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Abstract—During his many years with the Radar Division of 

the US Naval Research Laboratory (NRL), Dr. Karl Gerlach made 

significant contributions to adaptive interference cancellation for 

radar. For this memorial tribute special session, this paper 

leverages the reiterative minimum mean square error (RMMSE) 

estimator, which he also helped to develop, to formulate two 

techniques whereby interference cancellation is performed jointly 

with signal estimation as a way to enhance the subsequent range-

Doppler response. Experimental results are demonstrated using 

free-space measurements from pulsed, nonrepeating waveforms at 

S-band and standard FMCW at W-band. 
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I. INTRODUCTION 

Moving target indication (MTI) radars disambiguate targets 
in the presence of clutter using Doppler as the discriminant. 
Doing so necessitates estimation and subsequent cancellation of 
the clutter because it could otherwise mask the presence of 
moving targets, in some cases to a rather significant degree (see 
Chap. 17 of [1]). 

Dr. Karl Gerlach, for whom this special session is a memorial 
tribute, made numerous contributions to clutter cancellation 
(e.g. [2-5] just to name a few). The intent of this paper is to 
combine clutter cancellation with the structure-based adaptive 
filtering approach generally denoted as reiterative minimum-
mean square error (RMMSE) estimation, for which Karl 
likewise made a significant impact.  

Specifically, two new forms of RMMSE are derived here that 
incorporate clutter cancellation so that the algorithm can achieve 
joint cancellation and signal estimation, where the latter 
property facilitates enhanced discrimination and visibility of 
moving targets without the SNR loss or resolution degradation 
otherwise associated with Doppler tapering. The two new 
approaches are denoted as background supplemental 
cancellation (BaSC) and background supplemental loading 
(BaSL), where the former employs “hard” cancellation and the 
latter represents a form of “soft” cancellation that is performed 
iteratively. Validation of these methods is demonstrated through 
application to two sets of experimental free-space 
measurements, one from an S-band testbed and the other from a 
W-band testbed.  

II. A BRIEF HISTORY OF THE RMMSE CONCEPT 

The RMMSE formulation was conceived by Blunt and 
Gerlach in late 2002 / early 2003. It was initially based on the 

goal of applying strategies from CDMA multiuser detection [6], 
where users are separated at the receiver according to their 
corresponding code, to the application of shared-spectrum 
multistatic radar. It was then observed that when RMMSE is 
applied to radar pulse compression, and thus denoted as adaptive 
pulse compression (APC), it facilitates a beamforming-like 
capability by nulling the self-interference from range sidelobes 
[7,8]. The multistatic APC (MAPC) application quickly 
followed [9,10], along with ways to perform this manner of 
adaptive processing in legacy systems after analog pulse 
compression [11], adaptive compensation of pulse eclipsing 
effects [12], exploitation of fast-time Doppler to perform 
imaging [13,14], and compensation of Doppler distortion [15].  

Subsequent APC-based work included the incorporation of a 
gain constraint [16], hybridization with the well-known CLEAN 
technique [17], a reduced-dimension implementation to reduce 
computational cost [18], and joint range-Doppler [19] and 
range-angle [20] versions. An RMMSE-based spatial 
beamformer denoted as reiterative super-resolution (RISR) [21] 
was then developed for spatial direction-of-arrival (DOA) 
estimation, though it is likewise applicable to the frequency 
domain. Gain constrained and “partially constrained” versions 
of RISR were subsequently developed in [22] to provide 
enhanced robustness. 

These various forms of RMMSE have been used to enhance 
weather radar [23], synthetic aperture radar (SAR) [24], MEG 
imaging of brain activity [25], and active sonar [26], where the 
latter also necessitated incorporation of a covariance matrix 
taper to address high Doppler sensitivity. More recently, 
physical attributes of waveforms have been incorporated into the 
RMMSE paradigm [27,28] that have subsequently permitted 
experimental demonstrations of enhanced sensitivity and 
discrimination for simultaneously dual-polarized operation [29], 
shared-spectrum radar [30], and even stretch processing [31]. 
Here we build from this litany of previous developments to 
incorporate a clutter cancellation capability into RMMSE 
estimation. 

III. RISR RECAP FOR SPECTRUM ESTIMATION 

In [21] the RMMSE concept was used to obtain an adaptive 
filter bank to perform DOA estimation using a single snapshot 
from an arbitrary antenna array, as long as the array manifold is 
adequately known. Moreover, the resulting RISR formulation 
includes the means to incorporate array calibration tolerances 
since the array manifold cannot be known perfectly in practice. 
By simply considering the spatial steering vectors to instead be 
frequency steering vectors, RISR can likewise be directly 
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applied to spectrum estimation. The following is a brief review 
of the RISR formulation which will subsequently be modified to 
incorporate clutter cancellation. 

Consider a single vector y comprised of N time samples for 
which we wish to estimate the spectral content. The importance 
of this single-snapshot capability will be revealed shortly when 
the approach is employed in nonstationary applications. The 
received signal can thus be represented as 

 y Sx v ,                                      (1) 

where x is an M1 vector comprised of M N  frequency-

dependent complex amplitudes, S is an NM bank of 
frequency steering vectors, and v is additive noise of arbitrary 
distribution. 

In this context, we wish to minimize the objective function 

2
H

J  
 
  

yx W ,                             (2)                   

where (∙)H is the Hermitian operation, [ ]  is expectation, and  

W is the resulting NM adaptive filter bank. The general 
MMSE solution to (2) is 

 
1

H H

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   yW xyy ,                     (3)                   

for which the mth column in the (unconstrained) RMMSE 
context [21] is the RISR filter 

1
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H

m i m i i mp


 S P Sw R s ,                    (4) 

for 
m

s  the mth column of S, and Rnse is the NN noise 

covariance matrix. The MM diagonal matrix  
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is obtained at the ith iteration and has the mth diagonal element

,m ip , where 
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I  is an identity matrix,  

ˆ
H

i ix W y                                     (6) 

is the estimate of the complex spectral amplitudes at the ith 

iteration, and  is the Hadamard product. This process is 

initialized by setting  

0i
W S ,                                     (7) 

which performs a Fourier transform that is oversampled in the 

frequency domain since S is NM . 
In [22], the RISR filter bank of (4) was modified to 

incorporate a gain constraint for each individual filter, with the 
resulting mth column of W subsequently taking the well-known 
MVDR form of 
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While this version does not achieve quite the degree of 
resolution enhancement as (4), it has also been observed to be 
more robust to mismatch effects and avoids over-suppression of 
small signal components. Moreover, estimated values of x for 
which there is no signal component present tend to settle around 

the level of the noise floor when using (8), which is a more 
realistic response and is useful for subsequent CFAR detection. 
It is this form that we shall further modify to incorporate clutter 
cancellation. 

IV. INCORPORATING HARD CANCELLATION (BASC) 

The RMMSE-based RISR formulation in (4) or (8) is a 
recursive approach that seeks to obtain the filter bank that 
minimizes the mean-square error of the estimate of the 
underlying signal components according to (2). However, this 
approach does not discriminate between the desired signal 
components, moving targets in this case, and the undesired 
components. We will henceforth apply the term ‘clutter’ for the 
latter, though use it here to mean the stationary signal 
components that are persistent. Consequently, this methodology 
could also be viewed as a form of change detection relative to 
an estimated background. 

Here we wish to supplement the RISR estimation-oriented 
filter bank with a clutter cancellation component, and shall 
denote this modified form as background supplementary 
cancellation (BaSC). First decompose (1) as 

clut rem

clut rem ,

 
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y S x v

S x S x v

y y v

                        (9) 

where we have separated the underlying signal into two parts as 

x=xclut+xrem, in which the first component denotes clutter 
(stationary background) and the second denotes whatever 
remains (excluding noise). This form therefore allows for the 
presence or absence of moving targets since xrem could be a 
vector of zeroes. 

Now define the rank k < N clutter covariance matrix as 

clut clut clut[ ]HR y y .                        (10) 

For white noise it can thus be readily shown that the inverse of 
the normalized cancellation transform 
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projects the signal components of (9) onto the orthogonal 
complement of the clutter subspace while preserving the full-
rank noise (ensuring invertibility). In other words,  

 1

canc rem rem[ ] [ ] [ ]H H H  R y y y y vv         (12) 

which implies 
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Thus the corresponding clutter-cancelled version of (6) becomes 

1
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ˆ

H H
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
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using either (4) or (8) for the RISR filter bank Wi, which in this 
case is applied and updated recursively after application of the 
cancellation transform.  
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Of course, estimation of the clutter covariance is never perfect 
and, depending on the particular problem, potentially difficult to 
obtain precisely (e.g. highly nonstationary environment). 
Consequently, the result in (13) and (14) would likely still 
contain at least some residual clutter leakage. Moreover, the 
hard delineation between the clutter and remaining subspaces 
may hinder detection of moving targets that are near that cutoff. 
In [32] joint estimation/cancellation was analytically 
demonstrated to outperform their sequential application. To that 
end, a soft cancellation version of the RMMSE framework is 
likewise examined. 

V. INCORPORATING SOFT CANCELLATION (BASL) 

Where (14) employs a sequential cancellation-then-
estimation approach, it is worth considering an implementation 
in which these operations are performed jointly. Simply 
modifying (2) as  

2
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H
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 
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yWx                         (15)                   

and using y from (9) leads to  
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such that the recursive estimation of the filterbank and moving 
targets naturally excludes the clutter that is already accounted 
for within the filter structure. 

An MVDR form of (16) like that in (8) could likewise be 
obtained, though it would tend to preserve the clutter instead of 
canceling it. To enable cancellation we will insert the clutter 
covariance only into the numerator of (8) as 
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Consequently, while initial estimation via (6) and (7) does 
include the clutter component, it will disappear from the moving 
target estimate as iteration continues. The filter structures of (16) 
and (17) are collectively denoted as background supplemental 
loading (BaSL). As will be shown using measured data, this soft 
cancellation approach provides greater visibility of slow-
moving targets that would otherwise be suppressed when 
performing hard cancellation. 

VI. SUPPLEMENTAL COVARIANCE ESTIMATION 

The supplementary covariance matrix  

sup clut nse
 R R R                          (18) 

used in BaSC via (11) and appearing in (16) and (17) for BaSL 
could be obtained in different ways. The most direct approach is 
by computing the sample covariance 

sup

1

1 L
H

L 

 R y y ,                        (19) 

where y  for 1, 2, , L  are snapshots collected over 

intervals where moving targets do not reside. Of course, it is 
necessary that these estimates are identically distributed (or at 
least sufficiently similar) to the clutter and noise within the 
moving target interval. In other words, we are making precisely 

the same assumption as is made for standard adaptive clutter 
cancellation. 

Alternatively, a structured supplemental covariance could be 
formed by leveraging the model from (9) and using the initial 
estimates from (6) for the i = 0 filterbank in (7). Denoting these 

estimates as x̂  for 1, 2, , L  snapshots, the structured 

supplementary matrix is obtained via 

sup clut
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v R SP S I                          (20) 
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in the same form as (5). While it appears a bit more cumbersome 
than (19), this structured approach has the benefit of permiting 
easy removal of non-clutter components, which could otherwise 
contaminate the training data (see [3]), by simply zeroing the 
necessary diagonal elements in (21) that fall outside the 
expected clutter response. In the following, we shall examine the 
use of both supplementary matrices. 

VII. EXPERIMENTAL VALIDATION 

Measured data from two completely separate open-air tests is 
used to assess the efficacy of the BaSC and BaSL forms of RISR 
for moving target estimation in clutter. In all cases 5 iterations 
of the given approach is employed. The first data set involves 
the use of 150 random FM waveforms [33] having a 3-dB 
bandwidth of 67 MHz, pulsewidth of 4.5 Useconds, and pulse 
repetition frequency (PRF) of 20 kHz that were implemented on 
a Tektronix arbitrary waveform generator at an S-band center 
frequency of 3.55 GHz. These were emitted in the direction of a 
traffic intersection in Lawrence, KS, and the resulting echoes 
collected using a real-time spectrum analyzer.  

 Figure 1 shows standard FFT Doppler processing with 
Taylor windowing and no clutter cancellation. Some moving 
targets appear to be visible but the large clutter response makes 
them hard to distinguish. Applying projection-based clutter 
cancellation (since the platform is stationary) to this data yields 
the response in Fig. 2, with the moving targets now clearly 
visible, though the Doppler resolution is rather coarse. 
 

 
Fig. 1. S-band range-Doppler response w/o clutter cancellation and w/o 

adaptive estimation (FFT only) for 150 random FM waveforms 
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Fig. 2. S-band range-Doppler response with projection-based cancellation and 

w/o adaptive estimation (FFT only) for 150 random FM waveforms 

 

 
Fig. 3. S-band range-Doppler response w/o clutter cancellation and using RISR 

from (8) for150 random FM waveforms 
 

 
Fig. 4. S-band range-Doppler response with structured supplementary matrix 

from (20) and BaSC via (8) and (14) for 150 random FM waveforms 

 
Applying RISR from (8) to this same data set (see Fig. 3) 

provides an obviously significant sharpening in Doppler, with 
the moving targets becoming quite clear, though the clutter is 
still present and may mask some targets. When BaSC is likewise 
employed via (14) as shown Fig. 4, the clutter is mostly 
suppressed, though some leakage is still present due to large 

clutter discretes. Finally, when BaSL from (17) is applied it is 
observed in Fig. 5 that the clutter is almost completely removed 
and the Doppler-sharpened moving targets are plainly visible. 

To serve as a sort of ground truth for comparison, 1000 
random FM waveforms were used to illuminate the same scene. 
After FFT-based Doppler processing and projection-based 
clutter cancellation the result in Fig. 6 shows the same set of 
enhanced targets observed in Figs. 3-5. Because this latter result 
enjoys nearly 7 times the number of unique pulses, the 
associated SNR and sidelobe decoherence benefits that 
accompany it (due to incoherent sidelobe combing for random 
FM waveforms [33]) are easy to see. More importantly, 
however, is the very good agreement in moving targets between 
Figs. 5 and 6, many of which are not discernible in Fig. 2. 

 

 
Fig. 5. S-band range-Doppler response with structured supplementary matrix 

from (20) and BaSL via (17) for 150 random FM waveforms 

 

  
Fig. 6. S-band range-Doppler response with projection-based cancellation and 

w/o adaptive estimation (FFT only) for 1000 random FM waveforms 

 
The second set of data was collected from a W-band FMCW 

system developed to capture fast-moving objects [34]. The 

system generates 500s chirps that span a bandwidth of 600 
MHz at a center frequency of 108 GHz. The operating mode 
involved up/down chirp cycles, but we only consider the down 
chirp portions, resulting in an effective PRF of 1 ms. The 
received echoes from each sweep are dechirped and sampled, 
followed by standard stretch processing involving an FFT. Here 
the FFT is also replaced with the RISR/BaSC or RISR/BaSL 
methods for each sweep. This manner of fast-time adaptive 
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processing is particularly well-suited to this arrangement 
because the fast-moving object requires that spectral estimation 
be performed separately for each sweep.  

For this data set, reusable paintballs were fired away from the 
receiver and the resulting data is oriented in terms of frequency 
offset (corresponding to range) on the horizontal axis and (slow) 
time in milliseconds on the vertical axis (increasing downward). 
Both forms of the supplementary matrix are considered, with the 
background data collected when the radar is operating prior to 
the paintball being fired.  

Figure 7 shows the time-history across a set of FMCW sweeps 
after each sweep has been dechirped followed by an FFT (i.e. 
standard stretch processing). Many of the strong vertical echoes 
are background clutter, though the response at 65+ ms at ~2.92 
MHz is the vibration of a rubber sheet caused by the paintball 
impact. Noting that frequency corresponds to range for FMCW, 
the diagonal paintball trace (more visible in Figs. 8-11) is 
actually shifted in frequency due to Doppler, with the near-
horizontal response at 61 ms arising from rapid deceleration 
when the paintball strikes the rubber sheet. 

In contrast, Figs. 8 and 9 illustrate the impact of BaSC and 
BaSL when the structured supplementary matrix of (20) is 
employed to suppress the background clutter. The fast-moving 
paintball is now clearly visible, especially in the BaSL response, 
due to this fast-time suppression of background clutter. 

 

  
Fig. 7. W-Band dechirped time-history after standard stretch processing 

 

  
Fig. 8. W-Band dechirped time-history after RISR/BaSC via (8) and (14) using 

the structured supplementary matrix of (20)  

  
Fig. 9. W-Band dechirped time-history after BaSL via (17) using the structured 

supplementary matrix of (20)  

 

  
Fig. 10. W-Band dechirped time-history after RISR/BaSC via (8) and (14) 

using the sample covariance of (19) 

 

  
Fig. 11. W-Band dechirped time-history after BaSL via (17) using the sample 

covariance of (19) 

 
Unlike the previous open-air range-Doppler experiment, this 

data was collected inside an auditorium which presents 
significant multipath and some modulated clutter effects 
believed to be caused by ventilation fans. Consequently, the 
structured supplementary matrix may not adequately capture all 
of the ambient background clutter. Figures 10 and 11 thus 
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provide an alternative perspective on BasC (from Fig. 8) and 
BaSL (from Fig. 9) when the sample covariance matrix from 
(19) is used. While the sheet vibration effect for 65+ ms is now 
less clear, the paintball trajectory is more visible (subjectively 
speaking). Moreover, the impact at 61 ms is also now stronger 
for both BaSC (by about 6 dB) and BaSL (by about 3 dB). 

VIII. CONCLUSIONS 

The RMMSE-based approach denoted as RISR, developed 
for DOA estimation, is likewise applicable to spectral 
estimation, though it does not inherently address clutter 
cancellation. Here this capability is incorporated via hard and 
soft implementations. It is shown using measured S-band and 
W-band data that the corresponding adaptive methods provide 
significant enhancement for the detection and discrimination of 
moving targets. Moreover, because it is performed on a per-
snapshot basis, this formulation open the door to new 
applications of interference cancellation. 
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