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Abstract—The increasing demand for radio frequency (RF)
spectrum requires radars to coexist with interfering RF emitters.
Innovations in waveform design paired with dynamic spectrum
access techniques allow for efficient spectrum sharing for radar.
This work evaluates a recently developed real-time implementa-
tion of spectrum sharing cognitive radar using commercial-of-
the-shelf (COTS) hardware. Prediction of coexisting RF emitter
frequencies informs the design of spectrally notched FM noise
waveforms on transmit. Waveform notches are optimized on a
pulse-to-pulse basis while accounting for the zero-order hold
model inherent to lower fidelity digital-to-analog converters
to ensure desired reconstruction. The radar system employs
cognition to learn and predict RF emitter activity via a stochastic
model-based approach. Initially, passive spectrum observations
are used to estimate a stochastic model which is then exploited
to predict the likelihood of future RF activity. The benefits and
limitations of this sense-predict-and-notch (SPAN) approach are
evaluated using a set of synthetic interference scenarios in real-
time.

Index Terms—cognitive radar, spectrum sharing, spectrum
prediction, noise radar, spectral notching

I. INTRODUCTION

Recent developments in wireless technologies have rapidly
increased demand for the radio frequency (RF) spectrum as a
resource [1]. As more devices become integrated with wireless
capabilities, improvements in existing technology (such as 5G
networks) require higher data throughput and therefore band-
width. In response, new Federal Communications Commission
(FCC) policies allow commercial communication networks
to share spectrum with incumbent radar systems at the 3.5
GHz and 5 GHz bands [2], [3]. However, coexisting radar
and communication emitters could mutually interfere with
one another, thus causing degradation of target detection for
the radar [4], [5]. Spectrum sharing is executed via dynamic
spectrum access (DSA), which exploits available spectrum
during periods of inactivity [6]. Efficient and robust DSA
implementations apply cognition to the coexistence problem,
where cognition is characterized by a perception-action cycle
(PAC) that iteratively senses, learns, and adapts to a chang-
ing environment [7]. This work considers a cognitive radar
employing the PAC in a dynamic RF environment to avoid
interference.

Cognitive radar for DSA requires a pair of spectrum pro-
cessing and waveform decision techniques to operate within
a congested environment. Spectrum processing refers to tech-

niques for accurately sensing and monitoring RF interference
(RFI). Here we utilize a stochastic model-based approach to
sense and predict the likelihood of future interference. The
model represents the RF spectrum as a set of alternating
renewal processes that switch between two states: busy and
idle. RFI is initially detected and monitored over time to
measure model parameters. This predictive model identifies
unused frequency subbands with potential for utilization by the
radar. Given these predicted subbands, the waveform decision
technique determines the optimal transmit waveform based on
a signal-to-interference plus noise ratio (SINR) and bandwidth
trade-off.

Previous work has demonstrated that a reactive avoid-
ance technique that transmits a linear frequency modulated
(LFM) chirp at the widest contiguous cluster of available RF
bandwidth can effectively reduce mutual interference between
the cognitive radar and other RF emitters in real-time us-
ing commercial-of-the-shelf (COTS) hardware [8], [5], [9].
The RFI avoidance framework using LFM waveforms has
also been combined with stochastic model-based prediction
to operate with enhanced real-time performance [10], [11].
Reactive spectrum processing poses an alternative to prediction
by identifying available bandwidth based only upon detected
changes in the environment. While reaction requires fewer
computational resources, prediction may mitigate erroneous
waveform decisions during RF state transitions and reduce
response latency.

The performance benefits of employing notched random
FM waveforms with a reactive spectrum processing frame-
work have likewise been recently demonstrated [12], [13].
Here, the cognitive radar utilizes notched frequency modu-
lated (FM) noise waveforms on transmit to mitigate mutual
interference. These waveforms use the maximum bandwidth of
interest while placing spectral notches that coincide with RFI.
Specifically, pseudo-random optimized (PRO) FM waveforms
[14] are generated and sequentially notched using zero-order
reconstruction of waveforms (ZOROW) [15], which leverages
the efficient notching scheme of [16] while accounting for the
impact of lower fidelity hardware. As a result, the system can
achieve finer range resolution during radar processing.

This work employs stochastic model-based prediction in
conjunction with the notched random FM waveform trans-
mit framework in a real-time COTS hardware implemen-



tation. Spectrum prediction seeks to mitigate performance
degradation caused by additional latency associated with the
notching approach. Similarly, notching allows the system to
occupy greater bandwidth relative to the sense-predict-and-
avoid (SPAA) approach in [10]. The sense-predict-and-notch
(SPAN) cognitive radar strategy is evaluated using real-time
experiments with synthetic RFI scenarios.

II. SPECTRUM PREDICTION MODEL

To perform spectrum sharing, this cognitive radar initially
senses and monitors RF activity over multiple frequency
channels. These observations are used to estimate a stochastic
model describing the spectrum over time. Once the model
is learned, the system proceeds with the PAC by iteratively
sensing RFI, predicting available bandwidth, and accessing
the spectrum. This process requires continuous spectrum mea-
surements consisting of N -point frequency domain obser-
vations denoted by Y [n]. The spectrum is partitioned into
M channels to monitor RF activity in each individual sub-
band. Each channel’s start and end index is defined by
Ns = {Ns1 , Ns2 , ..., NsM } and Ne = {Ne1 , Ne2 , ..., NeM },
respectively. To sense the presence of RFI, the system applies
energy detection to each channel [17]. Each RF channel state is
represented as a set of M binary states S = {S1, S2, ..., SM}
for every spectrum measurement. Energy detection estimates
the energy in each channel by applying a detection threshold
λD to determine the respective states:

Si =

 Nei∑
n=Nsi

|Y [n]|2
 ON

≷
OFF

λD ∀i ∈ {1, 2, ...,M}. (1)

A channel in the ON state is busy and unavailable for radar
access, while an OFF state denotes an idle channel that is
available for access. The system retains memory of the set of
continuously detected channel states S over time. This time-
varying history of channel states allows the system to model
RF activity.

This work generalizes the arrival and departure of RFI
as a set of alternating renewal processes. Each channel al-
ternates between busy and idle with independently random
time intervals between state transitions. A pair of sets B =
{Bt1, Bt2, ...BtM} and I = {It1, It2, ...ItM} contain indepen-
dent random variables that describe the busy and idle time
distributions in each channel. With a parametric modeling ap-
proach, each channel’s distribution pair Bti ∼ N(µBi, σ

2
Bi) and

Iti ∼ N(µIi, σ
2
Ii) is assumed to be normally distributed. The

system uses the collection of RF channel states S over time
to count the duration of each respective busy and idle interval.
Sample mean estimates µBi, µIi and variance estimates σ2

Bi, σ
2
Ii

are obtained for each ith channel using these measured busy
and idle intervals (Fig. 1). After estimating these parameters,
the system generates a pair of Gaussian cumulative distribution

RF Channel States
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±σI

µI

±σI

= idle= busy

Fig. 1. Visual example of two switching RF emitters after detection over
time. µB and σB describe busy interval statistics µI and σI describe idle
statistics. Each contiguous busy and idle block describes individual Bt and It
observations, respectively.

functions (CDFs) to describe the probability of the ith channel
remaining in a busy or idle state for tBi or tIi:

pBi(tBi) =
1

σBi
√
2π

∫ tBi

−∞
exp

(
− t− µBi

2σ2
Bi

)
dt

pIi(tIi) =
1

σIi
√
2π

∫ tIi

−∞
exp

(
− t− µIi

2σ2
Ii

)
dt.

(2)

Initially, the system estimates the mean and variance param-
eters for (2) during a passive observation period where no radar
transmission occurs. After this phase, the radar periodically
transmits pulses with notches according to the stochastic
model. From here, the system continues to monitor the RF
states S and track the duration of each channel’s respective
state. Prior to transmitting a radar pulse, the likelihood of each
ith channel’s availability pai is computed as:

pai =

{
pIi(tIi + t0), Si = 0

1− pBi(tBi + t0), Si = 1,
(3)

where tBi and tIi describe the current time spent in a busy
or idle state for each channel respectively, while t0 describes
the time until the next radar pulse. The minimum realizable t0
is limited by the adaptation latency of the notched waveform
generation method. The system then uses the set of availability
likelihoods pai to predict a set of future channel states A =
{A1, A2, ...AM}:

Ai =

{
pai ≥ θI, Si = 0

pai ≥ θB, Si = 1.
(4)

Using the current observed states S, each ith likelihood is
thresholded by θI and θB to infer the future states. These
thresholds are determined via a grid search to optimize the
trade-off betweens collisions and missed opportunites [10].
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Fig. 2. Stochastic model estimation process followed by radar operation.
The initial RF monitoring stage estimates the model (first two blocks), then
the system begins radar operation with prediction and waveform adaptation
between each pulse.

The radar places notches at channels predicted to be in a
busy state or Ai = 0. The system periodically predicts A
and begins waveform generation at t0 before the end of each
pulse repetition interval (PRI). Figure 2 describes this process
of estimating the prediction model and subsequently applying
prediction to radar operation.

III. NOTCHED WAVEFORM DESIGN

The sense-react-and-notch (SRAN) strategy outlined in [12]
leverages recent work on spectrally-shaped, random FM wave-
forms to place in-band spectral notches on a per-waveform
basis in response to dynamic RFI. To implement the SRAN
framework on an SDR platform, two random FM wave-
form generation methods are applied sequentially. First, the
PRO-FM approach of [14], [12] is employed to produce a
transmitter-suitable waveform that possesses a desirable over-
all power spectrum shape containing spectral notches based on
an RFI identification algorithm [9]. The PRO-FM approach
produces waveforms with constant modulus and adheres to
a desired power spectrum template |G(f)|2. While in general
the template is arbitrary, this works selects a Gaussian spectral
shape for |G(f)|2 with notches defined by:

|G(f)| =


hL(f), f ∈ ΩL

0, f ∈ Ω

hU(f), f ∈ ΩH.

(5)

The notch location is defined by ΩL < Ω < ΩU, where hL(f)
and hU(f) define lower and upper notch tapers. The constant
modulus and spectral shape requirements are enforced via an
alternating projection optimization technique.

To rapidly deepen the waveform spectral notches for real-
time implementation on COTS hardware, the ZOROW method
[15] is also utilized (Fig. 3). ZOROW accounts for the lower
fidelity waveform reconstruction implied when using modest
digital-to-analog converters (DACs) available in SDRs. This
approach uses a signal representation that conforms to the
zero-order hold model employed by the SDR DAC, in which
the DAC input sample is held constant for Ts seconds. Taking
these synthesis imperfections into consideration is important
when precise notches must be reconstructed on transmit.

The waveform shaping algorithms are implemented on the
field-programmable gate array (FPGA) of the SDR such that
resources are efficiently utilized, desired operational timing
constraints are met, and necessary notch depths imposed in

Fig. 3. Example of a sense-react-and-notch (SRAN) radar waveform gener-
ated with notches to coincide with sensed RFI.

the waveform are maximized. This waveform implementation
is explained in detail in [13]. All processing was simplified
to the application of fast Fourier Transforms (FFTs), inverse
FFTs, multiplies, and additions in a burst streaming format. To
meet the minimum timing constraints, 2 PRO-FM iterations
and 6 ZOROW iterations were deemed sufficient to impose a
desired spectral shape with a ∼25 dB notch depth relative to
peak power after accounting for worst-case spectral variation.
The SDR with this added waveform diversity supports pulse
repetition frequencies up to 2.2 kHz, a minimum adaptation
interval of 942 µs, and may incorporate multiple spectral
notches per waveform.

IV. IMPLEMENTATION, EVALUATION, AND RESULTS

A. Real-time Implementation

The SPAN cognitive radar is implemented on a USRP X310
SDR interfaced with a host PC controller. The system receives
in-phase and quadrature samples at 100 MSamples/s before
performing digital down-conversion to baseband. An FPGA
performs a 4096-point FFT on each sequential block of data,
which is then streamed to the host to allow the system to con-
tinuously monitor a 100-MHz portion of the RF spectrum. The
host performs energy detection [9] and predictive processing
by partitioning the spectrum into M = 20 separate 5 MHz
wide frequency subbands. After using the model from section
II to predict spectral notch locations, the respective parameters
are sent to the FPGA to perform waveform optimization and
generation. This FPGA implementation of notched waveform
generation minimizes the computational latency of a complex
process. Given a single spectrum sensing FFT duration of
T0 = 40.96 µs, the time to predict ahead t0 is discretized
by N0 timesteps where t0 = N0T0 = 491.5 µs. Due
to waveform adaptation delay, the system operates with a
minimum N0 = 12 timesteps and a radar PRI determined
by (N0 − 1)T0 = 450.6 µs. Consequently, the radar predicts
and adapts the transmit waveform every PRI.

B. System Evaluation

To test and evaluate this cognitive radar strategy, a vector
signal transceiver (VST) acts as an RF environment emulator
that transmits RFI. The SDR’s radar transmission and VST-
generated RFI feed into an RF combiner, with the resulting
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Fig. 4. Block diagram of the real-time hardware setup during testing. The
receive and transmit paths as well as the processing within each hardware
component is described.

signal then captured by the cognitive radar receiver (Fig. 4).
This configuration allows the system to perform spectrum shar-
ing as well as radar data capture. For these tests, the cognitive
radar estimates model distributions for 410 milliseconds of
RF data and performs radar operation in the subsequent 410
milliseconds.

The system is evaluated using three RFI scenarios: 1) swept
tone, 2) random single tone, and 3) random two-tone. For
swept tone signals, the VST continuously sweeps a sinusoid
over all 20 channels with a fixed dwell time. This case
demonstrates the radar’s ability to predict and coexist with
deterministic RFI. These performance results are discussed in
Section IV-C.

The random single tone case involves a single sinusoid
at -17.5 MHz baseband with a fixed on-time and randomly
varying off-times, or idle intervals. Baseband refers to the
waveform frequencies after the SDR performs digital down-
conversion with some arbitrary carrier frequency. The idle
intervals are randomly generated according to a selected
mean µI and standard deviation σI. This scenario evaluates
performance at increasing levels of variation characterized by
the idle coefficient of variation (CoV) cv = σI/µI. For each

Fig. 5. Spectrogram from cognitive radar operation using a SPAA strategy.
This approach leaves portions of the RF spectrum unoccupied.

Fig. 6. Spectrogram of cognitive radar operation using a SPAN strategy on
swept tone interference (819.2 µs dwell time).

fixed on-time µB, the mean idle interval is set to be equal as
µI = µB. These performance results are discussed in Section
IV-D.

Finally, for the two-tone case, the VST transmits two
random switching sinusoids at -27.5 MHz and 22.5 MHz
baseband. Similar to the single tone case, the on-time µB
is fixed, with the randomly generated idle intervals defined
by µI = µB and some selected CoV cv = σI/µI. Each
tone is given independent µI and σI parameters with several
tested combinations. These performance results are discussed
in Section IV-E.

We consider performance metrics of collision rate, missed
opportunity rate, and bandwidth improvement. A collision
involves a radar waveform colliding or interfering with co-
existing emitters while a missed opportunity refers to an
unused open frequency channel during radar operation [8]. For
this system, collisions are equivalent to a predicted missed
detection or type II error and missed opportunities refer to
predicted type I errors that result in falsely placed notches.
The collision and missed opportunity rates validate the per-
formance of prediction for spectrum processing.

Bandwidth improvement specifies the additional bandwidth
gained by transmitting a notched waveform as opposed to
notchless LFM chirp-based avoidance that selects the widest
available contiguous bandwidth. For example, Fig. 5 shows
unused subbands where notching using the SPAN approach
should provide results with bandwidth improvement. The
subsequent sections show results for the aforementioned test
RFI scenarios.

C. Swept Tone RFI Results

For the swept tone RFI pattern, we evaluate dwell times
of 819.2 µs, 2.05 ms, and 4.1 ms. The dwell time refers to
the time spent by the RFI in each 5 MHz subband. Figure
6 demonstrates the system accurately avoiding a swept tone
pattern. During RFI channel hops, the prediction approach
may widen the notch to cover adjacent channels and minimize
collisions. This redundant notching results in a higher missed
opportunity rate compared to collisions shown in Fig. 7.
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Fig. 7. Collision and missed opportunity rates for a swept tone RFI pattern
with varying dwell times.

TABLE I
SWEPT TONE BANDWIDTH IMPROVEMENT OVER NOTCHLESS AVOIDANCE.

Dwell Time 819.2 µs 2.05 ms 4.1 ms

Bandwidth
Improvement 20.3 MHz 19.2 MHz 17.2 MHz

The missed opportunity rate increases for longer dwell times
since the system gradually widens notches in anticipation of
transitions. Table I shows a significant bandwidth improvement
as a result of notching compared to traditional avoidance.

D. Random Single Tone RFI Results

The random single tone RFI scenario evaluates performance
with respect to the CoV cv of the idle time interval (summa-
rized in Fig. 9). These tests evaluated 3 sets with on-times µB
of 819.2 µs, 2.05 ms, and 4.1 ms for a tone at -17.5 MHz. For
each µB, the idle cv value ranges from 0 to 1. Maintaining a
fixed on-time (σB=0), emulates a communication system with
a fixed size data burst and random time between requests for
data transmission. Similar to results in [10], the missed oppor-
tunity rate increases with idle interval variation (Fig. 9(b)). The
use of prediction threshold optimization results in the number

Fig. 8. Spectrogram of cognitive radar operation using a SPAN strategy on
two-tone RFI.
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Fig. 9. Performance for the random single tone RFI in terms of (a) collision
rate, (b) missed opportunity rate, (c) bandwith gained, and (d) number of
waveform adaptations between pulses.

of observed waveform adaptations decreasing to almost 0 (Fig.
9(d)) with a high cv. The threshold optimization results in
a reduced adaptation rate to preserve performance in highly
variable scenarios. As a result, threshold selection causes the
collisions (Fig. 9(a)) to decrease as variability increases. When
no waveform adaptation occurs, the system places a constant
notch at the RFI location. Before the system stops adapting the
transmit waveform, the collision rate shows a slight increase
with cv (Fig. 9(a)). Figure 9(c) shows a significant bandwidth
improvement over the notchless avoidance implementation.

E. Random Two-tone RFI Results

Finally, the two-tone RFI scenarios evaluate performance
for two sinusoids with 5 different combinations of idle time

TABLE II
TWO-TONE CASE DEFINITION AND BANDWIDTH IMPROVEMENT OVER

NOTCHLESS AVOIDANCE.

Case 1 Case 2 Case 3 Case 4 Case 5
-27.5 MHz 0 0 0 0.225 0.45
CoV cv

22.5 MHz 0 0.32 0.45 0.45 0.225
CoV cv

Bandwidth 22.8 23.2 23.4 23.8 24.0
Improved (MHz)
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Fig. 10. Collision and missed opportunity rates for two-tone RFI with varying
statistics in each case. Case statistics are shown in table II

statistics (Table II). Similar to the single tone tests, the on-
time is deterministic and equal to the mean idle interval such
that µB = µI and σB = 0. Figure 8 shows an example of
this switching two-tone RFI scenario. Similar to the single
tone results, performance degrades for cases with higher cv
values (Fig. 10). Per Table II, case 1 is deterministic in that
cv = 0 for both tones. This case shows significantly lower
missed opportunity rates than the other random cases where
cv > 0. Case 4 has the highest error rates where cv is largest
for the shorter duration signal (µB = 2.05 ms). Variability for
shorter duration RFI has a larger impact on cognitive radar
performance than slower changing RFI. The collision rate
shows slight degradation for cases with a larger cv. Notching
demonstrates consistent bandwidth improvement for the two-
tone scenarios (Table II).

V. CONCLUSIONS

The viability and benefits of a sense-predict-and-notch
(SPAN) cognitive radar strategy has been demonstrated with
real-time hardware experiments. Compared to the sense-
predict-and-avoid (SPAA) notchless framework, this imple-
mentation occupies higher bandwidth which results in finer
range resolution during spectrum sharing. Despite additional
processing latency for notching compared to LFM chirp
avoidance, the system maintains prediction performance for
different levels of time variation. Prediction error rates for
predictive notching are comparable to the notchless avoidance
results [10] despite operating with a longer PRI and double the
adaptation latency. This framework allows for more efficient
bandwidth utilization and mitigation of errors caused by
RF state transitions. Future work will investigate employing
metacognition to select a spectrum processing and waveform
decision pair for spectrum sharing [18]. Some RF environ-
ments may require a system to adapt between prediction and
reaction, or notching and avoidance. Additionally, performance
may improve by reducing processing latency for predicting
RFI and generating notched waveforms.
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