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Abstract—Various classes of random FM waveforms have 

recently emerged that are amenable for high-power radar 

transmitters while providing high dimensionality that facilitates a 

variety of new applications. One prominent example is the 

generation of transmit spectral notching to contend with dynamic 

radio frequency interference (RFI) for the purpose of spectrum 

sharing. While previous design-focused work has used the 

aggregate power spectrum and autocorrelation properties of these 

waveforms to facilitate spectrum-shaping optimization, here we 

examine their time-frequency characteristics to better understand 

the efficacy of spectral notching at different time scales. In so 

doing it is observed that there may be a need for different design 

perspectives depending on the nature of the RFI.  

Keywords—FM noise radar, waveform optimization, time-

frequency analysis 

I. INTRODUCTION 

Radar waveforms can generally be delineated into the 
categories of linear and nonlinear frequency modulation (FM), 
phase codes, frequency codes, noise waveforms, and 

ultrawideband waveforms [1,2]. Of these categories, the 
degree of structure in the signal varies significantly, with noise 
waveforms clearly possessing the least amount of structure and, 
therefore, the greatest freedom to maneuver. A particular sub-
category of noise waveforms in which the randomness occurs 
via frequency modulation has recently been demonstrated to 
provide a variety of useful emerging capabilities (see [3] for a 
summary). Consequently, these FM noise (or random FM) 
waveforms employ enough signal structure to make them 
amenable to high-power transmitters while otherwise 
possessing the extremely high dimensionality and maneuver 
freedom (due to non-repetition) of traditional noise waveforms. 

While the beginnings of classical noise radar are generally 
attributed to the work of Horton published in 1959 [4], the 
origins of random FM can actually be traced to a U.S. Navy 
patent filed by Whiteley and Adrian in 1956 [5], though it was 
not issued until 1980. Since that time, different system 
implementations and analytical attributes of random FM have 
been examined by Guosui, et al, throughout the 1990s [6], by 

Axelsson in 2004 [7], and most recently by Pralon, et al, [8,9]. 
A common thread through these various efforts has been the use 
of white noise to drive an FM signal. 

Starting with the pseudo-random optimized (PRO) FM 

approach in 2015 [10,11] the University of Kansas, in 
collaboration with the Army Research Laboratory (ARL), the 
the Air Force Research Laboratory (AFRL), and the Naval 
Research Laboratory (NRL), has developed a variety of new 
classes and applications of random FM waveforms (see [3] and 

references within). The defining feature of these waveform 
classes is that, through some manner of optimization, they are 
able to facilitate useful shaping of the waveform’s power 
spectrum while still retaining both the inherent randomness 
(providing high dimensionality) and FM structure (for high-
power transmission). 

Among these random FM waveform classes, the 
incorporation of transmit spectral notches to address 
dynamically changing RFI [12] presents a particularly 
interesting perspective with regard to spectrum shaping. 
Specifically, since an FM waveform, by definition, is phase-
continuous and only corresponds to a single frequency at any 
instant in time, what attribute of this signal permits it to achieve 
such low spectral notch depths? For instance, better than 50 dB 

notch depth has been demonstrated in hardware [13,14]. 
Moreover, are there time-scale dependencies to this degree of 
spectral suppression? Here we apply time-frequency (TF) 
analysis to investigate these questions. 

II. RANDOM FM WAVEFORMS 

The list of random FM waveform classes continues to grow, 
and thus an exhaustive analysis of their TF properties is not 
feasible here. Instead we evaluate the specific TF impact that 
spectral notching has upon them, which leads to some 
interesting observations. Note that, being FM, all of these 
waveforms are constant amplitude and continuous.  

The baseline, non-optimized FM noise case studied in [5-9] 
is the most direct way to generate a random FM waveform. The 
baseband representation of any FM waveform, random or 
otherwise, can be expressed as 

    ( ) exp 2 ( ) exp ( )
t

s t j f d j t


     ,      (1) 

for instantaneous frequency f() of the modulating random 

process and (t) the subsequent random phase, which is 
continuous. In [5-9] this modulating random process was 
generally assumed to be Gaussian. In all cases the waveform 
s(t) possesses a single frequency at a given instant in time. 

More recent work [3] has focused on ways in which to 
perform spectral shaping of random FM waveforms so as to 
achieve lower range sidelobes on a per-waveform basis and to 
incorporate spectral notches on transmit [12]. Such spectral 
shaping cannot be achieved through simple linear filtering 
because doing so would involve deviating from the desirable 
FM structure. Thus some degree of optimization is often 
required, which also generally necessitates operation on an 
appropriately discretized version of the waveform (i.e. 
inclusion of “over-sampling” relative to 3-dB bandwidth so 
unavoidable aliasing is kept to an acceptable minimum [15]). 
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An important note at this point is with regard to global 
versus local optimality. While most optimization problems seek 
the former, the latter is actually more useful in this case. In fact, 
the preservation of randomness is achieved because each 
random initialization tends toward a (sufficiently) unique result 
when performing spectral shaping. Consequently, each 
waveform can be designed to be “good enough” while 
remaining distinct from the rest. This uniqueness across a set of 
random FM waveforms also leads to the condition whereby 
their individual pulse compressed range sidelobes combine 
incoherently during slow-time processing (thereby incurring a 
reduction through averaging) while the mainlobe responses still 
combine coherently. 

The particular spectrum-shaping approach considered here 

is PRO-FM [10,11], which employs alternating time/frequency 
projections to convert an arbitrary random FM initialization 
into one that approximately adheres to a desired power 
spectrum template. The Gaussian power spectrum is attractive 
because it corresponds to a Gaussian autocorrelation [16], 
which theoretically has no sidelobes. While this condition can 
only be met approximately (i.e. practical time-limited 
waveforms deviate somewhat from a true Gaussian power 

spectrum), sidelobes roughly on the order of 20log10(BT) can 
readily be achieved [10], with BT the 3-dB time-bandwidth 
product. By modifying the spectral template followed by 
subsequent “notch deepening” methods [12-14], spectrally 
notched FM waveforms compatible with physical transmitters 
can be realized to support cognitive radar spectrum sharing. 

III. TIME-FREQUENCY TRANSFORMATION REVIEW 

When analyzing a time-varying or non-stationary signal, 
such as random FM waveforms, the time-domain 
representation does not clearly show what frequencies are 
present at a particular time. Conversely, the frequency 
representation does not easily describe when the particular 
frequencies are present in the signal. Evaluation of this 
relationship necessitates the use of a joint time-frequency 
representation [17]. 

TF transformations fall into one of two types: linear or 
nonlinear. The most commonly used linear TF transformation 
is the short-term Fourier transform (STFT), defined as [17] 

 
2STFT ( , ) [ ( ) ( )] j f

s e dt tf s  



     ,             (2) 

where γ(t) is a window function with some specified time 
support (here we use a rectangular window whose extent is a 
percentage of the pulse width). Other linear TF transforms exist 
as well, such as the wavelet transform (with a wide variety of 
wavelets) [18]. Linear TF transforms generally involve a trade-
off between temporal resolution and spectral resolution, which 
can hinder the characterization of waveforms possessing 
sophisticated intrapulse behavior [19].  

In contrast, the distributions produced by nonlinear TF 
transformations, with bilinear (quadratic) being of particular 

interest, trade between joint time/frequency resolution (ΔtΔf) 
and interference cross-terms [17]. Since we wish to preserve 
temporal and spectral resolution, we shall consider a nonlinear 
transform. A popular nonlinear TF representation is the 
Wigner-Ville transform (WVD), since many other TF 
transforms can be easily derived from it [18]. 

The WVD of waveform s(t), defined mathematically as [17] 

     ( , ) 2 2sW t f s t s t
f

  


 


,      (3) 

involves a quadratic TF transformation with many properties 
that are well-suited for analyzing signals at full temporal and 
spectral resolution. Integrating over the entire WVD results in 
the total energy of the signal, while integrating over a time 
(delay) marginal or a frequency marginal results in the total 
energy in the given delay or frequency bin. Another desirable 
property of the WVD is that it can be transformed into many 
other bilinear TF distributions either through integral 
transforms (e.g. Fourier) or by multiplying a kernel function 
into the integrand. 

There are still several trade-offs that must be considered 
when employing the WVD to analyze signals [17]. Self-
interference cross-terms arise throughout the signal’s TF 
representation and may potentially obfuscate the signal 
structure, though they are needed to satisfy the marginal 
conditions noted above. For FM waveforms, these cross-terms 
are centered between “auto-terms”, which are regions of 
constant frequency at different points in time. Cross-terms are 
a consequence of the quadratic superposition principle that the 
WVD satisfies [19]. Also, because radar waveforms cannot be 
both time-limited and bandlimited, we must consider infinite 
representation across one of the two axes. Consequently, some 
aliasing is expected to occur in either time or frequency. 
However, with adequate sampling the degree of aliasing can be 
kept to an acceptable minimum. 

As noted above, other bilinear TF distributions can be 
obtained from the WVD. Applying a Fourier transform across 
the time axis of the WVD as [17] 

 ( , ) ( , )s sC v f W t f
v




 (4) 

realizes the spectral correlation function (SCF), which provides 
a measure of the similarity between a signal and a frequency 
shifted version of itself within each frequency bin. While not 
used here, the instantaneous autocorrelation function (IAF) can 
likewise be obtained by applying an inverse Fourier transform 
to the WVD across the frequency axis [17]. Moreover, the well-
known ambiguity function (AF) can also be derived from the 
WVD by applying both a Fourier transform across the time axis 
and an inverse Fourier transform across the frequency axis [17]. 
These four bilinear distributions (WVD, SCF, IAF, and AF) are 
all connected through a cycle of Fourier transforms and inverse 
Fourier transforms. Here we specifically consider the WVD and 
SCF. 

One final TF transform of interest is the Radon-Wigner 
transform (RWT), which is obtained from the fractional Fourier 
transform that is defined as 

   

  

2

2

1 cot( )
( ) exp 0.5 cot( )

2

exp 0.5 cot( ) csc( ) ( ) ,

j
s t j u

t u

j t ut s t dt

 




 









 

, (5) 

where cot(∙) and csc(∙) are the cotangent and cosecant 

operations, respectively, and the  and u variables correspond 
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to the angle and radial variables of the transform. Specifically, 

 is the angle of rotation in the time-frequency domain and u is 
the generalized marginal (see page 284 of [17] for details on 
marginals). Based on (5), the RWT is computed as 

 ( , ) ( ) ( ) for 0 180sR u s t s t
t u



     


. (6) 

The specific portion of the RWT response from (6) for which 

=90 then denotes the usual Fourier transform of the 
argument. These various TF transforms will be used to provide 
greater insight into the structure of random FM waveforms, 
particularly those possessing spectral notches. 

IV. TIME-FREQUENCY ANALYSIS OF RANDOM FM WAVEFORMS 

It has been shown [12-14] that spectrally notching random 
FM waveforms can realize notch depths better than 50 dB while 
retaining the FM structure that is amenable to high-power 
transmitters. Figure 1 illustrates an experimental loopback 
capture example of this capability when shaping the power 

spectrum to be Gaussian for a 2 s random FM pulse having a 
3-dB bandwidth of 200 MHz, with and without a spectral notch. 

It is interesting to consider the WVD of these same 
waveforms via (3), which are depicted in Figs. 2 and 3. 
Specifically, despite the prominent spectral notch in Fig. 1, the 
WVD results for waveforms with and without a spectral notch 
are virtually indistinguishable. In fact, even knowing that the 
spectral notch resides in the 60 to 90 MHz interval, there is no 
evidence of its existence at that interval in Fig. 3. 

It is possible to discern some indications of a spectral notch 
if we average the WVD responses over a sufficient number of 
unique waveforms (with the same spectral notch location). 
Figure 4 shows that direct averaging of the WVD responses of 
100 notched random FM waveforms (also loopback captured) 
reveals the inner edge of the spectral notch, though the outer 
edge is not as clear. The notch in Fig. 4 also appears to be quite 
shallow, in contrast to the almost 50 dB notch depth in Fig. 1 
that depicts the power spectrum measured over the entire pulse. 

 

 
Fig 1. Baseband power spectrum of random FM (blue trace) and                                 
spectrally notched random FM (orange trace) waveforms experimentally 
captured in loopback 

 
Fig. 2. WVD of a single random FM waveform (loopback) 

 
Fig. 3. WVD of a single spectrally notched random FM waveform (loopback) 

 
Fig. 4. Averaged WVD over 100 notched random FM waveforms (loopback) 

 

The main reason for this disparity between instantaneous 

spectral content (as measured by WVD) and aggregate spectral 

content arises from how the spectral notch is actually formed. 

Simply put, the signal content within the frequency interval of 

the notch is combining in a way to facilitate a cancellation effect 



 

4 of 6 

 

over the pulse, which is a rather different phenomena than 

avoiding placement of any signal energy in this frequency 

interval. 

One way to demonstrate this cancellation effect is by using 

the SCF, which involves performing a Fourier transform over 

the time axis of the WVD response from (3), thereby converting 

the time domain into the fast-time Doppler domain. 

Consequently, the frequency content is evaluated over the pulse 

width as a whole. 

Figures 5 and 6 illustrate the resulting SCF responses for the 

same two waveforms depicted in Figs. 2 and 3. This frequency 

versus Doppler perspective clearly shows the spectral notch in 

Fig. 6, while also revealing that the notch location shifts 

according to fast-time Doppler. Thus, under conditions of 

scatterers possessing high radial velocity (e.g. helicopter 

blades) and/or high Doppler sensitivity such as that experienced 

at mm-wave bands, maintaining the notch spectral location may 

require further consideration depending on the radar’s 

operating concept. Moreover, we can infer that the time-scale 

over which the spectral notch is evaluated does indeed matter. 

 
Fig. 5. SCF of a single random FM waveform (loopback) 

 
Fig. 6. SCF of a single notched random FM waveform (loopback) 

 

This time-scale dependence is further emphasized when 

considering the RWT response from (6) that is shown in Fig. 7. 

As noted above, =90 corresponds to the Fourier transform 

response and, consequently, the spectral notch is clearly visible 

in that regime. However, other values of  that relate to other 

portions of the time-frequency space do not appear to preserve 

the notch. We can again infer that the time-scale over which the 

spectral notch is evaluated determines the efficacy with which 

those particular frequencies are avoided. 

Finally, consider the application of the STFT from (2) to the 

notched random FM waveform at two different time-scales. 

Figures 8 and 9 first show the STFT response when the time 

window is 10% of the pulse width. Here the notch is clearly 

visible, albeit obviously a bit narrower and slightly shallower 

than indicated in Fig. 1 when observed over the pulse width as 

a whole. However, at this time-scale we can easily say that the 

spectral notch does clearly exist. 

 
Fig. 7. RWT of a single notched random FM waveform (loopback) 

 
Fig. 8. STFT response of a single notched random FM waveform (loopback) 

for a 10% time window 

 

In contrast, Figs. 10 and 11 illustrate the STFT response 

when the time window is 2% of the pulse width. Now the 
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spectral notch can be vaguely observed traversing across Fig. 

10, though it is certainly not the consistent presence shown in 

Fig. 8 for the longer STFT time window. From the perspective 

of a few STFT response time segments in Fig. 11, however, it 

would be difficult to justify that a spectral notch is actually 

present. Simply put, from the standpoint of another spectrum 

user in the same band as the radar, the efficacy of spectral 

notching performed by the radar strongly depends on the 

operational time-scale of the other spectrum user. 
Further, the depth of the notch from a TF perspective can be 

assessed by varying the width of the STFT window. Figure 12 
shows the improvement in (perceived) relative notch depth as 
the window size increases. This result is also visually 
demonstrated in Fig. 13, where the frequency marginals (sum 
of the spectrogram across time) are plotted for different window 
sizes.  

 
Fig. 9. STFT response of a single notched random FM waveform (loopback) 
for a 10% time window; view of a few individual time segments 

 

 
Fig. 10. STFT response of a single notched random FM waveform (loopback) 
for a 2% time window 

 
Fig. 11. STFT response of a single notched random FM waveform (loopback) 

for a 2% time window; view of a few individual time segments 

 

 
Fig. 12. Relative notch depth versus window size as a percentage of waveform 

temporal extent (loopback), both for a single notched random FM waveform 

(blue trace) and averaged over 1,000 unique waveforms (orange trace). 

 

 
Fig. 13. Frequency marginals of various spectrogram window sizes for an 

arbitrary notched random FM waveform (loopback), with the relative notch 
depth improving as the window size increases. 
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V. TRADITIONAL FM DESIGN PERSPECTIVE 

The TF outcome for notching might seem to represent a 
departure from the well-known principle of stationary phase 
(PSP) that is a cornerstone of traditional FM waveform design. 
The PSP describes an inverse relationship between the rate of 
frequency change (i.e. chirp rate) and spectral density, defined 
at frequency 𝑓𝑘, as [1,20]  

2
2 ( )

( ) 2
( )

k
k

k

g t
U f

t






 (7) 

where 𝜙′′(𝑡𝑘)  is the chirp-rate at corresponding time 𝑡𝑘  and 

𝑔(𝑡𝑘) is the amplitude envelope of the pulse (here a constant 

since the waveform is FM). Within this context, the 

instantaneous frequency as a function of time 𝑓(𝑡) is related to 

the group time-delay function 𝑇(𝑓) as [1] 

1( ) ( )f t T f , (8) 

where 

1
( )

2

d
f t

dt





 (9) 

and  

 ( ) 2
d

T f
df


  . (10) 

When the instantaneous frequency in (7) is monotonic, the 

inverse function of group delay exists and the relationship 

between group time delay and instantaneous frequency is one-

to-one.  

However, when the instantaneous frequency is non-

monotonic, such as in the case of random FM waveforms, this 

relationship is no longer one-to-one and thus the inverse 

function does not exist. Consequently, the principle of 

stationary phase does not hold for random FM waveforms. In 

other words, we cannot necessarily expect to form spectral 

notches by simply “chirping quickly” through the notch 

interval, which is why the results observed here indicate that 

cancellation is necessary to achieve significant notch depth. 

 

VI. CONCLUSIONS 

Random FM waveforms have been experimentally 

demonstrated as a viable means with which to realize cognitive 

radar spectrum sharing through the formation of transmit 

spectral notches. Here these notches have been evaluated from 

a time-frequency perspective, where it is found that the time-

scale over which the notch is assessed has a significant impact 

on the observed notch depth. Moreover, the principle of 

stationary phase does not appear to apply for these waveforms, 

with the notch formation instead achieved through means of 

cancellation over the pulse width. Thus these results imply that 

the relative time-scales between the radar and RFI should be 

considered when designing notched waveforms. 
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