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Abstract—Doppler processing is a well-known tool for the 
discrimination of scatterers based on their rates of radial motion. 
It is part of nearly every kind of radar mode via the coherent 
combination of echoes from a set of pulses. While windowing is 
likewise a well-known approach to reduce Doppler sidelobes 
(which also incurs degraded resolution and SNR loss), here we 
leverage recent work on least-squares (LS) optimal mismatched 
filtering that employs over-sampling for high-fidelity along with 
the means to compensate for the attendant super-resolution 
degradation that would otherwise arise. The result is a 
mismatched Doppler processing (MMDP) transformation that 
reduces sidelobes with less SNR loss and resolution degradation 
than windowing, as demonstrated using simulation and free-
space measurements. 

Keywords—Doppler processing, clutter cancellation, least-
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I. INTRODUCTION 

Doppler processing stands as a cornerstone of modern 
radars that rely on relative radial motion to discriminate movers 
having different speeds,  to identify and subsequently cancel 
stationary clutter [1, Chap. 17], and to enhance cross-range 
resolution for synthetic aperture radar (SAR) [2]. Each Doppler 
frequency can be represented by a specific frequency steering 
vector, such as is done for space-time adaptive processing 
(STAP) in combination with a spatial steering vector associated 
with the antenna array [3,4]. Alternatively, the complete 
Doppler spectrum can be readily obtained simply through 
application of the fast Fourier transform (FFT). 

Because frequency steering vectors correspond to the 
relative temporal arrangement of pulses in a coherent 
processing interval (CPI), which usually involves uniform 
spacing of pulses so that an FFT can be used, the result of 
standard Doppler processing on receive would then realize high 
sidelobes in the Doppler domain. For this reason it is common 
to employ windowing of the frequency steering vectors to 
reduce these sidelobes, with the caveat that degraded resolution 
and signal-to-noise ratio (SNR) loss are consequently incurred 
[1, Chap. 14]. Examples of well-known windows for this 
purpose are Taylor, Hanning, Hamming, and Kaiser [5]. 

In contrast to windowing, here we consider a least-squares 
(LS) optimal mismatched Doppler processing (MMDP) 
transformation to replace standard Doppler processing. To do 
so we leverage recent modified forms of LS devised for pulse 
compression of frequency modulated (FM) waveforms [6,7] 
and stretch processing [8], where the signal model in each is 
over-sampled while steps are taken to prevent the degradation 

that the attendant super-resolution effect would induce. It is 
shown that the resulting MMDP formulation in this context 
suppresses Doppler sidelobes with a minimal degree of loss due 
to mismatch effects. The end result, demonstrated both in high-
fidelity simulation and with experimental free-space 
measurements, is a new tool that expands the trade-space of 
options for Doppler processing and the myriad radar modes that 
rely upon it. It is anticipated that this transformation, which 
depends on the specific structure of the CPI, could be 
particularly applicable to emerging waveform-diverse 
modalities (see [9]) where standard windowing may not be 
appropriate. 

II. RECEIVED SIGNAL MODEL 

Consider a radar receiving M pulses in a CPI. The received 
response from the illuminated scatterers and noise for the mth 
pulse can be expressed as 

 ( , ) ( ) ( , ) υ ( , )jmy m t s t x t e m t   ,             (1) 

where x(,t) is the collection of scattering reflections induced 
by transmit waveform s(t) as a function of normalized inter-
pulse Doppler frequency , and υ ( , )m t  is additive noise. 
Pulse compression is performed as 

( , ) ( ) ( , )z m t h t y m t  ,                         (2) 

for h(t) the match filter and neglecting the effect of intra-pulse 
Doppler. After discretization, the collection of M slow-time 
samples of the th  range bin can be represented as a 
superposition of target scatterers (indexed by qT), clutter 
patches (indexed by qC), and noise via 
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x x    z v v υ    ,          (3) 

where v(q) is an M1 temporal steering vector 
corresponding to Doppler frequency q, and with 

T
( )qx   and 

C
( )qx   the complex scattering of the targets and clutter patches, 

respectively. For a constant pulse repetition interval (PRI) over 
the CPI, the steering vector takes the usual Vandermonde form 

2 ( 1)( ) [1 ]j j j M Te e e v    .                (4) 

Doppler processing of the data represented by (3) can then 
be performed by applying the Doppler filter bank V as 

 DPˆ ( ) ( )Hx V z  ,                            (5) 
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where        [ 2 ]             V v v v v  

is MN for K=N/M a Doppler over-sampling factor, 
Doppler granularity =2/N, and ( )H  the Hermitian 
(complex-conjugate transpose) operation. Windowing of the 
data can be performed in conjunction with Doppler processing 
[1, Chap. 14] by replacing each vector v in V with the 
windowed vector ,v v b   where b is the window function 
(e.g. Taylor, Hamming, etc) and   is the Hadamard product. 
Of course, windowing also incurs degraded Doppler resolution 
and some degree of SNR loss. In the following we alternatively 
consider the formulation of a LS based optimal Doppler filter 
bank and then incorporate this optimal filter bank into adaptive 
clutter cancellation. 

III. OPTIMAL MISMATCHED DOPPLER PROCESSING 

The least-squares (LS) mismatch filter (MMF) was initially 
proposed in [10] as a means to suppress pulse compression 
range sidelobes for phase codes. More recently, this 
formulation was modified to enable the construction of an LS-
MMF for arbitrary FM waveforms [6,7]. Because FM 
waveforms can possess a continuously changing phase (unlike 
phase codes that have a constant phase over a chip interval), this 
latter instantiation necessitates modest oversampling of the 
waveform relative to its 3-dB bandwidth along with subsequent 
“beamspoiling” to prevent an undesired super-resolution 
condition (where sidelobes are actually increased and a very 
high mismatch loss penalty is incurred). 

The success of the LS-MMF for arbitrary FM waveforms 
[7,11,12] subsequently led to a related formulation for stretch 
processing in which the final fast Fourier transform (FFT) stage 
is replaced by an LS optimal transform that greatly reduces 
range sidelobes, has very little mismatch loss, and no resolution 
degradation [8]. Because the signal model and final stage of 
stretch processing can be expressed in a manner that is 
practically identical to (3) and (5), it stands to reason that 
Doppler processing could likewise make use of an optimal LS 
transformation. 

Leveraging [8], define the NN desired response matrix  

( )HD V V E ,                               (6)  

where E is an NN banded Toeplitz matrix with ones on the 
main diagonal as well as on the K − 1 diagonals above and 
below the main diagonal. In contrast to a critically sampled 
case, in which D=I (an identity matrix), the oversampled-by-
K form in (6) provides the higher fidelity needed to suppress 
Doppler sidelobes with negligible loss in resolution and low 
SNR loss. To avoid the super-resolution that can arise from 
oversampling in this manner, the band of 2K−1 non-zero 
diagonals in D represents the Doppler mainlobe response at the 
nominal resolution.  

As in [8], the LS cost function for mismatched Doppler 
processing is likewise defined as  

LS LS F

2
= HJ U V D                          (7) 

for 
F

  the Frobenius norm. Taking the gradient of (7) with 

respect to ULS and setting the result equal to zero yields the 

MN optimal mismatched Doppler processing (MMDP) filter 
bank  

  1

LS
H H

U VV VD .                          (8) 

To avoid possible ill-conditioning effects, (8) can also be 
diagonally loaded as 

  1

LS
H H

M M


  IU VV VD ,                 (9) 

where δ is a positive scalar and M MI  is an identity matrix. The 
LS-based estimate of scattering after (non-adaptive) Doppler 
processing is thus obtained by 

LS LSˆ ( ) ( )Hx U z  .                         (10) 

For the special case in which K = 1 (thus D=I) and the 
matrix V becomes an MM discrete Fourier transform (DFT), 
then (8) simplifies to a scaled version of V. It should also be 
noted that the particular structure of D in (6) provides further 
control over the precise form that the LS filter in (8) and (9) can 
take. For example, Fig. 1 illustrates the magnitude and phase of 
a center column of D when K = 5. Thus, in the same way that 
windowing trades off resolution for sidelobe reduction, one 
could expand the width or shape of the non-zero banded portion 
of E in (6) to obtain even greater freedom in the realization of 
ULS.  

 
Fig. 1: Magnitude and phase of a center column of D used in 

the least-squares formulation of the MMDP transform 

IV. OPTIMAL MISMATCHED DOPPLER PROCESSING WITH 

INTERFERENCE CANCELLATION 

In a moving target indication (MTI) scenario, the abundance 
of clutter in the radar scene can mask low-power, slow-moving 
targets. Adaptive clutter cancellation can be performed by 
applying the inverse of a clutter covariance matrix estimate 
ˆ ( )R   to the Doppler steering vectors in V. In practice, the 

estimate of R for a given cell under test (CUT) is generally 
obtained via the sample covariance matrix (SCM), which can 
be expressed as [4] 
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where L is the set of surrounding range cells excluding the CUT 
and an appropriate number of guard cells, and n(L) is the 
cardinality of L. Thus the adaptive Doppler filter for the CUT 
is 

1
CUT CUT

ˆ ˆ( ) ( )W R V  ,                     (12)  

which is itself dependent on range index  . By collecting the 
windowed steering vectors v v b   into the matrix ,V this 
matrix could replace V in (12) to realize a windowed adaptive 
Doppler filter as well. 

This same notion extends to the MMDP filter bank of (8) 
and (9). Specifically, a LS version of (12) can be defined as  

1
LS CUT CUT LS

ˆ ˆ( ) ( )W R U                       (13)  

and subsequently applied as 

LS,adap CUT LS CUT CUT
ˆˆ ( ) ( ) ( )Hx W z   .               (14) 

In the following sections we compare the non-adaptive and 
adaptive MMDP filter banks to standard non-adaptive and 
adaptive Doppler processing, respectively. 

Finally, a common metric for performance evaluation of 
adaptive interference cancellation is signal-to-interference-
plus-noise ratio (SINR). Given clairvoyant knowledge of the 
covariance matrix R, this metric [4,13] can be expressed in 
terms of mismatched Doppler processing as 

 
   
   

21
LS

1
LS LS

SINR
H

H

 


 



u

u R v

u R u
.                (15)        

Replacing LSu  in (15) with v  allows SINR to be evaluated in 
terms of windowed steering vectors as well. Likewise replacing 

LSu  with v simplifies to the usual form [4,13] of 

     1SINR H  v v R v .                 (16)        

V. SIMULATION RESULTS 

Consider a linear FM waveform having a bandwidth of 
B=150MHz, a pulse duration of T=2s, a fixed pulse 
repetition frequency (PRF) of 1kHz, and M=38 identical 
pulses in the CPI. Nonhomogeneous clutter [14] is modeled in 
the same manner as [13] by randomly modulating the power of 
each complex Gaussian range/angle clutter patch using a 
Weibull distribution with a shape parameter of 1.7 [15, 16]. 
The clutter is generated by dividing the range ring in azimuth 
into 39(>M=38) equal-sized clutter patches. The scattering 
from each patch is i.i.d. and drawn from a complex Gaussian 
distribution. Additive noise is also complex white Gaussian. 
Random internal clutter motion (ICM) is introduced that is 
uniformly distributed on ±2% relative to the normalized 
Doppler response. A Taylor window [17] is used that has         
n = 4 nearly constant-level sidelobes adjacent to the mainlobe 
and a maximum sidelobe level of 30 dB. 

For a given range cell, five targets are placed with different 
relative Dopplers and powers (the black x’s in Figs. 2 and 3). 

After pulse compression, Doppler receive processing is 
performed with oversampling K = 5 using the standard Fourier 
formulation of (5), a windowed version thereof using a Taylor 
window, and the LS MMDP per (8) and (10). The clairvoyant 
version of R is used to assess clutter cancellation. 

 

 
Fig. 2: Simulated Doppler processing spectrum before clutter 

cancellation for standard (blue), Taylor windowed (green), 
and MMDP (red)  

 
Fig. 3: Simulated Doppler processing spectrum after clutter 
cancellation for standard (blue), Taylor windowed (green), 

and MMDP (red) 

Figure 2 illustrates an example of standard Doppler 
processing (blue), Taylor-windowed Doppler processing 
(green), and MMDP (red), where the large central peak 
corresponds to clutter. Figure 3 likewise shows the same set of 
responses after clutter cancellation. Close examination shows 
that MMDP provides slightly sharper peaks (particularly 
compared to the broadened peaks for Taylor windowing) and 
less SNR loss (particularly for smaller scatterers like the one 
at −0.25 normalized Doppler). While the MMDP sidelobes are 
not reduced to quite the same degree as Taylor windowing for 



this basic operating mode, they are markedly lower than 
standard Doppler processing. In general, it has been found that 
while this Taylor window instantiation yields about 0.69 dB of 
loss, the MMDP in this case realizes only 0.27 dB. 

In Figure 4, the SINR metric of (15) and (16) is shown for 
the three processing schemes based on clairvoyant knowledge 
of R after 500 Monte Carlo trials. Here Taylor windowing 
incurs about 1.4 dB of SINR loss relative to standard 
processing, while MMDP only realizes about 0.5 dB. The 
clutter notch width is essentially unaffected. 

 

 
Fig. 4: Simulated clairvoyant SINR for standard (blue), 

Taylor windowed (green), and MMDP (red) 

VI. OPEN-AIR EXPERIMENTAL RESULTS 

Open-air experimental testing was performed at the 
University of Kansas using an LFM waveform of bandwidth 
B=150MHz, pulse duration T=2s, and a fixed PRF of 
100kHz. In total, 4180 pulses were transmitted, with every 
110 consecutive pulse echoes pre-summed in the receiver to 
yield an equivalent M = 38 pulses. The covariance matrix was 
estimated via (11) using 2M samples [18] and with 5 guard 
cells on either side of each CUT.  

Figures 5-7 depict range/Doppler plots for the three 
approaches. Close inspection shows that, as expected, Taylor 
windowing (Fig. 6) reduces the Doppler sidelobes of standard 
processing (Fig. 5) while also broadening target mainlobe 
responses. The MMDP approach (Fig. 7) also reduces 
sidelobes, though to lesser degree than the Taylor window, but 
it also avoids the mainlobe spreading effect. 

It is instructive to consider the Doppler cut at a single range 
for these results. Figures 8 and 9 show the measured Doppler 
spectrum of the three approaches before and after clutter 
cancellation, respectively. Like the simulated results in Figs. 2 
and 3, it is again observed that MMDP has lower sidelobes than 
standard Doppler processing, but not quite as good as Taylor 
windowing. However, at +10 m/s appears to be a small moving 
target (most likely a motorcycle) for which the Taylor 
windowed response is clearly lower than that of MMDP. The 
stationary clutter at 0 m/s and the large moving target at +6 m/s 

(likely a large truck) also show the greater spreading of the 
Taylor window implementation relative to standard or MMDP 
approaches.  
 

 
Fig. 5: Standard Doppler processing with clutter cancellation 

for open-air measurements 

 
Fig. 6: Taylor windowed Doppler processing with clutter 

cancellation for open-air measurements  
  

 
Fig. 7: MMDP with clutter cancellation for open-air 

measurements 



 
Fig. 8: Open-air measured Doppler spectrum before clutter 

cancellation at 1.167 km for standard (blue), Taylor 
windowed (green), and MMDP (red) 

 
Fig. 9: Open-air measured Doppler spectrum after clutter 

cancellation at 1.167 km for standard (blue), Taylor 
windowed (green), and MMDP (red) 

VII. CONCLUSIONS 

A form of least-squares (LS) mismatch filtering, recently 
developed for pulse compression of FM waveforms and 
optimal stretch processing, has been formulated for use in 
Doppler processing. Simulated and experimentally measured 
results indicate that mismatched Doppler processing (MMDP) 
can reduce Doppler sidelobes, albeit not quite as much as 
Taylor windowing, while incurring less SNR loss due to 
mismatch. 

The main purpose of this work was to illustrate that this 
manner of Doppler processing is indeed viable in practice. 
While the results thus far are by no means groundbreaking, this 
formulation sets the stage for new approaches to windowing 
(via modification of the desired D matrix in the LS 

formulation), greater control over mismatch loss through the 
diagonal loading term in (9), and as a potential robust way in 
which to reduce Doppler sidelobes when a non-uniform PRI is 
employed. Ongoing work is exploring the efficacy of these 
attributes. 
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