
 

Optimal and Adaptive Mismatch Filtering                
for Stretch Processing

Lumumba Harnett1,  Dana Hemmingsen1, Patrick M. McCormick1, Shannon D. Blunt1, Christopher Allen1                                     
Anthony Martone2, Kelly Sherbondy2, David Wikner2 

 1Radar Systems Lab (RSL), University of Kansas, Lawrence, KS 
2Army Research Laboratory (ARL), Washington, DC

  
Abstract—Traditional stretch processing performs match 
filtering using a Fourier transform, which is essentially the 
matched filter bank for an LFM waveform mixed with an LFM 
reference. Here we consider how optimal least-squares based 
mismatched filtering could be used in place of the Fourier 
transform. This notion is then taken a step further with the 
formulation of an adaptive transformation. These new stretch 
processing filter structures are demonstrated in simulation and 
experimentally using open-air measurements, with the 
enhancements they enable applicable to a wide variety of legacy 
systems. 
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I. Introduction 
Stretch processing was proposed by Caputi in 1971 [1] as 

a means to transform the time scale of signals. Since then it has 
become a mainstay of wideband radar systems [2] and is one of 
the main reasons that the linear FM (LFM) waveform has been 
so widely used for more than 50 years [3], despite its high range 
sidelobes. Specifically, stretch processing permits high range 
resolution to be achieved without requiring receive sampling at 
the high rate that would otherwise be necessary for wideband 
waveforms.  

Given the echoes from a wideband LFM waveform, stretch 
processing operates by receive-mixing these echoes with a 
reference LFM having the same chirp rate as the transmitted 
waveform. This action serves to convert the individual reflected 
echoes of the transmitted LFM waveform into a weighted sum 
of sinusoids, where the frequency of each sinusoid corresponds 
to range delay and the associated weighting is the complex 
scattering at that delay. This mixing stage also achieves some 
degree of frequency down-conversion depending on the amount 
of frequency offset between the waveform and reference. 
Subsequent filtering, additional down-conversion, and in-
phase/quadrature-phase (IQ) sampling then realizes a digitized 
complex signal for which the Fourier transform serves as a 
matched filter bank.  

In a companion paper [4] it has been experimentally 
demonstrated that it is possible to employ the stretch processing 
RF receive chain for pulse compression of chirp-like nonlinear 
FM (NLFM) waveforms (e.g. [5-13]) by replacing the standard 
Fourier transform after digitization with a compensation 
transform. The work in [4] establishes the feasibility of using a 
wider variety of wideband waveforms for stretched processing, 
potentially enabling enhanced performance.  

Here, we alternatively take the approach that the LFM 
waveform is unchanged but explore how optimal and adaptive 
mismatched filters could be employed such as in [14]. 
Mismatched filters have the advantage of minimizing peak and 
integrated sidelobes as a trade-off for some degree of mainlobe 
mismatch loss. Of course, it stands to reason that these 
alternative filters could likewise be paired with NLFM 
waveforms, but such is outside the scope of this paper. 

Like [14], we examine the practical use of least-squares 
mismatched filters [15] and reiterative minimum mean-square 
error (RMMSE) adaptive filtering [16,17], albeit now within 
this stretch processing context.  The important distinction to be 
made is that, where standard pulse compression involves a 
convolution process [14], the initial stretch processing stage in 
which the receive echoes are mixed with a reference LFM 
violates linear time invariance (LTI), such that the subsequent 
filtering process is not through convolution. That said, by 
alternatively viewing the final fast Fourier transform (FFT) 
stage as the application of a discrete Fourier transform (DFT) 
matched filter bank, it is possible to pose a framework for the 
development of optimal and adaptive mismatched filter banks. 

II. Stretch Processing Signal Model 
A pulsed LFM waveform, defined over 0 ≤ t ≤ T for 

pulsewidth T, can be expressed as 
( ) cos[ ( ])2 ft t ts π= ,              (1) 

where the instantaneous frequency as a function of time is 

start end( ) ( ) tf t f f
T

= −               (2) 

for  fstart  and  fend  the start and end frequencies, respectively. 
Letting x(t) represent the illuminated scattering as a function 
of range and ignoring nonlinear effects, the reflected signal can 
be written as 

( ) ( ) ( ) ( )y t s t x t u t= ∗ + ,                         (3) 

for u(t) additive noise and ∗ the convolution operation.  
As illustrated in Fig. 1, the subsequent RF mixing, 

bandpass filtering (BPF), and IQ demodulation processes 
collectively produce the complex, baseband signal 

( ){ }I Q LPF IF IF( ) ( ) ( )( exp 2)y t y yt jy t t j f tπ+ = Φ × −=    (4) 

that is then sampled by the analog-to-digital converter (ADC). 
Here, yI(t) and yQ(t) are the in-phase and quadrature-phase 
signal components, ΦLPF{•} is a lowpass filtering (LPF) 
operation, yIF(t) is the received signal after LFM reference 
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mixing with sref(t) down to the intermediate frequency fIF, and 
ωIF = 2π fIF. Denote the sampled version of (4) as the length L 
vector y [4]. 

 
Fig. 1.  Signal model of stretch processing receive chain 

An LFM waveform reflected by a single hypothetical 
scatterer at range R, captured by the receive antenna, and passed 
through this RF receive chain would possess the structure  
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which is a complex sinusoid scaled by the amplitude and phase 
of the particular scatterer, for ΦBPF{•} a bandpass filter 
operation and c the speed of light. The particular frequency of 
this sinusoid depends on the value of range R between the near 
and far range bounds Rnear and Rfar, respectively. Thus for the 
range swath R ∈ [Rnear, Rfar] demarcated into N range samples, 
(5) can be discretized into a set of length L vectors p(n) for 
n = 0, 1, …, N −1. Normalizing as 

2

1
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( ) ( )n
n
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p

w                             (6) 

therefore realizes the L × N matrix 

( ) ( ) ( )0 1 1N= −  W w w w ,                   (7) 

the columns of which represent the structure of the expected 
signals discretely modelled as 

= +y Wx u ,            (8) 

for x the (over-sampled) length N vector of complex scattering 
over the range interval [Rnear, Rfar] and the length L vector u the 
additive noise at the output of the ADC. To facilitate the fidelity 
required for the subsequent optimal and adaptive mismatched 
filter formulations, we have defined N to include over-sampling 
by a factor of K relative to the nominal range resolution 
associated with the bandwidth of the LFM waveform. Based on 
the model in (8), the operation 

MFˆ H=x W y             (9) 

clearly yields the length N matched filter estimate that is simply 
an over-sampled version of the response that would be obtained 
by applying the FFT, with (•)H the complex-conjugate transpose 
(or Hermitian) operation. 

III. Stretch Processing Optimal Mismatch Filtering 
The least-squares (LS) optimal mismatch filter was 

proposed in [15] for phase-coded waveforms. More recently it 

has been extended for application to arbitrary FM waveforms 
[14,18] where it is required to “over-sample” relative to the 
waveform 3-dB bandwidth to minimize the model mismatch 
effects that would otherwise limit sidelobe suppression and 
induce range straddling effects. In so doing, however, 
additional care must be taken to avoid imposing a range super-
resolution condition [19] that is accompanied by increased 
sidelobes as a trade-off. This effect can be remedied by 
“spoiling” the mainlobe back to the nominal resolution of the 
matched filter [14]. The resulting mismatched filter provides 
significant sidelobe suppression with very small mismatch loss 
(fraction of a dB) without degrading resolution. Such a result is 
in contrast to traditional amplitude tapering prior to the FFT in 
stretch processing that reduces sidelobes at the cost of both 
resolution and possibly significant mismatch loss [20,21]. 

Since W and x were already specified in (7) and (8) as 
being over-sampled by K relative to the nominal resolution of 
the waveform, now define D as the N × N matrix  

( )H=D W W E ,               (10)  

where E is an N × N banded Toeplitz matrix with ones on the 
main diagonal and on the K − 1 diagonals above and below the 
main diagonal, and zeroes otherwise. Due to the over-sampling, 
the resulting 2K − 1 non-zero valued diagonals in D represent 
the complete mainlobe response to avoid super-resolution. 

Using (10), the L × N mismatched filter bank is obtained by 
solving the least-squares cost function 

2
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F
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for || • ||F  the Frobenius norm. We can rewrite the cost function 
of (11) as 
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the gradient of which is 

*
MMF

LS MMF
H HJ∇ −=

W
WW W WD .              (13) 

Setting (13) equal to L N×0  and then solving yields the mismatch 
filter bank 

( ) 1

MMF
H H−

=W WW WD ,                     (14) 

which can be diagonally loaded to avoid possible ill-
conditioning effects as 

( ) 1

MMF
H H

L Lδ
−

×= +W IWW WD ,               (15) 

for δ  a positive scalar and L L×I  an L × L identity matrix. 
Application of this filter bank to the received data vector y 
results in the mismatch filter range profile estimate 

( ) 1

MMF MMFˆ H H H
L Lδ

−

×= = +x W y DW IWW y        (16) 

for which range sidelobes are significantly suppressed while a) 
the range resolution of standard stretch processing is preserved 
and b) mismatch loss is quite small. 



IV. Stretch Processing Adaptive Mismatch Filtering 
An adaptive filter bank can likewise be obtained for the 

over-sampled signal model in (8) by using the reiterative super-
resolution (RISR) algorithm [17], which can be derived from 
the mean-square error (MSE) cost function 

{ }2

RISR 2

HJ E= −x W y ,                        (17) 

for E{•} expectation. This cost function is minimized by 

( ) 1

RISR { }{ }H HE E
−

= yW yxy .                   (18) 

Substituting, (8) into (18) and assuming the scatterers are 
statistically uncorrelated, the adaptive filter bank becomes 

 ( ) 1

RISR
H −

= +W WPW R WP ,        (19) 

where 
2{ }H
u L LE σ ×= =R uu I                     (20) 

and 
{ }HE=P xx ,            (21) 

for 2
uσ  the noise power. 

Per [17], since P is not known a priori it is estimated 
iteratively using 

     ( )RISR, 1 RISR, 1
ˆ ˆ ˆ H

i i i N N− − ×=P x x I               (22) 

for the ith iteration, where RISR, 1ˆ i−x  is the previous estimate of 
the range profile. The adaptively estimated range profile at the 
ith iteration is therefore 

( ) 12
RISR, RISR,

ˆ ˆˆ H H H
i i i i u L Lσ

−

×= = +x W y P IW WP W y ,    (23)  

which is initialized by the over-sampled matched filter 
estimate 

RISR,0 MFˆ ˆ H= =xx W y .      (24) 

V. Simulation Results 
An LFM waveform with a bandwidth of 350MHz and 

pulse duration of 7µs is simulated and convolved with a scene 
containing multiple scatterers of disparate powers. The 
resulting signal is mixed with an LFM reference chirp having a 
bandwidth of 450MHz and a duration of 9µs. Both the LFM 
waveform and LFM reference have a chirp rate of 50 MHz/µs. 

In the simulated scene shown in Fig. 2 there are 13 
scatterers randomly distributed in range and with reflected 
powers that are randomly assigned from a uniform distribution 
on [−40 dB, 0 dB]. The matched filter bank result in blue is the 
result of standard stretch processing, where it is observed that 
the scatterers at 114 m and 154 m are obscured by the sidelobes 
of other nearby large scatterers. Clearly the optimal mismatch 
filter bank (green) and adaptive filter bank (red) yield 
significant improvement in terms of the visibility of scatterers 
that would otherwise be masked by sidelobes. Further, when the 
dynamic range is high we observe that adaptive filtering 
provides a sharper mainlobe response than the still rather good 

optimal mismatch filtering. The mismatch loss for both 
approaches is a small fraction of a dB. 

 
Fig. 2: Simulated range profile for standard stretch processing (blue), 

mismatch filtering (green), and adaptive filtering (red) 

VI. Open-Air Experimental Results 
Using the same LFM waveform and reference parameters 

from the previous section, open-air measurements were 
collected from the roof of Nichols Hall on the University of 
Kansas (KU) campus using the hardware instrumentation setup 
depicted in Fig. 3 that includes separate transmit and receive 
antennas and a stretch processing RF receive chain. The 
transmit center frequency was fC = 3.5 GHz, such that the 350 
MHz transmitted LFM waveform occupied a 10% bandwidth, 
and the transmit power was 24 dBm. For IQ sampling, a Rohde 
& Schwarz FSW 26 real-time spectrum analyzer (RSA) was 
used that has a sampling rate of fS = 200 MHz with an analysis 
bandwidth of 160 MHz (from the lowpass filters in Fig. 1). A 
coherent processing interval (CPI) of 500 pulses was 
coherently averaged.  

 

 
Fig. 3. Hardware instrumentation setup for open-air measurements 

The illuminated scene of interest is the first 200 meters, 
for which the significant scatterers are annotated in Fig. 4. This 
region was selected because the direct path signal and nearby 



scattering are captured with sufficient power in the receiver to 
provide as high a dynamic range as possible given the transmit 
power, so that the impact of optimal and adaptive mismatched 
filtering can be demonstrated. 

 

 
Fig. 4: Annotated field of view for measured reults 

 
Figure 5 compares the optimal mismatch filter response 

from (16) to the matched filter response (standard stretch 
processing) via (9) for measured data. It is observed that the 
optimal mismatched filter realizes roughly 10-15 dB of 
sidelobe suppression, particularly in the vicinity of the large 
direct path signal, and little mismatch loss (fraction of a dB). 
Figure 6 likewise compares the adaptive filtering response 
from (23) after 3 iterations of this stretch-RISR formulation, 
where 10-15 dB of sidelobe suppression and very low 
mismatch loss is likewise observed.  
 

 
Fig. 5: Standard stretch processing (blue) and mismatch filter bank (green) 

for open-air measurements 
 

 
Fig. 6: Standard stretch processing (blue) and adaptive filter bank (red) for 

open-air measurements 
 

Figure 7 shows all three methods for the first 50 meters so 
that finer detail can be discerned. For example, the optimal and 
adaptive mismatch filtering uncovers the small scatterer at a 
range of 8 meters that would otherwise have been masked by 
sidelobes for standard stretch processing. While one could 
potentially use some form of tapering to improve the sidelobe 
for standard stretch processing, such an approach also involves 
a trade-off in terms of SNR (due to tapering loss) and 
resolution degradation. For these new methods there is no 
resolution degradation and the mismatch loss is negligible. 

These measured results show only rather minor 
differences between the optimal and adaptive mismatched 
filtering (e.g. narrower peak at 2 m and deeper nulls between 
some scatterers). However, the dynamic range of these 
measured results is at least 20 dB less than that of the simulated 
results in Fig. 2, and it is expected that further distinction could 
be observed if higher dynamic range were realized via higher 
transmit power. 
 

 
Fig. 7: Standard stretch processing (blue), mismatch filter bank (green), and 

adaptive filter bank (red) for first 50m of open-air measurements 
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VII. Conclusions 
Stretch processing has been formulated using a linear 

model that permits the subsequent development of a least-
squares based optimal mismatch filter bank and a mean-square 
error based adaptive filter bank. For high dynamic range 
scenarios these new methods provide significant sidelobe 
suppression enhancement without degrading range resolution 
and with negligible mismatch loss. In combination with the 
companion paper [4], these new filtering schemes can likewise 
be combined with other chirp-like nonlinear FM waveforms to 
provide greater design freedom for wideband radar 
applications that require high range resolution. In so doing, 
some of the new advantages promised by waveform diversity 
[21] can be applied to legacy radar systems that rely on stretch 
processing. 
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