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Abstract—Within a Marginal Fisher’s Information (MFI) 

framework, the design of disjoint coherent frequency allocations 

is examined for the purpose of spectrum sharing. While the 

overall bandwidth establishes the radar range resolution, it is 

possible to reallocate a portion of this bandwidth to other users 

for a trade-off in terms of increased range sidelobes. For a given 

percent allocation for radar usage, MFI is used to search for 

advantageous disjoint frequency distributions from the 

standpoint of minimizing sidelobe degradation, along with an 

imperative to maintain spectral cohesion to the degree possible 

(i.e. keep the number of contiguous bands to a minimum). It is 

then demonstrated that individual polyphase-coded FM (PCFM) 

waveforms can be associated with these bands to optimize the 

collective radar emission jointly. 

Keywords—spectrum sharing, Cramer-Rao bound, waveform 

optimization 

I. INTRODUCTION 

With the introduction of cellular 5G technology [1], as well 
as new Wi-Fi protocols such as 802.11ac for the Internet-of-
Things [2] and IEEE 802.11p for vehicular communication [3], 
challenges to radar spectral primacy are rapidly increasing [4]. 
In response to these challenges new spectrum-sharing 
capabilities are likewise emerging at an increasing rate (e.g. [5-
30]). 

Particularly relevant here is the placement of notches in the 
radar transmit spectrum to avoid interfering with other 

spectrum users (see [5-10,17,20,21-23]). Specifically, we 
expand on the work in [19] where, for a given percent 
allowable spectral occupancy, optimization according to 
marginal Fisher’s Information (MFI) [31-34] was used to 
determine the allocation of sub-bands such that the resulting 
trade-off in terms of increased radar range sidelobes is 
minimized. This manner of spectral thinning is analogous to 
the minimum redundancy concept for sparse antenna array 
design [35]. 

Here we extend this theoretical formulation by forcing the 
allocation optimization to adhere to minimum-width spectral 
blocks denoted as “meso-bands” (MBs), each comprised of a 
collection of sub-bands, as a means to facilitate reduced 
spectral fragmentation. The combination of these MBs adheres 
to the specified percent allocation of the total bandwidth while 
still providing a range resolution, when pulse compressed 
collectively, that is the same as what would be achieved for use 
of the total bandwidth. A similar notion of meso-band 
formation was explored in [36], albeit for the purpose of fast 
spectrum sensing (and usage of the terms sub-band and meso-
band is different here). 

For each MB resulting from the allocation optimization, an 
FM waveform is then generated, with the ultimate physical 
sparse-spectrum radar emission being the superposition of this 
collection of waveforms. It is shown that this emission can 
easily be produced by a set of disjoint LFM waveforms having 
the MFI-prescribed MBs and relative frequency offsets. It is 
also shown that the overall sparse-spectrum emission can be 
optimized via different parameterized versions of the 
individual FM waveforms [37-39]. 

II. RADAR MEASUREMENT MODEL AND MFI 

Consider the set of L range domain scattering 
measurements described using the linear model 

 v Hγ n ,               (1) 

with observation vector v represented in the frequency domain, 

the M1 vector  corresponding to the complex scattering as a 

function of range, the L1 vector n containing additive noise, 

and the LM observation matrix H relating the set of 
scatterers to the L measurements. Putting (1) in the sparse 
spectrum context, the bandwidth B is discretized into M sub-

bands and we wish to determine the particular L<M sub-bands 

that provide the best estimate of . As posed in [20], the 
particular value of M = B / PRF specifies the sampling of the 
line spectra, for PRF the pulse repetition frequency.  

It was shown in [32] that an error covariance matrix can be 
defined for the measurement model in (1) as 

{ }HE K εε ,                                (2) 

where ˆ ε γ γ  for estimate ˆ.γ From a radar pulse 

compression standpoint this error takes the form of range (and 
possibly Doppler) sidelobes. The Cramer-Rao lower bound 
(CRLB) of this estimate is the inverse of the Fisher information 
matrix 
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for  the gradient operator and fv|(v) the probability density 

of v given  [40,41]. This bound is achieved when one applies 

the minimum mean-square error (MMSE) estimator of  [32]. 
The notion of marginal Fisher’s information (MFI) [31-34] 

was developed as a means to optimize the measurement 
operation and is related to the theory of optimal experiments 
[42]. Generally speaking, MFI measures the amount of new 

information that is obtained by adding a new th  measurement 

to a previous set of ( 1)  measurements, which can be stated 

in terms of (3) as 
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Here tr{•} is the trace operation, 1( )
J is the inverse Fisher 

information matrix based on  measurements, and use of the 
MMSE estimator is assumed.  

In other words, for a given limit on percent spectral 
occupancy by the radar, Fisher’s information establishes the 

metric tr{K} = tr{J−1}, the minimization of which determines 

the particular set of L<M sub-bands within the overall 
bandwidth B that minimize error in the form of range 
sidelobes. The MFI metric of (4) is therefore a strategy to 
ascertain this set by establishing how much unique information 
each measurement provides. 

In [20] the MFI approach summarized above was used to 

optimize the sparse allocation of L<M sub-bands distributed 
over bandwidth B. However, in so doing the distribution of 
sub-bands tended to be rather fragmented, which does not 
actually achieve the intended goal of permitting allocations of 
in-band radar spectrum to other users and effectively hinders 
the formation of realistic radar waveforms. Here these 
attributes are addressed by forcing the sparse radar spectral 
content to adhere to meso-bands (contiguous blocks of sub-
bands). As such, we can subsequently form physical radar 
waveforms for these meso-bands that collectively realize the 
radar emission, which can then be assessed relative to other 
physical radar emissions. 

Where [20] allowed the L sub-bands to reside in any 
configuration among the M possible spectral locations, now P 
meso-bands are formed. Each meso-band consists of Q sub-
bands such that the total L = PQ is preserved and the percent 

spectral occupancy is still determined by L/M. Thus the 
spectral granularity (i.e. how large is M) is arbitrary as long as 
this ratio is maintained. 

The MFI approach is applied to allocate these P meso-
bands according the criterion in (4). The first stage involves 
the initial placement of the meso-bands, where the particular 
spectral location of each additional meso-band is selected 
according to the maximal reduction in error. While it would 
stand to reason that a condition that ensures new meso-bands 
do not overlap existing meso-bands should be enforced, such 
is actually not necessary because overlapping would penalize 
the amount of reduced error and thus is naturally avoided.  

Once the P meso-bands have been assigned, (4) is again 
applied to determine whether there is a change in the location 
of any of the P meso-bands that would afford further error 
reduction. This process may be performed in the same order as 
the meso-band placement or could be randomized. This 
procedure is summarized in Table 1.  

Simply put, the MFI approach is searching for any single 
meso-band change that provides improvement. Clearly this 
greedy approach is not guaranteed to find the optimum sparse 
allocation. More complicated “double-swap” or even “multi-
swap” approaches could be used, though the computational 
cost would be considerably higher. Further, given the fact that 

a pulsed waveform cannot actually be perfect bandlimited, and 
by extension neither can the waveforms associated with the 
individual meso-band allocations, it is unclear whether the 
theoretically optimum sparse allocation would truly be so for a 
practical radar emission anyway (not to mention transmitter 
distortion effects [43]). 

 

TABLE I.  MFI-BASED SPARSE SPECTRUM ALLOCATION 

1. Assign the first meso-band at either of the edges of 
the total bandwidth B. 

2. For p = 2, 3, …, P, allocate the pth meso-band to the 
particular set of Q contiguous sub-bands that 

minimize ( ) ( ) ( 1)p p p     K K K . 

3. With all P meso-band allocations completed, either 
sequentially or randomly select the pth meso-band 
and determine whether there exists a new assignment 

such that ,new ,current    K K K is negative. If so, 

reallocate the pth meso-band to this new assignment. 

4. Once no further single changes that provide an error 
reduction are possible, the MFI-optimized sparse 
spectrum allocation is obtained. 

 
As an example, consider the case in which M = 400 and 

50% of B is allocated for use by the radar (so L = 200). By 
applying MFI based only on sub-bands as in [20], the 
spectrum allocation in Fig. 1 was obtained, where a small blue 
dot signifies the assignment of a sub-band. While it might 
appear that far more than 50% of the spectrum has been 
assigned, what has actually occurred is that MFI has naturally 
dispersed the allocated sub-bands to maximally exploit the 
available spectrum of M = 400 sub-bands with the limited 
resource of L = 200 allowed sub-bands. 

 
 

 
Figure 1. MFI-based sparse spectrum allocation for 50% usage of the total 
spectrum using sub-band assignment 

In contrast, for the same M=400 possible sub-bands and 

50% radar allocation, now consider the use of P=40 meso-

bands, each comprised of Q=5 sub-bands (so that we still 

have 405=200=L). Now the MFI sparse-spectrum 
optimization of Table 1 realizes the allocation depicted in Fig. 
2.  It is immediately obvious that this spectrum allocation 
contains far more available spectral regions of practical utility 
for another user or users.  

 
 

 
Figure 2. MFI-based sparse spectrum allocation for 50% usage of the 

total spectrum using meso-band assignment 
 
 



To evaluate the goodness of these sparse spectral 
allocations from the perspective of providing usable available 
bandwidth, consider the fragmentation metric 

%B  for which 
contig usableB B ,                      (6) 

which determines the percent of overall bandwidth B that 
possesses a contiguous available bandwidth Bcontig that meets 
or exceeds some minimum usable bandwidth Busable. For the 
allocations in Figs. 1 and 2, this metric is plotted in Fig. 3 as a 
function of the usable bandwidth. For example, if Busable is set 
to 2.5% of B, the allocation based on sub-bands (Fig. 1) only 
realizes 9.6% of the spectrum that meet this criterion while the 
meso-band allocation (Fig. 2) achieves 42%. 
 

 
Figure 3.  Evaluation of the fragmentation metric from (6) for the sub-band and 
meso-band MFI optimized spectrum allocations 

The meso-band requirement achieves the goal of providing 
serviceable spectrum for other prospective users and, as 
demonstrated in the next section, also provides a framework 
for subsequent generation of physical waveforms. However, it 
should be noted that the trade-off in doing so is further 
degradation in range sidelobes. For the two examples discussed 
above, which are based only on theoretical spectral allocations 
and not actual waveform spectral content, the meso-band 
optimized allocation suffers a peak sidelobe level (PSL) 
degradation of 2.6 dB compared the sub-band optimized 
allocation. Thus while we may be able to realize ways in which 
radar spectrum can be shared, it still bears consideration 
whether the subsequent performance degradation is acceptable. 

III. GENERATION OF SPARSE-SPECTRUM FM WAVEFORMS 

Now consider how the MFI-optimized meso-band sparse 
spectrum can be realized using physical waveforms. Here we 
assess three different FM waveform schemes for each meso-
band, namely linear FM (LFM), first-order polyphase-coded 
FM (PCFM) [37], and second-order PCFM [39]. The latter two 
FM implementations are parameterized with underlying codes 
so that the combination of waveforms with different meso-
bandwidths and spectral assignments comprising the overall 
sparse emission can be optimized in a joint manner. 

The continuous phase function of the first-order PCFM 
structure can be expressed as [37] 
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where n  for 1, 2, ,n N is a first-order phase-change code 

(analogous to instantaneous frequency), 1( )g   is a shaping 

filter with time support on [0,Tr] for pulsewidth T = NTr, and 

1,0 is the initial phase. Similarly, the second-order PCFM 
implementation is [39] 

 2nd 2 2,0 2,0
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where 2,0 and 2,0 are the initial phase and frequency, nb  for 

1, 2, ,n N is the second-order “phase-acceleration” code 

(analogous to instantaneous chirp rate), and 2 ( ')g  is the 

associated second-order shaping filter. The PCFM waveforms 
realized from these continuous phase functions are therefore 

1st 1st( ) exp{ ( )}s t t                           (9) 

and 

2nd 2nd( ) exp{ ( )}s t t .                          (10) 

As discussed in [36], the waveform time-bandwidth 
produce BT can be well approximated by the number of code 
values N. Since all of the meso-band waveforms have the same 
pulsewidth T, we can therefore apportion the number of code 
values assigned to each waveform according to the appropriate 
fraction of N. For example, the P = 40 meso-bands in the 
previous section would each be assigned a waveform 

parameterized by N / P  50% code values for optimization. 
A more cohesive way to assign these code values that also 

provides more design flexibility is realized by first merging 
adjacent meso-bands into what amounts to a “macro-band”, for 
which a single waveform can be optimized. Denoting the 
number of macro-bands as R, the corresponding number of 
code elements Nr for r = 1, 2, …, R assigned to each would 
depend on the bandwidth of each macro-band relative to the 
total bandwidth B. Additionally, each associated shaping filter 

has a temporal extent Tr = T/Nr according to the number of 
code values assigned. The total radar emission is therefore the 
superposition 
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via (9) or (10), respectively, where the r terms scale the 
associate waveforms commensurate with their relative 
proportion of allocated radar bandwidth. 

To illustrate these PCFM-based sparse-spectrum 
emissions, again consider M = 400 sub-bands, though we shall 
now use MFI to assign P = 29 blocks of Q = 10 sub-bands 

each. In this case L = 2910 = 290, so L / M = 72.5% of the 
bandwidth B is allocated to the radar and the optimized 



spectrum allocation in Fig. 4 is obtained. Accounting for the 
small spectral gap indicated in the figure, there are R = 4 
macro-bands that can be formed (far less than what was 
accomplished for the 50% allocation from Fig. 2, and thus less 
amplitude fluctuation when combined as R distinct FM 
waveforms). 

 

 
Figure 4. MFI-based sparse spectrum allocation for 72.5% usage of the total 
spectrum using meso-band assignment. Note the small gap near −0.25B. 

Here the pulsewidth T is set such that BT = 200, which is 
likewise used as the value of N. For the 72.5% apportioned to 
the radar into the macro-bands above, we obtain the 
assignment N1 = 50, N2 = 40, N3 = 25, and N4 = 30, totaling 
145. Based on this assignment, 4 first-order waveforms are 
jointly optimized according to the spectral allocation in Fig. 4 
and with respect to performance metrics applied to the 
combined emission structure in (11). Joint optimization is 
likewise performed for 4 second-order waveforms via the 
structure of (12). The metrics used were peak sidelobe level 
(PSL) and integrated sidelobe level (ISL) with the optimization 
following the performance diversity paradigm outlined in [38] 
that involves a greedy search and alternates between these 
metrics to help avoid the local minima of each. In both cases a 
set of 4 LFM waveforms with bandwidths commensurate with 
the macro-band allocations above were used as initialization to 
optimization. 

 

 
Figure 5.  Sparely allocated spectral content for R = 4 using LFM and 
optimized 1st order PCFM waveform sets. 

Figures 5 and 6 show the spectral content of the first-order 
and second-order jointly optimized emissions along with the 
set of 4 LFM waveforms. First of all, it is interesting to note 
the small spectral gap that arose from the previous MFI 
optimization, where, as an aside, performance was found to 
slightly degrade if it was filled in. To varying degrees all three 
waveform sets preserve this small gap. It is also found that 

both sets of optimized waveforms produce a modest expansion 
of the spectral roll-off, which is to be expected compared to the 
rather tight spectral containment and flat passband that is 
characteristic of LFM. 

 

 
Figure 6.  Sparely allocated spectral content for R = 4 using LFM and 
optimized 2nd order PCFM waveform sets 

The matched filter responses for these three emissions 
(each a composite of R = 4 waveforms) are depicted in Figs. 7-
9.  The cases involving disjoint LFM and the optimized first-
order emission realize some shoulder lobes near the mainlobe 
that are not present for the second-order emission. However, 
the latter also has far-out sidelobes that are higher than the 
other two cases. The near-in shoulder lobes notwithstanding, 
one could make the argument that the optimized first-order 
emission is the best of these for this particular scenario since it 
produces a sidelobe response that is relatively flat. Of course, 
different sparse spectrum allocations could produce different 
optimized emission structures. The point of this demonstration 
is that actual physical waveforms can be obtained that may 
achieve the sidelobe requirements for operational radar. 

 
Figure 7.  Matched filter responses for the composite emissions formed from a 
set of R = 4 disjoint LFM waveforms 



 
Figure 8.  Matched filter responses for the composite emissions formed from a 
set of R = 4 optimized 1st order PCFM waveforms 

 
Figure 9.  Matched filter responses for the composite emissions formed from a 
set of R = 4 optimized 2nd order PCFM waveforms 

IV. CONCLUSIONS 

Given a maximum percent occupancy the marginal Fisher’s 
information (MFI) optimization of sparse radar spectrum has 
been considered from the perspective of ensuring sufficient 
serviceable spectral regions for other users to occupy. Without 
such a requirement, sparse spectrum optimization tends to 
spread more evenly across the total bandwidth, being driven by 
an imperative only to optimize radar performance (i.e. make 
the best out of the spectrum loss). By reducing the spectral 
fragmentation, however, the radar performance is necessarily 
degraded even further than what is incurred by the loss in 
spectrum alone.  

It was then demonstrated that sets of FM waveforms could 
be realized and even optimized within this MFI-generated 
sparse spectrum arrangement. Individually, these physical 
waveforms can be readily generated by a radar transmitter, 
though their combination produces a non-zero peak-to-average 
power ratio (PAPR) [44] that is rather difficult to emit at high 
power. More complex transmitter architectures [45], 
predistortion [46,47], or hardware-in-the-loop waveform 

optimization [48-50] could potentially be used to address this 
limitation, though these also come with their own performance 
trade-offs and limitations. 
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