity clearly takes different forms (e.g. 

gradually changing slope for LFM/tan-FM and tansec-

FM, vs. more abrupt then flattening slope for tan-FM). 

 
TABLE II 

COMPARISON OF APPROXIMATED LINE SLOPE ( / ) AT DIFFERENT 

 VALUES FOR LFM AND NLFM WAVEFORMS AT TB = 100 

  / ,  = 0.25  / ,  = 0.5  / ,  = 1.0 

LFM −0.08014 dB −0.08038 dB −0.08084 dB 

LFM/tan-FM −0.1209 dB −0.1753 dB −0.2733 dB 

tansec-FM −0.8626 dB −1.737 dB −2.815 dB 

tan-FM −1.509 dB −2.52 dB −2.479 dB 

 

As a comparison using the fixed-loss approach in 

[8,9], we can determine the maximum Doppler shift that 

achieves  1 dB loss, which can be obtained by inspection 

of Fig. 2. From this definition, LFM still exhibits the best 

Doppler tolerance, realizing a normalized Doppler shift 

of fDT = 11.75. The remaining LFM/tan-FM, tansec-FM, 

and tan-FM cases result in fDT = 2.205, 0.539, and 0.413, 

respectively. Unsurprisingly, these results qualitatively 

agree with the trend in Table II based on the simple 

metric of (5) but require a more complex assessment 

since they involve a two-dimensional search of the 

ambiguity function, which would also complicate 

subsequent utility for waveform design. 

Another perspective is obtained by evaluating  from 

(3) as a function of TB, which is shown in Fig. 3. The 

poor Doppler tolerance of LFM for small TB is clearly 

consistent with the observation in [10]. Indeed, below TB 

of 3 (for tansec-FM and tan-FM) or 10 (for LFM/tan-FM) 

LFM actually has worse Doppler tolerance. Of course, 

such low values are rarely used and for TB > 10 we 

observe that LFM clearly has superior tolerance as 

expected, asymptotically approaching 0 dB of loss as TB 

increases. While LFM/tan-FM exhibits a similar 

behavior, asymptotically approaching −0.24 dB, the 

tansec-FM and tan-FM waveforms are revealed to 

provide   values that are nearly invariant to TB, albeit at 

a level around −2.5 to −3 dB. 

 
Fig. 3. Comparison of  from (3) for LFM and select NLFM waveforms 

as a function of TB from 1 to 1000. 

 



B. Noise-Like Waveforms 

Noise-like waveforms possess random phase and/or 

amplitude characteristics. The most common version in 

literature is simply complex noise (at baseband) [24,25]. 

Recent consideration has also been given to OFDM, 

which is widely employed in communications and 

involves complex symbols modulated onto a set of 

equally-spaced subcarriers [9]. To contend with the 

rigors of the high-power amplifier in most radar 

transmitters, RFM has also been explored [29-33], 

including recent efforts that perform spectral shaping to 

achieve better per-pulse range sidelobe performance (see 

[32] and references therein). 

In the Doppler tolerance context, we examine each of 

these three types (complex noise, OFDM, spectrally 

shaped RFM), with the latter taking the particular form 

of pseudo-random optimized (PRO) FM [42] since it is 

representative and convenient to generate. To this mix we 

add the phase-attached radar/communication (PARC) 

waveform [35] that exemplifies the hybridization of a 

Doppler tolerant chirp with a Doppler selective random 

signal (e.g. [34-36]), thus permitting control of the quasi-

tolerant trade-space. 

To evaluate the Doppler-dependent loss metric in 

aggregate across the set of random waveforms ( )s t  for 

1, , L= , we first determine the “average maxima” via 

D D
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L

f f
L
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=  ,                       (7) 

where D( )f  is determined for each ( )s t  via (2). Doing 

so captures either the ridge (if one exists) or the 

maximum sidelobe value (across delay) for each 

Doppler. An averaged version of the generalized metric 

of (5) is thus 

( )10 D10log ( / )f T  = =  dB,               (8)          

with associated loss line approximation 
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T

f f
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.                  (9)          

Here β = 1 since time-domain tapering may not be 

appropriate for such waveforms. 

Fig. 4 depicts (2) and the ensuing loss line 

approximation for single instantations of each random 

waveform class, while Fig. 5 shows the average via (8) 

and (9) for L = 1000 independent waveforms of each 

class. The near-thumbtack ambiguity functions for these 

waveforms clearly realize Doppler selectivity, with the 

small variations in Fig. 4 leading to almost identical 

results when averaging is performed (Fig. 5). Also note 

that the previous X-dB fixed loss assessment of [8,9] is 

essentially waveform-independent for these cases since 

doing so only captures the Doppler mainlobe for any 

reasonable loss value. 

 
Fig. 4. Delay/Doppler ridge  (solid traces) via (2) and loss line 

approximation (dashed traces) via (3) and (4) for individual noise-like 

waveforms at TB = 100. 

 

 
Fig. 5. Delay/Doppler ridge   (solid traces) via (7) and loss line 

approximation (dashed traces) via (8) and (9) for L = 1000 independent 

noise-like waveforms of each class at TB = 100. 

As expected, Table III reveals that (8) follows the 

sinc2 Doppler roll-off as observed in Figs. 4 and 5 since 

there is no delay/Doppler ridge. It is interesting to note, 

however, that at the evaluation point of fD = 1/T (i.e. 

 = 1) the determination of  is not masked by the sinc2 

aspect and therefore captures the true maxima “floor” (at 

about −13.5 dB for this TB), which is rather flat thereafter 

(Fig. 5) aside from the presence of the first Doppler 

sidelobe from the sinc2 response. 

 
TABLE III 

COMPARISON OF  FROM (8) AT DIFFERENT  VALUES FOR 

NOISE-LIKE WAVEFORMS AT TB=100 

  ,  = 0.25  ,  = 0.5  ,  = 1.0 

Complex 

Noise 
−0.90 dB −3.81 dB −13.41 dB 

OFDM −0.89 dB −3.80 dB −13.39 dB 

PRO-FM −0.91 dB −3.88 dB −13.56 dB 



It is again illustrative to plot (3) and (8), for  = 1, as 

a function of TB for these waveform types, as shown in 

Figs. 6 and 7, respectively. Where the chirped waveforms 

in Fig. 3 all asymptotically approach a fixed value as TB 

increases, here we observe a trend toward a linear 

reduction in the maxima “floor” at higher TB. For 

instance, Fig. 7 reveals about 8.25 dB reduction over the 

decade from 102 to 103 that is due to increased 

dimensionality alone (i.e. not averaging). 

 
Fig. 6. Comparison of  from (3) for individual noise-like waveforms 

as a function of TB from 1 to 1000. 

 

 
Fig. 7. Comparison of (8) for  = 1 when averaging L = 1000 

independent noise-like waveforms from each class as a function of TB 

from 1 to 1000. 

An interesting variant of noise-like waveforms arises 

when combining with chirp waveforms, such as may be 

done to embed an information-bearing payload, which 

necessarily involves uncertainty [34-36]. Consider the 

PARC structure [35] in this context, which relies on the 

phase-attaching of communication and radar versions of 

continuous phase modulation (CPM). This digital 

implementation of FM can be expressed in the general 

form  

( ) radar comm( ) exp ( ) ( )s t j t h t = + .             (10)          

Here radar (t) is the continuous phase function of time for 

the radar component while comm (t) is the continuous 

communication function of time that can vary pulse-to-

pulse according to the embedded information. The term 

h is the “modulation index” that scales the latter relative 

to the former, generally using small values << 1. 

In this context, let radar (t) correspond to the quadratic 

phase function of LFM so that h = 0 is a Doppler tolerant 

baseline. We allow comm (t) to be a CPM implementation 

of a random bit stream as in [35], though the particular 

nature of this variable component is of less consequence 

than the scaling h. The impact of this component is shown 

in Fig. 8 when responses are averaged over L = 1000 

independent waveforms for each case (individual 

instantiations are negligibly different). 

Relative to the h = 0 (LFM) baseline, the incremental 

doubling from h = 1/64 up to h = 1/8 gradually realizes 

less Doppler tolerance. The loss line approximations 

likewise deviate more as h increases yet preserve the 

general trend in behavior, especially given the largely 

linear Doppler roll-off inscribed by the ridges. 

 
Fig. 8. Delay/Doppler ridge   (solid traces) via (7) and loss line 

approximation (dashed traces) via (8) and (9) for 1000 independent 

PARC waveforms for each value of h at TB = 100. 

An additional take-away from Fig. 8 is the prospect 

of as-needed generation of new quasi-tolerant 

waveforms, which in principle could be produced 

according to some required degree of tolerance by simply 

phase-attaching a random continuous phase function (of 

arbitrary type) to LFM using a prescribed value of h. Fig. 

9 illustrates the evaluation of (8) for  = 1 averaged over 

L = 1000 waveforms as a function of h from 0 to 1/8, 

illustrating a clear trend that could be used to select a 

value of h. 

Moreover, consider the evaluation of (8) for  = 1 as 

a function of TB that is depicted in Fig. 10, where we 

observe a trend with increasing TB similar to that of LFM 

in Fig. 3. While the h = 1/8 case does exhibit more 

noticeable deviation, it is approaching an asymptote of 

only about −0.5 dB (instead of 0 dB) that is still quite 

reasonable from a Doppler tolerance perspective. 

 



  
Fig. 9. Comparison of (8) for  = 1 when averaging L = 1000 

independent PARC waveforms for TB = 100 as a function of h. 

 

 
Fig. 10. Comparison of (8) for  = 1 when averaging L = 1000 

independent PARC waveforms for each value of h as a function of TB 

from 1 to 1000. 

C. Phase Codes 

There has been significant research interest in phase 

codes, both binary and polyphase, due to the significant 

design freedom they provide (see [12]). For phase-coded 

waveforms, code length is analogous to TB, which is 

convenient for comparison purposes.  

Of course, an important consideration for phase codes 

is physical implementation since the abrupt transition 

between phase values introduces distortion [43] that may 

limit their utility. For binary codes this effect is generally 

handled by employing minimum shift keying (MSK) [44] 

or the binary-to-quadriphase (BTQ) transformation [45]. 

Here we use the former to examine Doppler tolerance of 

random binary codes.  

Likewise, the polyphase-coded frequency modulation 

(PCFM) framework can be used to implement arbitrary 

polyphase codes [43]. Given the significant amount of 

theoretical work involving polyphase codes excluding 

this mapping, we shall examine Doppler tolerance of 

random polyphase codes both without and with the 

PCFM implementation, denoting the former as “direct”. 

For a code length of N = 100  TB and chip widths 

scaled to preserve 3-dB bandwidth across the different 

classes, Figs. 11 and 12 illustrate individual waveform 

instantiations and average responses, respectively. 

Because the codes are random, the resulting thumbtack 

responses realize Doppler metric values that are quite 

similar to those obtained for the random signals in Figs. 

4 and 5. Likewise, the sinc2 mainlobe roll-off again 

dominates until the “floor” becomes visible at fD = 1/T. 

 
Fig. 11. Delay/Doppler ridge  (solid traces) via (2) and line 

approximation (dashed traces) via (3) and (4) for individual phase-

coded waveforms at N = 100. 

 
Fig. 12. Delay/Doppler ridge   (solid traces) via (7) and loss line 

approximation (dashed traces) via (8) and (9) for L = 1000 independent 

phase-coded waveforms of each class at N = 100. 

Like Fig. 7 that plotted the averaged Doppler metric 

over L = 1000 independent waveforms from each class as 

a function of TB, Fig. 13 does so for each class of phase-

coded waveform as a function of N  TB. We observe a 

similar almost-linear trend of 8 dB reduction over the 

decade from 102 to 103 due to increased dimensionality 

alone. One important take-away is that for N > 10 the 

direct code representation that contains abrupt phase-

changes yields a Doppler tolerance metric only 0.5 to 1 

dB less than the MSK and PCFM implemented versions, 

which are physically realizable. 



 
Fig. 13. Comparison of (8) for  = 1 when averaging L = 1000 

independent phase-coded waveforms from each class as a function of N 

from 1 to 1000. 

IV. TAPERING 

As noted in the lead-up to (6), an interesting extension 

of this Doppler tolerance metric involves the inclusion of 

tapering, which then enables a before/after comparison. 

Of particular relevance is the fact that the first Doppler 

null shifts outward as a result of the broader mainlobe 

caused by tapering. Because doing so also de-emphasizes 

the frequencies at the edges of the band for chirped 

waveforms, the ensuing reduced bandwidth caused by 

spectral shaping is likewise the reason for degraded range 

resolution (i.e. same root cause, but different effects). 

Noting the compressed vertical axis relative to Fig. 2, 

Fig. 14 illustrates the ridge and associated loss line 

approximations for LFM (dark blue) and for when the 

received (now mismatched) filter is Taylor tapered (red), 

with the latter peak-normalized by the tapered version of 

A(0,0). The dashed lines are nearly indistinguishable 

from the solid traces of the ridges for all cases. In this 

normalized perspective we find that tapering actually 

improves Doppler tolerance. The alternative 

implementation involving the square-root of the taper on 

both waveform and filter yields identical results. 

While the resulting  values of −0.0808 dB and 

−0.0464 dB for LFM and tapered LFM are also different, 

these alone are insufficient to make a comparison 

because they respectively correspond to different 

Doppler evaluation points of fD = 1/T and fD = 1.509/T due 

to the change in first Doppler null. However, because the 

loss line approximation is so close to the ridge in both 

cases, it is easy to extrapolate their behavior at a common 

Doppler reference. 

  
Fig. 14. Delay/Doppler ridge  (solid traces) via (2) and loss line 

approximation (dashed traces) via (3) and (6) for LFM and Taylor 

tapered LFM at TB = 100. The original and tapered zero-Doppler 

responses are the black and yellow traces while the labeled gray lines 

denote where respective first-nulls are evaluated. 

 

Doppler tolerance alone – meaning the amount of 

deviation from A(0,0) – is not sufficient in this context. 

The purple traces (indistinguishable solid and dashed) in 

Fig. 14 remove this normalization so that the 3.85 dB loss 

is included. If tapering loss is acceptable, which it is for 

some applications, then a modest improvement in 

Doppler tolerance is obtained. 

It is also useful to evaluate  as a function of TB 

without and with tapering (still receive-only) as depicted 

in Fig. 15. While both cases asymptotically approach 0 

dB (noting that the tapered case is once again 

normalized), at values of TB > 5 the tapered tolerance is 

better, though the distinction greatly diminishes at higher 

TB. 

 
Fig. 15. Comparison of  from (3) for LFM without and with Taylor 

tapering as a function of TB from 1 to 1000. 

 



V. WIDEBAND DOPPLER TOLERANCE METRIC 

Finally, a wideband version of the Doppler tolerance 

metric in (2) and (3) can be readily obtained by 

converting Doppler frequency into radial velocity v as 

D

c2

f
v c

f

 
=  

 
,                             (11) 

with fc the carrier frequency and c the speed of light. 

Using the well-known definition of percent (or 

fractional) bandwidth 

c

%
B

B
f

= ,                               (12)  

we can rearrange (12) and substitute into (11) to yield 
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The delay/Doppler ridge is then extracted from the 

(magnitude squared) wideband ambiguity function [5] 
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by posing (2) as  
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The wideband version of metric (3) is subsequently 

obtained from (15) when (13) is evaluated at the 

corresponding (first Doppler null) velocity of 
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thereby yielding 

( )WB 10 WB null10log ( )v v = =  dB,           (17)  

where the second line of (16) is an alternative perspective 

obtained by substituting in (12). Consequently, the loss 

line approximation of (4) becomes 

WB

null

loss ( )  dBv v
v

 
  

 
.                   (18) 

Setting null nullv v→  likewise incorporates (5) and (6). 

For example, Fig. 16 compares HFM (top) and LFM 

(bottom) as a function of TB when percent bandwidth is 

25%. While the traces appear to be similar, note the 

significant difference in values along the vertical axes, 

illustrating far superior Doppler tolerance (some say 

“invariance”) for hyperbolic FM. Due to the alternative 

perspective in (16), varying %B for a fixed TB would 

effectively yield the same relationship given a constant 

value of T.  

 
Fig. 16. Comparison of WB from (17) for HFM (top) and LFM 

(bottom) as a function of TB from 104 to 106 for %B = 25%. 

 

VI. CONCLUSIONS 

A recently-proposed, simple metric for Doppler 

tolerance has been further developed and evaluated for a 

variety of different waveform classes. This metric 

introduces a loss line approximation that itself can be 

used to infer properties of waveforms. It has been found 

that degrees of quasi-tolerance can be achieved when a 

chirp-like structure is preserved, thereby permitting 

tolerance to become part of the overall waveform design 

trade-space. This metric has likewise been extended for 

use with tapering and in a wideband context. 
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