Physically Realizing an Optimized Sparse Spectrum via Joint Design of a Collection of FM Waveforms

Peng Seng Tan¹ ², James M. Stiles², Shannon D. Blunt²
¹Innovation Group, Eaton Lighting Division, Peachtree City, Georgia
²Radar Systems Lab (RLS), University of Kansas, Lawrence, KS

Abstract—Within a Marginal Fisher’s Information (MFI) framework, the design of disjoint coherent frequency allocations is examined for the purpose of spectrum sharing. While the overall bandwidth establishes the radar range resolution, it is possible to reallocate a portion of this bandwidth to other users for a trade-off in terms of increased range sidelobes. For a given percent allocation for radar usage, MFI is used to search for advantageous disjoint frequency distributions from the standpoint of minimizing sidelobe degradation, along with an imperative to maintain spectral cohesion to the degree possible (i.e. keep the number of contiguous bands to a minimum). It is then demonstrated that individual polyphase-coded FM (PCFM) waveforms can be associated with these bands to optimize the collective radar emission jointly.

Keywords—spectrum sharing, Cramer-Rao bound, waveform optimization

I. INTRODUCTION

With the introduction of cellular 5G technology [1], as well as new Wi-Fi protocols such as 802.11ac for the Internet-of-Things [2] and IEEE 802.11p for vehicular communication [3], challenges to radar spectral primacy are rapidly increasing [4]. In response to these challenges new spectrum-sharing capabilities are likewise emerging at an increasing rate (e.g. [5-30]).

Particularly relevant here is the placement of notches in the radar transmit spectrum to avoid interfering with other spectrum users (see [5-10, 17, 20, 21-23]). Specifically, we expand on the work in [19] where, for a given percent allowable spectral occupancy, optimization according to marginal Fisher’s Information (MFI) [31-34] was used to determine the allocation of sub-bands such that the resulting trade-off in terms of increased radar range sidelobes is minimized. This manner of spectral thinning is analogous to the minimum redundancy concept for sparse antenna array design [35].

Here we extend this theoretical formulation by forcing the allocation optimization to adhere to minimum-width spectral blocks denoted as “meso-bands” (MBs), each comprised of a collection of sub-bands, as a means to facilitate reduced spectral fragmentation. The combination of these MBs adheres to the specified percent allocation of the total bandwidth while still providing a range resolution, when pulse compressed collectively, that is the same as what would be achieved for use of the total bandwidth. A similar notion of meso-band formation was explored in [36], albeit for the purpose of fast spectrum sensing (and usage of the terms sub-band and meso-band is different here).

For each MB resulting from the allocation optimization, an FM waveform is then generated, with the ultimate physical sparse-spectrum radar emission being the superposition of this collection of waveforms. It is shown that this emission can easily be produced by a set of disjoint LFM waveforms having the MFI-prescribed MBs and relative frequency offsets. It is also shown that the overall sparse-spectrum emission can be optimized via different parameterized versions of the individual FM waveforms [37-39].

II. RADAR MEASUREMENT MODEL AND MFI

Consider the set of L range domain scattering measurements described using the linear model

$$\mathbf{v} = \mathbf{H}_L \mathbf{\gamma} + \mathbf{n}.$$ \hspace{1cm}(1)$$

with observation vector \mathbf{v} represented in the frequency domain, the $M \times 1$ vector $\mathbf{\gamma}$ corresponding to the complex scattering as a function of range, the $L \times 1$ vector \mathbf{n} containing additive noise, and the $L \times M$ observation matrix \mathbf{H} relating the set of scatterers to the L measurements. Putting (1) in the sparse spectrum context, the bandwidth B is discretized into M sub-bands and we wish to determine the particular $L \times M$ sub-bands that provide the best estimate of $\mathbf{\gamma}$. As posed in [20], the particular value of $M = B / \text{PRF}$ specifies the sampling of the line spectra, for PRF the pulse repetition frequency.

It was shown in [32] that an error covariance matrix can be defined for the measurement model in (1) as

$$\mathbf{K}_e = E[\mathbf{e}\mathbf{e}^H],$$ \hspace{1cm}(2)$$

where $\mathbf{e} = \mathbf{\gamma} - \hat{\mathbf{\gamma}}$ for estimate $\hat{\mathbf{\gamma}}$. From a radar pulse compression standpoint this error takes the form of range (and possibly Doppler) sidelobes. The Cramer-Rao lower bound (CRLB) of this estimate is the inverse of the Fisher information matrix

$$\mathbf{J} = E\left[\mathbf{V}_\mathbf{\gamma} \ln \left(f_{1|\mathbf{\gamma}}(\mathbf{v}) \right) \mathbf{V}_\mathbf{\gamma}^H \ln \left(f_{1|\mathbf{\gamma}}(\mathbf{v}) \right)^H \right],$$ \hspace{1cm}(3)$$

for $\mathbf{V}_\mathbf{\gamma}$ the gradient operator and $f_{1|\mathbf{\gamma}}(\mathbf{v})$ the probability density of \mathbf{v} given $\mathbf{\gamma}$ [40,41]. This bound is achieved when one applies the minimum mean-square error (MMSE) estimator of $\mathbf{\gamma}$ [32].

The notion of marginal Fisher’s information (MFI) [31-34] was developed as a means to optimize the measurement operation and is related to the theory of optimal experiments [42]. Generally speaking, MFI measures the amount of new information that is obtained by adding a new ℓth measurement to a previous set of $(\ell - 1)$ measurements, which can be stated in terms of (3) as
\[\text{MFI} = \frac{1}{M} \text{tr}\{\Delta \mathbf{K}_\ell (\ell)\} \quad (4) \]

for
\[\Delta \mathbf{K}_\ell (\ell) = \mathbf{K}_\ell (\ell) - \mathbf{K}_\ell (\ell - 1) = \mathbf{J}^{-1}(\ell) - \mathbf{J}^{-1}(\ell - 1). \quad (5) \]

Here \(\text{tr}\{\cdot\} \) is the trace operation, \(\mathbf{J}^{-1}(\ell) \) is the inverse Fisher information matrix based on \(\ell \) measurements, and use of the MMSE estimator is assumed.

In other words, for a given limit on percent spectral occupancy by the radar, Fisher’s information establishes the metric \(\text{tr}\{\mathbf{K}_\ell\} = \text{tr}\{\mathbf{J}^{-1}\} \), the minimization of which determines the particular set of \(L < M \) sub-bands within the overall bandwidth \(B \) that minimize error in the form of range sidelobes. The MFI metric of (4) is therefore a strategy to ascertain this set by establishing how much unique information each measurement provides.

In [20] the MFI approach summarized above was used to optimize the sparse allocation of \(L < M \) sub-bands distributed over bandwidth \(B \). However, in so doing the distribution of sub-bands tended to be rather fragmented, which does not actually achieve the intended goal of permitting allocations of in-band radar spectrum to other users and effectively hinders the formation of realistic radar waveforms. Here these attributes are addressed by forcing the sparse radar spectral content to adhere to meso-bands (contiguous blocks of sub-bands). As such, we can subsequently form physical radar waveforms for these meso-bands that collectively realize the radar emission, which can then be assessed relative to other physical radar emissions.

Where [20] allowed the \(L \) sub-bands to reside in any configuration among the \(M \) possible spectral locations, now \(P \) meso-bands are formed. Each meso-band consists of \(Q \) contiguous sub-bands such that the total \(L = PQ \) is preserved and the percent spectral occupancy is still determined by \(L/M \). Thus the spectral granularity (i.e. how large is \(M \)) is arbitrary as long as this ratio is maintained.

The MFI approach is applied to allocate these \(P \) meso-bands according the criterion in (4). The first stage involves the initial placement of the meso-bands, where the particular spectral location of each additional meso-band is selected according to the maximal reduction in error. While it would stand to reason that a condition that ensures new meso-bands do not overlap existing meso-bands should be enforced, such is actually not necessary because overlapping would penalize the amount of reduced error and thus is naturally avoided.

Once the \(P \) meso-bands have been assigned, (4) is again applied to determine whether there is a change in the location of any of the \(P \) meso-bands that would afford further error reduction. This process may be performed in the same order as the meso-band placement or could be randomized. This procedure is summarized in Table 1.

Simply put, the MFI approach is searching for any single meso-band change that provides improvement. Clearly this greedy approach is not guaranteed to find the optimum sparse allocation. More complicated “double-swap” or even “multi-swap” approaches could be used, though the computational cost would be considerably higher. Further, given the fact that a pulsed waveform cannot actually be perfect bandlimited, and by extension neither can the waveforms associated with the individual meso-band allocations, it is unclear whether the theoretically optimum sparse allocation would truly be so for a practical radar emission anyway (not to mention transmitter distortion effects [43]).

<table>
<thead>
<tr>
<th>TABLE I. MFI-BASED SPARSE SPECTRUM ALLOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Assign the first meso-band at either of the edges of the total bandwidth (B).</td>
</tr>
<tr>
<td>2. For (p = 2, 3, \ldots, P), allocate the (p)th meso-band to the particular set of (Q) contiguous sub-bands that minimize (\Delta \mathbf{K}\ell (p) = \mathbf{K}\ell (p) - \mathbf{K}_\ell (p-1)).</td>
</tr>
<tr>
<td>3. With all (P) meso-band allocations completed, either sequentially or randomly select the (p)th meso-band and determine whether there exists a new assignment such that (\Delta \mathbf{K}\ell = \mathbf{K}\ell^{\text{new}} - \mathbf{K}_\ell^{\text{current}}) is negative. If so, reallocate the (p)th meso-band to this new assignment.</td>
</tr>
<tr>
<td>4. Once no further single changes that provide an error reduction are possible, the MFI-optimized sparse spectrum allocation is obtained.</td>
</tr>
</tbody>
</table>

As an example, consider the case in which \(M = 400 \) and 50% of \(B \) is allocated for use by the radar (so \(L = 200 \)). By applying MFI based only on sub-bands as in [20], the spectrum allocation in Fig. 1 was obtained, where a small blue dot signifies the assignment of a sub-band. While it might appear that far more than 50% of the spectrum has been assigned, what has actually occurred is that MFI has naturally dispersed the allocated sub-bands to maximally exploit the available spectrum of \(M = 400 \) sub-bands with the limited resource of \(L = 200 \) allowed sub-bands.

![Figure 1. MFI-based sparse spectrum allocation for 50% usage of the total spectrum using sub-band assignment](image1)

In contrast, for the same \(M = 400 \) possible sub-bands and 50% radar allocation, now consider the use of \(P = 40 \) meso-bands, each comprised of \(Q = 5 \) sub-bands (so that we still have \(40 \times 5 = 200 = L \)). Now the MFI sparse-spectrum optimization of Table 1 realizes the allocation depicted in Fig. 2. It is immediately obvious that this spectrum allocation contains far more available spectral regions of practical utility for another user or users.

![Figure 2. MFI-based sparse spectrum allocation for 50% usage of the total spectrum using meso-band assignment](image2)
To evaluate the goodness of these sparse spectral allocations from the perspective of providing usable available bandwidth, consider the fragmentation metric

\[\%B \text{ for which } B_{\text{config}} \geq B_{\text{usable}}, \]

which determines the percent of overall bandwidth \(B \) that possesses a contiguous available bandwidth \(B_{\text{config}} \) that meets or exceeds some minimum usable bandwidth \(B_{\text{usable}} \). For the allocations in Figs. 1 and 2, this metric is plotted in Fig. 3 as a function of the usable bandwidth. For example, if \(B_{\text{usable}} \) is set to 2.5% of \(B \), the allocation based on sub-bands (Fig. 1) only realizes 9.6% of the spectrum that meet this criterion while the meso-band allocation (Fig. 2) achieves 42%.

The meso-band requirement achieves the goal of providing serviceable spectrum for other prospective users and, as demonstrated in the next section, also provides a framework for subsequent generation of physical waveforms. However, it should be noted that the trade-off in doing so is further degradation in range sidelobes. For the two examples discussed above, which are based only on theoretical spectral allocations and not actual waveform spectral content, the meso-band optimized allocation suffers a peak sidelobe level (PSL) degradation of 2.6 dB compared the sub-band optimized allocation. Thus while we may be able to realize ways in which radar spectrum can be shared, it still bears consideration whether the subsequent performance degradation is acceptable.

III. GENERATION OF SPARSE-SPECTRUM FM WAVEFORMS

Now consider how the MFI-optimized meso-band sparse spectrum can be realized using physical waveforms. Here we assess three different FM waveform schemes for each meso-band, namely linear FM (LFM), first-order polyphase-coded FM (PCFM) [37], and second-order PCFM [39]. The latter two FM implementations are parameterized with underlying codes so that the combination of waveforms with different meso-bandwidths and spectral assignments comprising the overall sparse emission can be optimized in a joint manner.

The continuous phase function of the first-order PCFM structure can be expressed as [37]

\[\phi_{1,\text{st}}(t) = \int_0^T \sum_{n=1}^N \alpha_n g_1(t - (n-1)T_r) \, dt + \phi_{1,0} \]

where \(\alpha_n \) for \(n = 1, 2, \ldots, N \) is a first-order phase-change code (analogous to instantaneous frequency), \(g_1(t) \) is a shaping filter with time support on \([0,T_r]\) for pulsewidth \(T = NT_r \), and \(\phi_{1,0} \) is the initial phase. Similarly, the second-order PCFM implementation is [39]

\[\phi_{2,\text{nd}}(t) = \int_0^T h_n g_2(\tau' - (n-1)T_r) \, d\tau' \, dt + \int_0^T \omega_{2,0} \, d\tau + \phi_{2,0} \]

where \(\phi_{2,0} \) and \(\omega_{2,0} \) are the initial phase and frequency, \(h_n \) for \(n = 1, 2, \ldots, N \) is the second-order “phase-acceleration” code (analogous to instantaneous chirp rate), and \(g_2(t') \) is the associated second-order shaping filter. The PCFM waveforms realized from these continuous phase functions are therefore

\[s_{\text{1st}}(t) = \exp(\phi_{1,\text{st}}(t)) \]

and

\[s_{\text{2nd}}(t) = \exp(\phi_{2,\text{nd}}(t)). \]

As discussed in [36], the waveform time-bandwidth product \(BT \) can be well approximated by the number of code values \(N \). Since all of the meso-band waveforms have the same pulsewidth \(T \), we can therefore apportion the number of code values assigned to each waveform according to the appropriate fraction of \(N \). For example, the \(P = 40 \) meso-bands in the previous section would each be assigned a waveform parameterized by \(N / P \times 50\% \) code values for optimization.

A more cohesive way to assign these code values that also provides more design flexibility is realized by first merging adjacent meso-bands into what amounts to a “macro-band”, for which a single waveform can be optimized. Denoting the number of macro-bands as \(R \), the corresponding number of code elements \(N_r \) for \(r = 1, 2, \ldots, R \) assigned to each would depend on the bandwidth of each macro-band relative to the total bandwidth \(B \). Additionally, each associated shaping filter has a temporal extent \(T_r = T / N_r \) according to the number of code values assigned. The total radar emission is therefore the superposition

\[u_{1,\text{st}}(t) = \sum_{r=1}^R \beta_r s_{1,\text{st},r}(t) \]

or

\[u_{2,\text{nd}}(t) = \sum_{r=1}^R \beta_r s_{2,\text{nd},r}(t) \]

via (9) or (10), respectively, where the \(\beta_r \) terms scale the associate waveforms commensurate with their relative proportion of allocated radar bandwidth.

To illustrate these PCFM-based sparse-spectrum emissions, again consider \(M = 400 \) sub-bands, though we shall now use MFI to assign \(P = 29 \) blocks of \(Q = 10 \) sub-bands each. In this case \(L = 29 \times 10 = 290 \), so \(L / M = 72.5\% \) of the bandwidth \(B \) is allocated to the radar and the optimized
spectrum allocation in Fig. 4 is obtained. Accounting for the small spectral gap indicated in the figure, there are $R = 4$ macro-bands that can be formed (far less than what was accomplished for the 50% allocation from Fig. 2, and thus less amplitude fluctuation when combined as R distinct FM waveforms).

Here the pulsewidth T is set such that $BT = 200$, which is likewise used as the value of N. For the 72.5% apportioned to the radar into the macro-bands above, we obtain the assignment $N_1 = 50$, $N_2 = 40$, $N_3 = 25$, and $N_4 = 30$, totaling 145. Based on this assignment, 4 first-order waveforms are jointly optimized according to the spectral allocation in Fig. 4 and with respect to performance metrics applied to the combined emission structure in (11). Joint optimization is likewise performed for 4 second-order waveforms via the structure of (12). The metrics used were peak sidelobe level (PSL) and integrated sidelobe level (ISL) with the optimization following the performance diversity paradigm outlined in [38] that involves a greedy search and alternates between these metrics to help avoid the local minima of each. In both cases a set of 4 LFM waveforms with bandwidths commensurate with the macro-band allocations above were used as initialization to optimization.

Figures 5 and 6 show the spectral content of the first-order and second-order jointly optimized emissions along with the set of 4 LFM waveforms. First of all, it is interesting to note the small spectral gap that arose from the previous MFI optimization, where, as an aside, performance was found to slightly degrade if it was filled in. To varying degrees all three waveform sets preserve this small gap. It is also found that both sets of optimized waveforms produce a modest expansion of the spectral roll-off, which is to be expected compared to the rather tight spectral containment and flat passband that is characteristic of LFM.

The matched filter responses for these three emissions (each a composite of $R = 4$ waveforms) are depicted in Figs. 7-9. The cases involving disjoint LFM and the optimized first-order emission realize some shoulder lobes near the mainlobe that are not present for the second-order emission. However, the latter also has far-out sidelobes that are higher than the other two cases. The near-in shoulder lobes notwithstanding, one could make the argument that the optimized first-order emission is the best of these for this particular scenario since it produces a sidelobe response that is relatively flat. Of course, different sparse spectrum allocations could produce different optimized emission structures. The point of this demonstration is that actual physical waveforms can be obtained that may achieve the sidelobe requirements for operational radar.

REFERENCES

IV. CONCLUSIONS

Given a maximum percent occupancy the marginal Fisher’s information (MFI) optimization of sparse radar spectrum has been considered from the perspective of ensuring sufficient serviceable spectral regions for other users to occupy. Without such a requirement, sparse spectrum optimization tends to spread more evenly across the total bandwidth, being driven by an imperative only to optimize radar performance (i.e. make the best out of the spectrum loss). By reducing the spectral fragmentation, however, the radar performance is necessarily degraded even further than what is incurred by the loss in spectrum alone.

It was then demonstrated that sets of FM waveforms could be realized and even optimized within this MFI-generated sparse spectrum arrangement. Individually, these physical waveforms can be readily generated by a radar transmitter, though their combination produces a non-zero peak-to-average power ratio (PAPR) [44] that is rather difficult to emit at high power. More complex transmitter architectures [45], predistortion [46,47], or hardware-in-the-loop waveform optimization [48-50] could potentially be used to address this limitation, though these also come with their own performance trade-offs and limitations.

