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Abstract—In this paper we examine some of the practical 
aspects of implementing cognitive radar (CR) techniques onto 
software defined radar (SDRadar) platforms. These aspects 
include: 1) the response time (RT) of algorithms and components 
to determine latency bottlenecks, 2) autonomous regulation of the 
perception-action cycle (PAC) to determine “how fast the CR can 
interact with the environment” as well as “how fast the CR should 
interact with the environment,” and 3) regulation of the cognition 
level to understand how to select a particular CR technique 
appropriately for a given dynamically-changing environment. To 
provide concrete examples of these three implementation aspects 
for CR, we will focus on the specific application of target tracking 
in a congested spectral environment. 
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I. INTRODUCTION 
The CR research area has produced a wide variety of 

techniques that have the potential to improve radar performance 
[1]. Applying artificial intelligence to radar has predominantly 
focused on target tracking, though more recent applications 
have emerged in the context of spectrum sharing and passive 
radar [2-5]. Each CR research area employs an ontology for 
modeling and algorithm development. Several ontologies have 
been proposed to map the fundamental building blocks of 
cognition to realizable radar solutions [1, 6, 7], though a 
standard has not yet been established within the community.  

Despite the insightful ontologies and the wide variety of 
available CR research, the real-time implementation of CR 
techniques onto a radar sensor is still in its infancy. The big-
picture view of how a confluence of algorithms and 
technologies are used to address real-life radar scenarios is 
often missed. Practical development of CR technology requires 
the integration of multiple, disparate CR techniques onto a 
flexible software-defined radar architecture. These CR 
techniques as a whole represent a tool-box of solutions that 
must be chosen autonomously, and in real-time, by a high-level 
decision process to address multiple fast-changing target and 
environmental scenarios. As researchers have evolved their 
models into this larger perspective, a new set of essential 
research topics has begun to emerge, which include: 1) the 
response time (RT) of algorithms and components to determine 
latency bottlenecks within the CR architecture, 2) autonomous 
regulation of the perception-action cycle (PAC) to determine 
“how fast the CR can interact with the environment” as well as 
“how fast the CR should interact with the environment,” and 3) 

regulation of the cognition level to understand how to select the 
appropriate CR technique for dynamically-changing scenarios. 

In this paper we explicitly describe these three essential 
research topics for practical implementation of cognitive radar. 
To provide concrete examples we will focus on the application 
of target tracking in congested spectral environments. Section 
II describes the application of cognitive radar to spectrum 
sharing. Section III then discusses the RT for CR, which is often 
overlooked as a key component in cognitive RF systems even 
though it is a crucial measure of human cognition [8]. Based on 
definitions used for human cognition, the RT for CR is assessed 
with respect to the time a technique converges to a solution and 
the subsequent accuracy of the technique’s result in improving 
radar performance, thereby posing a trade-off between a highly 
accurate (and possibly complex) CR technique and its 
associated latency. 

Section IV discusses the autonomous regulation of the PAC 
and the importance of “how fast” the CR should interact with 
the environment. Slow adaptation could result in inaccurate 
target information while fast adaptation could result in a 
mismanagement of radar resources. Adapting quickly, i.e. 
within the coherent processing interval (CPI) of the radar, can 
also have consequences for clutter cancellation [9, 10]. Section 
IV likewise discusses factors contributing to the regulation of 
cognition. Much of the published work in the literature 
investigates CR techniques to increase the level of cognition; 
however, why apply a cognitive solution when an adaptive 
approach, or deterministic approach, will suffice? The key 
consideration for CR is knowing when to apply the appropriate 
algorithm for a given environmental and target scenario.  

II. COGNITIVE RADAR FOR SPECTRUM SHARING 
CR for spectrum sharing has received increased attention 

due to the reallocation of spectrum from government RF 
systems to the commercial communications industry. This 
challenge is of particular concern for radar since most legacy 
systems do not have the frequency agility to share the spectrum 
[5, 11]. In this paper we examine the application of non-
cooperative radar coexistence for real-time dynamic spectrum 
access (DSA). The DSA approach requires that the 
electromagnetic environment (EME) be passively measured 
over time to determine an appropriate center frequency and 
bandwidth for the radar to occupy. The measured EME power 
spectra are used to detect the presence of other RF users within 
the overall operating band B, thus enabling the radar to decide 



how best to access the band. This frequency allocation choice 
should mitigate mutual interference by maximizing the radar’s 
signal to interference plus noise ratio (SINR). Ideally the radar 
would occupy the entire bandwidth B to enhance range 
resolution; however, this arrangement incurs mutual 
interference with other RF users, and thus degrades SINR. A 
compromise for coexistence is to have the radar reduce its 
bandwidth and identify a sub-band (within the overall operating 
band) that incurs minimal interference [4]. A frequency sub-
band (SB), with bandwidth β ≤ B and center frequency fSB, is 
defined as a contiguous set of frequency bins within a measured 
power spectrum representing a feasible frequency allocation for 
the radar. Multiple CR techniques have been explored by the 
authors to promote effective DSA for radar. These techniques 
implement the PAC with different learning models and 
waveform types to determine the best performance for radar 
under this coexistence scenario. Each technique also has 
advantages and disadvantages based on the nature of the RF 
interference (RFI). 

The first technique is Sense-React-Avoid, which quickly 
responds to RFI in a computationally efficient manner. As 
shown in Fig. 1 Sense-React-Avoid uses the power spectrum to 
estimate a snapshot of the EME that is then processed by the 
Fast Spectrum Sensing (FSS) algorithm [12]. FSS refines this 
spectral information into representative metadata by merging 
“closely-spaced” frequency bins into clusters of low and high 
power RFI, with the low-power clusters representing available 
sub-bands for radar operation. Sense-React-Avoid then selects 
the center frequency and bandwidth of the low-power cluster 
possessing the largest bandwidth for radar operation. This 
spectral allocation is then used by the radar for waveform 
synthesis.  

Fig. 1: Block diagram of Sense-React-Avoid approach. 

The Sense-Predict-Avoid approach in Fig. 2 seeks to adapt 
radar waveforms in anticipation of changes in RFI rather than 
reacting to changes after they occur [13]. Consequently, while 
the Sense-React-Avoid strategy performs sub-optimally during 
RFI state transitions, the Sense-Predict-Avoid strategy can 
mitigates error during these transitions. Sense-Predict-Avoid 
employs a stochastic model that quantifies RFI activity over 
time as an alternating renewal process. In this approach, the RF 
spectrum is channelized into N equally spaced sub-bands and a 
history of RFI ON and OFF states are observed in each sub-
band. The time spent by each sub-band in each state is used to 
estimate distribution functions for each respective sub-band and 
state. Spectrum sensing paired with cumulative distribution 
functions therefore determines the likelihood of future 
spectrum availability. Low computational resources for 
carrying out these tasks allows the system to learn RFI statistics 
online in real-time [13]. After the model is trained online, 
Sense-Predict-Avoid observes the most recent spectral activity 

and selects a contiguous set of sub-bands with a low likelihood 
of RFI.  

 
Fig. 2: General block diagram of the Sense-Predict-Avoid and 
Sense-Learn-Avoid approaches. 

The general block diagram in Fig. 2 is also used for Sense-
Learn-Avoid, a Reinforcement Learning approach that treats the 
CR’s environment as a Markov Decision Process (MDP) [14]. 
An MDP is a mathematical model for Reinforcement Learning 
characterized by the set of states, actions, state transitions, and 
reward functions in which pairs of states and actions are mapped 
to numeric rewards. The goal of Reinforcement Learning is to 
find a policy that the radar can use to select appropriate actions 
given observed states, where policies can be indirectly 
determined using function approximations via deep neural 
networks [15]. The potentially high dimensionality of the policy 
iteration problem was later reduced using a Deep Neural 
Network within a Q-learning framework (termed a Deep Q-
Network). The Deep Q-Network allows for larger 
dimensionality of the state space during an offline training 
period. After the training period has ended, learned behavior 
then guides the CR waveform selection with minimal 
complexity. Similar to Sense-Predict-Avoid, the Sense-Learn-
Avoid approach observes the most recent spectral activity and 
selects a contiguous set of sub-bands with a low likelihood of 
RFI. Unlike Sense-Predict-Avoid, however, Sense-Learn-Avoid 
can also learn other behaviors, e.g. when it is actually acceptable 
to allow RFI in the radar band.  Additionally, when applying a 
Deep Q-Network, Sense-Learn-Avoid can also apply online 
learning and potentially adapt to a changing environment. 

Recent work has compared Sense-Predict-Avoid and Sense-
Learn-Avoid [16]. While Sense-Learn-Avoid performs worse 
on random, intermittent RFI scenarios, this mode shows 
improvement in real measured RFI environments. Sense-
Predict-Avoid demonstrates good performance in the 
intermittent scenarios, with similar performance to Sense-
Learn-Avoid for highly variable, real RFI. The MDP-based 
strategy of Sense-Learn-Avoid tends toward higher bandwidth 
utilization and fewer waveform adaptations compared to 
prediction via Sense-Predict-Avoid, which elicits fewer 
collisions and more frequent waveform adaptation. At the cost 
of higher computational resources and longer training time, 
Sense-Learn-Avoid could potentially be able to recognize 
patterns that are not captured by the statistics in the Sense-
Predict-Avoid approach. 

The Sense-React-Notch approach in Fig. 3 generates 
waveforms possessing spectral notches rather than adapting the 
center frequency and bandwidth of a single contiguous band. 
This technique relies on spectral shaping optimization to realize 
instantiations of random FM waveforms [17] that are 
continuous, have a constant time-domain envelope, and possess 
an enforced spectral mask containing notches based on the FSS 
response [9], where notch depth depends on the particular 
shaping optimization and corresponding number of iterations. 



The main advantage of this approach is that the RF spectrum can 
be utilized at the full bandwidth, sans notched regions.  

Fig. 3: Block diagram of the Sense-React-Notch approach. 

It has also very recently been shown that Sense-React-Notch 
can likewise be combined with prediction [18] to facilitate the 
CR technique of Sense-Predict-Notch in Fig. 4. Employing 
notching with prediction can improve bandwidth utilization 
compared to avoidance while maintaining prediction accuracy. 
Generating notched waveforms requires additional computation 
time that may limit the adaptation rate. Further, highly random 
unpredictable RFI may result in the erroneous placement of 
notches and reduce bandwidth utilization. The ability to use the 
Sense-Predict-Notch approach when appropriate becomes 
essential for rapidly changing RFI environments. 

Fig. 4: Block diagram of the Sense-Predict-Notch approach. 

The above CR strategies modify the radar waveform from 
CPI to CPI and possibly from pulse to pulse. The proposed 
approach of Fig. 5 considers a high-power tunable matching 
network [19, 20] to maximize the Power Added Efficiency, or 
output power, of the transmitter front-end power amplifier. The 
goal of this technique is to retune a matching network to 
maintain the best amplifier efficiency and spectral containment 
of the transmitted waveform as transmit parameters are varied 
by other DSA implementations. It has been shown that the 
output power of the radar transmission is significantly improved 
with this procedure [21], leading to increased maximum 
detection range by the radar. A current disadvantage is that the 
digital DSA approaches described above can adapt much faster 
than the physical high-power tuner, which could cause sub-
optimal matching. The present high-power tuner technology 
relies on mechanical tuning techniques, so it requires at least 
tens of milliseconds to perform a tuning operation.  

 
Fig. 5: Block diagram of the impedance tuning process. 

III. THE RESPONSE TIME OF COGNITIVE RADAR 
Some of the earliest research on implementing artificial 

intelligence (AI) for radar required an examination of the RT, 
where it was shown that the limiting factors of integrating AI 
with radar were based on algorithm complexity and the 
available digital hardware [2, 22-24]. These implementation 
methods considered a measured trade-off between optimal 
system design to maximize performance (accuracy) and system 
capability / latency based on available computational resources 
to obtain a solution (time). More recent models have examined 
implementation of CR techniques on software-defined 
platforms [25-28]. A challenge with several of these designs is 
the size, weight, power, and cost (SWaP-C) of the radar 

platform. A possible hardware platform that can support this 
low SWaP-C capability is the universal software radio 
peripheral (USRP). Although intended for radio 
communications, the USRP can be programmed to fully 
support radar functionality and operation [29]. Two research 
groups recently applied cognition to the USRP: one extending 
the capability of the cognitive radar engineering workspace 
[30], and the other using the USRP x310 platform for the 
application of real-time DSA [25]. The latter platform has 
subsequently been referred to as software-defined radar 
(SDRadar). 

The basic SDRadar architecture [31] (see Fig. 6) 
implements Sense-React-Avoid and regulates the timelines of 
multiple spectrum sensing and radar signal processing 
algorithms between the Field Programmable Gate Array 
(FPGA) and Graphic Processing Units (GPUs), while having 
the appropriate data rate connections to deliver information at 
the proper time. This basic architecture shares resources 
between the radar processing and spectrum sensing 
components, and is foundational for the efficient 
implementation of multiple CR techniques discussed in Section 
V, where the goal is to maximize performance (accuracy) in 
real-time. 

 
Fig. 6: Block diagram of the basic SDRadar for Sense-React-
Avoid. 

The SDRadar sensor shares the available resources on the 
USRP motherboard (i.e. FPGA) and host-PC as described in 
Fig. 6. The essential radar functions are highlighted in red and 
the spectrum sensing functions highlighted in blue. This 
implementation aims to efficiently implement the most 
fundamental functionality of radar processing (i.e. matched 
filtering, Doppler processing, and constant false alarm rate 
detection) along with spectrum sensing (i.e. fast Fourier 
transform (FFT), signal detection, and clustering) for real-time 
operation. As shown in Fig. 6, this functionality mostly utilizes 
hardware-accelerated resources like the GPU and FPGA, 
leaving the CPU to perform more complex operations that are 
difficult to implement in hardware (i.e. machine learning 
techniques). Not only does this hardware-accelerated 
processing allow room for more advanced algorithm 
development, it also significantly improves the SDRadar’s 
performance. For example, the original SDRadar architecture 
[25] used the CPU for range-Doppler processing and target 
detection, resulting in added latency (data processed every 
other CPI cycle). With the GPU implementation, every CPI is 
processed in real-time. The original architecture in [25] 
likewise implemented FSS [12] on the CPU, resulting in a 
reaction time of 3.4 ms to changing RFI. Implementation of 
FSS on the FPGA has reduced that reaction time to 160 𝜇𝜇s, 



which includes the time needed to sense the spectrum, process 
the FFT, decide on the center frequency and bandwidth for 
DSA, and then transmit and receive 1 radar pulse. 

IV. REGULATION OF THE PAC 
The autonomous regulation of the PAC changes the rate that 

the CR interacts with the environment. To illustrate this point, 
consider the echo-location capability of bats [23]. As the bat 
approaches a target (e.g. an insect), it will change its transmitted 
sound frequency and duration, which is referred to as range-
dependent adaptation. Reducing pulse duration as range 
decreases subsequently increases the rate of the transmitted 
(and received) waveforms in order to pin-point the insect 
location during the final moments of engagement.  

In a similar way, the CR must interact with the environment 
to determine the rate at which the PAC should change. If 
adaptation is too slow, target information could be lost; if 
adaptation is too fast, radar resources could be mismanaged. 
Adapting quickly, i.e. within the CPI of the radar, can also have 
adverse consequences for range-Doppler processing. As 
illustrated experimentally in [9, 10, 32], intra-CPI adaptation of 
waveforms introduces both sidelobe and mainlobe variation to 
individual pulse compression responses, which collectively 
translate into nonstationary modulation of the clutter. 
Consequently, standard clutter cancellation is much less 
effective and requires some means of compensation. Similar to 
the RT discussion, a trade-off between slow and fast PAC 
adaptation rates therefore exists and should be balanced to best 
fit evolving target and environmental conditions. 

To effectively share the spectrum for DSA, accurate 
spectrum sensing and fast adaptation are needed, which does 
require pulse-agile techniques that have been shown to perform 
quite well at minimizing the mutual interference between non-
cooperative RF systems [9, 10]. Of course, the efficacy of these 
techniques is limited by the speed with which the PAC is 
completed. For example, Fig. 7 illustrates two different PAC 
speeds for the SDRadar sharing the spectrum with RFI that 
randomly hops frequency every 2 ms. Specifically, Figs. 7a and 
7b show spectrograms in which the SDRadar adaptation rate is 
3.2 ms and 160 μs, respectively. 

 
Fig. 7: Spectrogram of SDRadar sharing a 100 MHz band with a 
random frequency hopping signal. Collisions are reduced with a 
fast adaptation rate of the PAC. 

When the SDRadar adapts too slowly relative to the RFI 
(Fig. 7a) the collision rate can get as high as 100%. In the 
scenario shown in Fig. 7b, however, because the accelerated 

adaptation rate allows the SDRadar to respond over 10 times 
faster than the RFI is hopping, the collision rate is now < 10%. 
This lower collision rate not only reduces the radar’s impact on 
other signals sharing the band, it also improves the radar’s 
performance.  

Fig. 8 shows the resulting receiver operating characteristic 
(ROC) curves when performing range-Doppler processing 
based on the SDRadar sharing the spectrum according to the 
adaptation rates from Fig. 7. Notice that both slow and fast 
adaptation show improvement over just transmitting a full-
bandwidth waveform (blue trace), but the fast adaptation 
clearly lies much closer to the ideal case of no RFI (green trace). 

 
Fig. 8: ROC curves where the SDRadar is adapting at 3.2 ms 
(“Slow Adapt”) and 160 μs (“Fast Adapt”), while coexisting with 
randomly hopping RFI. 

While increasing the adaptation speed of the system 
improves the ability to avoid mutual interference, intra-CPI 
waveform adaptation does introduce the above-noted 
modulation effect that degrades clutter cancellation [9, 10, 32]. 
Specifically, a smearing of the delay-Doppler point spread 
function is induced that results in an increase in the residual 
clutter after cancellation, which subsequently translates into an 
increase in the rate of false alarms by a factor of 100 or more 
[31] if not appropriately compensated. Various approaches 
have thus far been developed and demonstrated to address 
aspects of this effect, including deconvolution [10], combined 
mismatched filtering and clutter borrowing/filling [32], and 
joint range-Doppler processing [33], with varying efficacy and 
computational cost. 

V. REGULATION OF RADAR COGNITION 
The techniques discussed in Section II represent a 

dichotomy of cognitive solutions ranging from purely adaptive 
with simple waveform synthesis (Sense-React-Avoid) to 
learning models with sophisticated waveform designs (Sense-
Predict-Notch). It has been shown that each technique has 
advantages with regard to enhancing radar performance in 
particular EME conditions. A comprehensive approach for 
DSA therefore involves the selection of an appropriate 
algorithm based on the real-time observations of radar 

Fig. 7a: 3.2 ms adapt rate Fig. 7b: 160 μs adapt rate 



performance and the RFI. This perspective treats the individual 
CR techniques in Section II as components in a database, or tool 
box, of solutions that are selected for implementation based on 
the conditions at hand. Implementation of this strategy requires 
a higher level decision process to regulate use of the individual 
CR approaches. 

The higher level cognition process considered here is the 
bio-inspired metacognitive radar model [34]. Metacognition is 
a widely studied topic in the fields of human learning, 
neurological impairments, computation, automation, and 
control [35]. Interestingly enough, metacognition for radio has 
only been explored in a limited capacity and is a relatively new 
topic for radar [36, 37]. An illustration of the metacognitive 
radar (MCR) model is depicted in Fig. 9. This model selects the 
appropriate CR technique based on real-time observations of 
radar performance and the EME. The main components of this 
model are MCR Knowledge, MCR Monitoring, MCR Control, 
and the CR techniques [36]. In the context of spectrum sharing 
[34], the MCR Knowledge defines the learning rate and 
capabilities for each CR technique. MCR Monitoring classifies 
the spectrum to identify a subset of appropriate CR strategies 
matched to the given EME. MCR Control defines the regulation 
of the learning process for implementing CR techniques. 

 
Fig. 9: Metacognitive radar model (MCR) to select the appropriate 
CR technique based on real-time observations of radar 
performance and the EME. 

Fig. 9 also depicts the timeline of radar operation, CR 
technique implementation, and the MCR engine. The timeline 
of radar operation is much shorter than that of a particular CR 
technique. In the classical definition of CR, waveforms and 
other parameters are modified to control the behavior of the 
radar and improve performance. For the tracking application, 
the radar would operate over several CPI cycles before the CR 
can estimate target position and velocity information, and then 
modify the appropriate parameters. In a similar way, the MCR 
engine observes CR operations and monitors radar performance 
over a long time period while simultaneously monitoring the 
EME. Based on the radar performance and changing conditions 
of the EME, the MCR engine explores different CR techniques 
over time. The CR technique that produces the “best” 
performance is then selected (or “exploited”) for use until either 
the radar performance degrades or the EME conditions change. 
To achieve convergence to the “optimal” CR strategy, i.e. one 
that yields the greatest radar performance over time, consider a 
formulation inspired by the multi-armed bandit problem, a form 
of reinforcement learning that balances the exploration and 
exploitation trade-off. The exploration stage samples the 

potential options to measure the likelihood of success, while the 
exploitation stage uses the measured information to employ the 
option that optimizes performance under current conditions. 
For instance, [38] used the “explore-first” approach where the 
MCR engine first sequentially samples CR strategies to 
evaluate performance before exploiting the “best” option. 

The method in [34] also explores how to rearrange the CR 
techniques into simpler categories for implementation, with 
Fig. 10 illustrating the tool box of solutions that are used for 
SDRadar. This architecture allows for the combining of 
different cognitive methods, waveform types, and radar signal 
processing, along with the tunable matching network in the 
Front-end. The methods in the Cognitive Strategy use the 
fundamental DSA approach from the CR techniques discussed 
in Section II that are arranged into the following generic 
categories: Fixed, React (Sense-React-Avoid), Learning 
(Sense-Learn-Avoid), and Stochastic (Sense-Predict-Avoid). 
The Waveform Type then determines the maneuverability of 
the waveform, the elements of which include full-band 
transmission, partial band transmission with LFM to avoid, 
random FM to avoid, and random FM to notch. The 
maneuverability for avoidance and notching is a form of 
frequency hopping that is dependent on the RFI. Finally, the 
Signal Processing is tailored for a generic tracking radar 
application. Each of these four categories switch between their 
constituent elements to provide ample combinations so that the 
appropriate processing path for a given RFI scenario can be 
chosen to maximize performance.  

 

 
Fig. 10: Implementation architecture of CR techniques on the 
SDRadar. 

 
This metacognitive engine monitors the spectral 

environment and radar performance. Spectral features are first 
extracted and classified using a tiered knowledge-based 
classifier to provide a “generalized classification” to down-
select the CR techniques into a subset of possible candidates. 
The exploration/ exploitation reinforcement learning strategy is 
then used to implement these candidate techniques for real-time 
radar operation, where each candidate is evaluated and the best 
strategy chosen for exploitation. 

VI. CONCLUSIONS 
There are numerous practical aspects involved with 

implementing CR techniques onto an SDRadar platform, with 



the various techniques possessing different advantages and 
disadvantages according to the particular EME conditions. 
Response time of a CR capability requires consideration, as does 
regulation of the perception-action cycle relative to the dynamic 
nature of the EME. Specifically, intra-CPI waveform adaptation 
introduces another performance trade-space between adequately 
avoiding/notching in-band RFI and the modulation of clutter 
that can hinder effective cancellation, which subsequently 
requires compensation. At a higher level, management of the 
overall CR process necessitates the automation of CR technique 
selection in a metacognitive manner that balances all the various 
trade-offs to determine the “best” approach for a given situation. 
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