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Abstract—Random frequency modulated (RFM) waveforms 

have been found to possess a number of useful radar properties 

such as high dimensionality, good spectral containment, and 

amenability to high-power transmitters. Moreover, RFM 

waveforms can be optimized according to a desired spectral 

template and/or to obtain relatively low range sidelobes. Here we 

examine a way to greatly reduce the need for the optimization/ 

storage of new waveforms by performing “recycling” of existing 

waveforms that have already been optimized. It is shown via 

hardware loopback capture that recycled versions can largely 

preserve characteristics of the original while still producing 

sufficiently distinct new waveforms. 
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waveform diversity 

I. INTRODUCTION 

There is a growing body of work regarding the design and 

generation of RFM waveforms and subsequent applications [1-

3]. The key benefits of such waveforms are their high 

dimensionality, which arises from their nonrepeating nature, 

and the constant-amplitude/continuous-phase structure inherent 

to FM that makes them suitable for high-power transmitters. 

Further, recent efforts seeking to impose useful spectrum 

shaping also provide better containment to address mounting 

congestion while likewise reducing range sidelobes by virtue of 

the Fourier relationship between the spectral density and 

autocorrelation [3]. 

When slow-time processing is performed across a set of 

RFM waveforms after pulse compression, the unique pulse-to-

pulse range sidelobe structure realizes an incoherent averaging 

effect. Since the mainlobes remain coherent, an additional 

sidelobe suppression factor of M (for M unique waveforms) is 

thereby achieved. Of course, the trade-off for this effect is 

nonstationarity in the form of range sidelobe modulation (RSM) 

[3] that, at least when time-bandwidth product (TB) and/or the 

number of pulses is modest, may necessitate some manner of 

receive compensation depending on the application (e.g. [4]). 

It has been found that RFM waveform formulations can be 

loosely categorized into one of three classes: a) those requiring 

per-pulse optimization (e.g. [5-7]), b) those requiring offline 

optimization followed by random generation [8], and c) those 

constructed in a manner that requires no optimization at all 

[9,10]. The trade-off between classes is computational cost 

versus performance (or spectral control). In [11] it was shown 

how a collection of well-designed waveforms could be reused 

to address computational/memory limitations, subsequently 

yielding another trade-off in terms of the concentration (or 

diffusion) of subsequent RSM. 

Here, we explore another approach to reusing previously 

generated waveforms, or at least attributes thereof, as a means 

to avoid the design and storage of new instantiations. 

Specifically, the notion of “recycling” is proposed whereby 

segments of a waveform’s instantaneous frequency function are 

randomly permuted so that the ensuing instantaneous phase 

function is sufficiently unique yet possesses much of the same 

general attributes as the original. It is shown that a substantial 

number of new and useful RFM waveforms can be produced in 

this manner. 

II. WAVEFORM RECYCLING 

The idea of reassembling a new FM waveform from an 

existing one can be traced back to Costas coding [12] in which 

a set of spectral components are rearranged in time  

(see Fig. 1). This general idea has since been examined 

extensively (e.g. [13-18]) and has been extended to facilitate 

Sudoku-based waveforms [19], a form of dual-function radar/ 

communications [20], and MIMO radar/sonar [21-24]. In 

contrast, we aim to produce as many new diversified 

waveforms as possible for use in the context of nonrepeating 

RFM applications (e.g. see [3] and references therein). 

Fig. 1: Comparison of linear (left) and Costas (right) coding matrices 

 

Specifically, we consider the decomposition and subsequent 

rearranging of an arbitrary FM waveform in a manner that 

avoids the need for any further optimization, largely retains the 

general characteristics of the original, and preserves phase 

continuity so that minimal transmitter distortion is maintained. 

Let 
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be an arbitrary FM waveform having temporal extent T, where 

the integration of instantaneous frequency function f ( ) in the 

top line ensures  (t) is a continuous phase function in the 

bottom line. It is then rather straightforward to divide the 

frequency function into M non-overlapping segments denoted 

f1( ), f2( ), ⸱⸱⸱, fM ( ), where each segment has the same 
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temporal extent Tseg = T / M. From these segments it is then 

possible to assemble M ! different waveform permutations, with 

‘!’ denoting the factorial operation. While we shall fix the same 

Tseg for all segments, note that differing lengths is also possible.  

In terms of these segments, the original waveform can be 

expressed as 
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Now let the operator P{1, 2, …, M} produce a permuted 

ordering of the set of segment indices, such that index pm  {1, 

2, …, M} denotes the mth order-permuted element. Since each 

segment could be time-reversed without altering the aggregate 

spectral content, we can therefore define 
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for each of the m = 1, 2, ⸱⸱⸱, M segments. Moreover, a random 

sign-change could also be imposed via 
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though doing so no longer truly preserves the aggregate spectral 

content of the original waveform (but does serve to further 

expand the set of possible new waveforms). 

Using either (3) or (4), collecting the resulting segments like 

in (2) yields the new instantaneous frequency function 
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where permuted index pm has replaced the original index m, 

subsequently providing the new recycled waveform 
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The presence of the integration stage in (1) and (6) ensures that 

the ensuing phase is a continuous function of time, since 

discontinuities would otherwise produce undesired spectral 

spreading that ultimately translates to increased transmitter 

distortion [25]. Based on (3), each recycled waveform 

possesses the same frequency content versus time as the 

original waveform, albeit reordered and intermittently time-

reversed (segment-wise). Consequently, the spectral density is 

expected to be nearly identical to the original waveform via the 

principle of stationary phase (PSP) [26]. Discontinuities in the 

recycled instantaneous frequency function of (5) are the reason 

why the original and recycled spectral densities are not 

identical, with the difference observed as a modest broadening 

in the roll-off region.  

In the case that sign-changed segments are employed via 

(4), the per-waveform spectral content does actually change, 

though on average (across a set of recycled waveforms) it is 

largely expected to conform to that of the original waveform. A 

notable exception lies in the case of spectral notching which, as 

demonstrated in [27], is due to a cancellation effect as opposed 

to being a result of PSP since RFM waveforms do not possess 

monotonicity in their frequency function. Generally, most 

symmetric spectrum waveforms will conform spectrally even 

on a pulse-by-pulse basis. However, waveforms with little to no 

variation in chirp rate should not use sign change, as this can 

substantially alter the center frequency and bandwidth of these 

waveforms.  

The inclusion of random time-reversed and sign-changed 

versions of segments per (4) means that the number of possible 

recycled waveforms is (M !) 4M, which as shown in Fig. 2 

exceeds 10M for M   5. In short, while it is certainly possible to 

randomly realize an identical span of a few segments that would 

produce a similar waveform (and therefore not achieve the 

same degree of uniqueness as other RFM methods), the actual 

likelihood of doing so for a given coherent processing interval 

(CPI) comprised of a few hundred or even a few thousand 

recycled waveforms is vanishingly small as M grows beyond 

modest values. Thus, while simple in concept, waveform 

recycling leads to some interesting attributes that we explore in 

the next section. 

 
Fig. 2: Number of possible recycled waveforms vs. number of segments M 

III. ASSESSMENT OF WAVEFORM RECYCLING 

To demonstrate the efficacy of waveform recycling, 

different degrees of segmentation were examined in terms of 

spectral shape/containment, autocorrelation response after 

coherent combining, and impact to spectral transmit notching. 

In each case, 103 recycled waveforms were generated from a 

single baseline waveform that was designed via the PRO-FM 

method [5] to match a Gaussian power spectral density (PSD). 

This waveform has TB = 300 and the discretized form is 

oversampling by a factor of 3 relative to 3-dB bandwidth.  

Three different segmentation regimes were then considered, 

with M set to 4, 20, and 100. Relative to the total TB of 300, 

these regimes correspond to the individual segments having 

dimensionality TsegB = 75, 15, and 5, respectively. In other 

words, since longer segments preserve more structure from the 



 

 

original waveform, these regimes illustrate the trade-off 

between greater diversity (higher M, as suggested by Fig. 2) and 

maintaining properties for which the original waveform was 

designed (e.g. spectral notches). 

Fig. 3 illustrates the PSD of the baseline PRO-FM 

waveform along with the Gaussian PSD template. A single FM 

waveform cannot perfectly match the template since it does not 

possess amplitude modulated (AM) degrees of freedom. 

However, the given optimized waveform does conform fairly 

well, with only minor spectral broadening at the band edges.  

A spectrally notched version of the Gaussian template and 

PSD of a subsequent PRO-FM baseline waveform are shown in 

Fig. 4.  The need for a symmetric notch arises from the use of 

the sign-change version of recycling from (4), where 

asymmetric notches would instead require (3) that only permits 

time-reversal. 

 
Fig 3: Baseline PRO-FM waveform and Gaussian template 

 
Fig 4: Baseline PRO-FM waveform and symmetrically-notched Gaussian 

template 

 

For the 103 recycled waveforms generated for each 

segmentation regime the mean PSD was computed, which is 

plotted in Fig. 5 along with the initial Gaussian template. We 

see that as M increases, the aggregate PSD becomes smoother 

(i.e. recycled waveforms become more unique, hence improved 

averaging). The trade-off for this effect is a more gradual roll-

off at the band edges (i.e. modest spectral containment 

degradation). 

If spectral notches are present in the baseline waveform, 

notch depth clearly degrades with increasing M, as depicted in 

Fig. 6. Specifically, compared to the original notched PSD in 

Fig. 4, the M = 4 and 20 cases yield about 15 dB and 23 dB 

degradation in notch depth, respectively, while the M = 100 

case has lost the notches entirely. 

 
Fig 5: Mean PSD for the set of 103 recycled waveforms produced by each 

segmentation regime for a Gaussian PSD template 

 
Fig 6: Mean PSD for the set of 103 recycled waveforms produced by each 

segmentation regime for symmetric spectral notches 

 

 



 

 

In the notched waveforms shown in Fig. 6, the notches were 

symmetric about center frequency. Fig. 7 shows a case with an 

asymmetric notch on the left side of the spectrum but is 

recycled using the method in (3) rather than (4). If negation was 

included such as used in (4), the resulting waveform spectrum 

would resemble that of Fig. 6, with a less deep notch formed in 

two symmetric spectral locations. Notably, the notch is clearly 

deeper in the asymmetric case (about 5 dB), which is actually 

due to the optimization method used to obtain the initial 

waveform, since it is easier to form one deep notch than two 

[5]. Other methods may allow the notch depth to be more 

heavily weighted, with a penalty to the rest of the spectrum. 

Fig. 7: Mean PSD for the set of 103 recycled waveforms with M = 4 

segments for an asymmetric spectral notch. 

 

Figs. 8-10 show both a single waveform autocorrelation and 

the coherently combined response (i.e. zero-Doppler response 

after slow-time processing) for 4, 20, and 100 segments, 

respectively. The single waveform autocorrelation in each case 

is essentially the same, which makes sense given that each is a 

single recycled instantiation of the baseline PRO-FM. 

However, a rather different response is observed when coherent 

combining is performed. Because changing M from 4 to 20 to 

100 introduces greater uniqueness, the latter (Fig. 10) reveals a 

response that is qualitatively the same as what is obtained from 

combining completely independent RFM waveforms (see [3]), 

achieving 10 log(103) = 30 dB of incoherent sidelobe averaging 

suppression. The M = 20 case (Fig. 9) is somewhat similar, 

albeit with the appearance of near-in shoulder lobes causes by 

a bit less independence across the set of 1000 recycled 

waveforms. It is therefore unsurprising that this degradation in 

independence is notably greater for the M = 4 case (Fig. 8). 

 
Fig. 8: Single and coherently-combined autocorrelation responses for 103 

waveforms recycled using M = 4 segments 

 
Fig. 9: Single and coherently-combined autocorrelation responses for 103 

waveforms recycled using M = 20 segments 



 

 

 
Fig. 10: Single and coherently-combined autocorrelation responses for 103 

waveforms recycled using M = 100 segments 

IV. LOOPBACK MEASUREMENTS 

To experimentally demonstrate the utility and trade-space of 

recycling, loopback measurements of the three waveform sets 

were collected using a 3-dB bandwidth of 66.6 MHz and 

oversampled by a factor of 3. The waveforms were produced 

by an arbitrary waveform generator (AWG) at a center 

frequency of 3.45 GHz and captured using a real-time spectrum 

analyzer.  

Fig. 11 shows the mean PSD of each waveform set. While 

the same degree of variation is present (smoother for higher M), 

the roll-off behavior is now altered by the analysis bandwidth 

of the spectrum analyzer. Fig. 12 likewise depicts the 

coherently combined autocorrelation response for each 

waveform set, which clearly agrees with Figs. 8-10.  

 
 Fig. 11: Mean PSD for the set of 103 recycled waveforms produced by each 

segmentation regime for a Gaussian PSD template and loopback captured 

 
Fig. 12: Coherently-combined autocorrelation responses for 103 

waveforms recycled via M = 4, 20 and 100 segments and loopback captured 

V. CONCLUSIONS 

Recycling provides a way to synthesize new RFM 

waveforms from an existing optimized structure based on some 

specified degree of segmentation, along with time-reversal and 

possible sign-changing of segments. This approach therefore 

reduces computational cost and/or storage requirements. There 

are, of course, trade-offs in performance with regard to 

independence across the recycled waveform set, achievable 

spectral notch depth (if relevant), and spectral roll-off at the 

band edges. Future work will consider the use of recycled 

waveforms as initializations for waveform optimizations like 

those used in [6]. 
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