
Development & Experimental Assessment of Robust 
Direction Finding and Self-Calibration 

Christian C. Jones1, Zeus E. Gannon1, Dan DePardo1, Jonathan W. Owen1, Shannon D. Blunt1, Christopher T. Allen1, Benjamin H. Kirk2  
1Radar Systems Lab (RSL), University of Kansas (KU), Lawrence, KS 

2U.S. Army Research Laboratory (ARL), Adelphi, MD

Abstract—The reiterative super-resolution (RISR) algorithm was 
developed to perform adaptive direction finding while accounting 
for model errors from imperfect calibration. Here this approach 
is extended to incorporate additional model error attributes and a 
self-calibration formulation is likewise developed that can exploit 
illuminators of opportunity. Efficacy of the overall method is 
experimentally demonstrated using open-air measurements from 
an 8-element uniform linear array (ULA), an ad hoc 44 planar 
array, and a 4-element ULA streamed by an RF-SoC.  
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I. INTRODUCTION 

Direction finding (DF) is an application of array processing 
that involves determining the relative direction of arrival of 
signals impinging on an antenna array. With increasing 
congestion of the radio frequency (RF) spectrum [1], subsequent 
growing demands on cognitive operation [2], and the 
expectation of increasing dependence on space-division 
multiple access (SDMA) [3], there is need to perform DF 
efficiently and accurately in a manner that is robust to the 
physical environment and practical system fidelity limitations. 

Classical adaptive DF methods rely on collection of time 
snapshots of the RF environment to construct a sample 
covariance matrix (SCM), then employ the SCM inverse or 
subspaces of the SCM. The minimum variance distortionless 
response (MVDR) [4] is an example of the former and multiple 
signal classification (MUSIC) [5] is an example of the latter, 
with numerous variations thereof and other related methods [6]. 

Where SCM approaches impose a stationarity requirement 
and also necessitate methods such as spatial smoothing to 
address spatio-temporal coupling from multipath [7], we instead 
leverage a structured covariance matrix. For spatial processing 
this form is denoted as RISR [8,9], a repurposing of reiterative 
minimum mean-square error (RMMSE) estimation originally 
developed for adaptive pulse compression in radar [10], though 
numerous variants and applications have since been realized and 
experimentally validated (e.g. [11-14]). 

A key attribute of RISR as developed in [9] is the 
incorporation of a tolerance term for model mismatch that takes 
the form of multiplicative error, thereby seeking to account for 
the fact that perfect calibration is not possible in practice. Here 
this perspective is expanded to address mutual coupling and the 
higher sensitivity that arises from phase errors, ultimately 
leading to a self-calibration approach inspired by [15] that 
realizes a calibrated array manifold by bootstrapping from an 
initial idealized manifold and observed signals of opportunity. 

Doing so also involves leveraging a “partial constraint” form of 
RISR [16] that facilitates additional robustness in practice.  

Here it is experimentally demonstrated that DF can be 
performed with a single snapshot, though noncoherent 
combining of a few snapshots provides further enhancement up 
to a point. Consequently, exquisite time granularity can be 
achieved. Results are shown for an 8-channel uniform linear 
array (ULA) and a 44 quasi-uniform planar array, both relying 
on high-speed oscilloscopes for data capture, in addition to a      
4-channel ULA using an RF system-on-a-chip (RF-SoC) for 
streaming data capture. Moreover, the practical spatial isolation 
of signals demonstrated here enables further enhanced time-
domain processing that is explored in the companion paper [17]. 

II. ROBUST DIRECTION FINDING 

The idealized single-snapshot linear model for an arbitrary 
array manifold with N elements can be represented as  

( ) ( ) ( ) y S x v   ,                           (1) 

where   denotes the discrete time index, S is an NM matrix 
of spatial steering vectors (with M>>N), the M1 vector ( )x   
contains instantaneous complex amplitudes of incident signals 
corresponding to the steering vectors in S, and ( )v   is an N1 
vector of additive noise across the array. The actual number of 
signals present K is generally limited to be less than M, though 
recent efforts have shown how the co-array can be exploited to 
combat this limitation (e.g. [18,19]). Rank estimation is also 
commonly employed to supplement the estimation of ( )x  [20], 
though is unnecessary for RISR and may hinder self-calibration. 

The idealized model in (1) neglects physical reality in which 
imperfect calibration in the form inexact element positions and 
beampatterns, mutual coupling, and RF channel gain/phase/ 
timing errors can significantly degrade performance. We can 
compensate this model (to some degree) by extending the model 
mismatch perspective in [9], so that (1) becomes 
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with 

z 1( ) ( ) [ ( )]N v z 1 S x                          (3) 

and 

( )S C S Q                                  (4) 

incorporates uncertainties and mutual coupling. Specifically, the 
nth element of N1 vector z in (2) and (3) is modeled as [9] 

φ,
a,[1 ]e j n

n nz   ,                              (6) 
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where a,n  and φ,n  are real-valued independent random 
variables accounting for general amplitude and phase errors, 
respectively. The (n,m) term in NM matrix Q is modeled as  

, nexp{ }si ( )2 n mn mq uj                           (7) 

to also include element position uncertainty (for a ULA), with 
un and n likewise real-valued independent random variables. 
Finally,  

C T F                                         (8) 

accounts for mutual coupling, where T is a complex and 
symmetric (not Hermitian) Toeplitz matrix and F is a diagonal 
matrix of mutual coupling gains [15,21,22]. In practice (8) is 
not perfectly known and can vary with spatial angle, with errors 
also inducing deviation from the assumed Teoplitzdiagonal 
matrix structure. Consequently, we shall refine an estimate of C 
iteratively in conjunction with RISR DF operation, thereby 
reducing model error to an achievable tolerance. 

The optimized NM bank of RMMSE filters ( )W  can be 
obtained by minimizing 

2{ || ( ) ( ) ( ) || }HJ E x W y                         (9) 

for E{} denoting expectation. Differentiating (9) with respect 
to ( ) ,W  equating to zeros and solving, then incorporating the 
compensated model from (2) and associated statistical properties 
yields the mth compensated DF filter 

  
, S-D S-O v

1
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  w G P R R R Cs    .  (10) 

Here vR  is the noise covariance, C is the current estimate of 
(8), and ms  is the mth column of steering vector matrix S. We 
have decomposed the structured covariance matrix S ( )R 

S-D S-OD( ) ( )R R   into a diagonal component  
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and an off-diagonal component 

    S-OD ( ) ( ) H H
N N N N

H
  R S G P GC 1CS I   ,   (12) 

where  
( ) { ( ) ( )}HEP x x                             (13) 

is the spatial power density (diagonal by enforcing 
independence), with , ( )m mP   in (10) the mth diagonal term, 2

z  
is the general gain/phase uncertainty variance of (6), and G is a 
diagonal position-uncertainty weighting matrix (for ULAs) 
resulting from Q in which the (m,m) term is 

 2 2
, sin

1
ex 2 )

2
(pm m m u     

 
G               (14) 

for 2
u  the variance in element position.  

In practice, ( )P  from (13) is not known a priori, but can be 
estimated for the ith iteration via 

1 1
1ˆ ˆ ˆ( ) ( ) ( )

2 1
M M

L
H

i i i
LL

 
 


 

      
P x x I


        (15) 

where 
)ˆ (( () )H

ii x W y                              (16) 

is the ith complex amplitude estimate across the M spatial 
directions for the th snapshot, which is obtained by applying 
the ith filter bank 1, 2, ,( ) [ ( ) ( ) ( ) ]i i i M iW w w w     . This 

process is initialized by setting 0 ( ) ,i W S with the RISR 
portion then applying (15), (10), and (16) for i = 1, 2, …, Iiter 
iterations. Setting L = 0 for (15) enables estimation on a single-
snapshot basis, though increasing L to 10 or so provides 
considerable improvement due to (noncoherent) averaging. 

It was shown in [16] that a gain-constrained form of RISR 
can be readily obtained, which avoids possible suppression of 
low SNR signals that can occur in the unconstrained version. A 
related outcome of the gain-constrained form is preservation of 
the noise floor, which is also useful for meaningful detection 
relative to a background response. The one drawback to this 
form is less super-resolution enhancement. 

In the interest of obtaining a “best of breed”, [16] combined 
these two versions into a “partially constrained” (PC) form, 
which in this compensated model context realizes 
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where 

 S-D S
1
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  D R R R                  (18) 

is the inverted matrix from (10) and   is the partial constraint 
term that can be tuned to fully gain-constrained ( 1)   or fully 
unconstrained ( 0).   Values between these extremes provide 
a useful trade-space to prevent small signal suppression, 
enhance robustness, and improve spatial separability. The 
combination of this partial constraint form and the various 
uncertainty/tolerance terms also enables greater flexibility to 
establish practical operating regimes.  

III. RISR SELF-CALIBRATION 

Regardless of the DF approach employed, inaccurate array 
calibration leads to poor performance. However, the iterative 
implementation of RISR, combined with the compensated 
modeling discussed above, facilitates the means with which to 
bootstrap improved calibration using signals of opportunity. 

Inspired by [15], consider the least squares cost function 

  
2

cal ˆ( ) ( )J  y S G xC                       (19) 

which assesses the error between the measured snapshot ( )y   
and the expected measurement based on the given spatial 
estimate ˆ ( )x  , the C estimate, S, and G. While (19) does not 
have a closed form solution, descent methods (here quasi-
Newton) can be used to update C  so that model error is 
minimized. Of course, a poor initial estimate of ˆ ( )x   in (19) can 
propagate bias and errors in C . To combat this effect, an 
iterative self-calibration routine is proposed that leverages RISR 
model uncertainty and the partial constraint. 

Specifically, self-calibration is enabled by first performing 
RISR using  C I  (or with calibration measurements if known), 
  set to be small (< 0.5), and large model uncertainty 2

u( 1).   
This parameter combination emphasizes dominant signal 
components and suppresses lower power signals. The estimate 
C  is subsequently refined with the new ˆ ( )x   estimate, 2

u  is 
reduced, and RISR is repeated. This loop is performed until 
convergence or after sufficient reduction in 2

u  is acheived. A 
depiction of this approach is shown in Fig. 1. While not required, 



the use of multiple snapshots and known calibration sources can 
improve solution quality. Alternatively, this method could be 
applied “on the fly” where the calibration is updated on an as-
needed basis using observed signals. 

 
Fig. 1. Block diagram of RISR self-calibration 

IV. OPEN-AIR EXPERIMENTAL VALIDATION 

To demonstrate this practical instantiation of adaptive DF, 
three different experimental arrangements were employed. Two 
of these use high-fidelity test equipment, in linear and planar 
array configurations, while the third uses an RF-SoC to likewise 
show progress toward real-time implementation. 

A. N = 8 element ULA captured by 8-channel oscilloscope 

Consider the arrangement in Fig. 2, where an 8-channel 
Tektronix MSO68B oscilloscope was used for receive capture 
of concurrent signals produced by three transmitters. Both 
transmitters (Tx) and receivers (Rx) used log-periodic antennas 
with 2-11 GHz bandwidth. This test was conducted with 𝜆/2 
spacing corresponding to 3.95 GHz (selected because it is the 
given spacing between receive ports in Fig. 2), realizing a 22.5 
Rayleigh resolution. No array mount or prior calibration was 
performed, so self-calibration was critical. The geometry 
resulted in actual receive directions of 33.7, 18.4, and 0 
for Tx 1 through Tx 3, respectively. Each transmitter was driven 
by an arbitrary waveform generator (AWG) producing unique 
signals in the same band. Due to different amplification, Tx 2 
was produced at roughly 10 dB higher power than Tx 1 or 3, 
though all three emitted on the order of milliwatts. Ambient 
background noise was collected when the three transmitters 
were not emitting to estimate the noise covariance. 

 
Fig. 2. Open-air experimental setup for DF with 8-channel ULA 

The emitted signals comprise an OFDM signal with 500 
subcarriers having 100% duty cycle (Tx 1); a linear FM (LFM) 
radar waveform with 88% duty cycle and 12.5 μs pulse duration 
(Tx2); and a random FM (RFM) waveform having a Gaussian 
power spectrum, 66% duty-cycle, and 17.5 μs pulse duration. 

These very high duty cycles are clearly not typical, but were 
used to emulate more stressing scenarios with multiple signals 
while still including the transient on/off behavior. The three 
signals share the same 10 MHz bandwidth centered at 3.82 
GHz, thus realizing a congested and time-varying scenario. 

Direction finding was first performed without calibration to 
establish a performance baseline. Figs. 3-6 depict DF estimates 
over time for a nonadaptive beamformer (i.e. ( )HS y  ) that is 
Taylor windowed, MVDR using 15 snapshots, and uncalibrated 
RISR with both 1 and 15 snapshots, respectively. Here RISR 
was implemented with M=160, Iiter=30 iterations, 0.45,   

2 3
z 10 ,   and 2 3

u 5 10 .    Clearly, the lack of calibration 
has produced multiple false signals and blurred responses 
across all methods, with the enhanced dynamic range and 
super-resolution capability of RISR revealing more of this 
detail for both the single and 15 snapshot cases. 

 
Fig. 3. Nonadaptive beamformer for N=8 ULA (uncalibrated) 

 
Fig. 4. MVDR beamformer for N=8 ULA, 15 snapshots (uncalibrated) 

 
Fig. 5. RISR beamformer for N=8 ULA, 1 snapshot (uncalibrated) 



 
Fig. 6. RISR beamformer for N=8 ULA, 15 snapshots (uncalibrated) 

An “on-the-fly” calibration was performed using the approach 
described in Sect. III with no prior knowledge of emitters or their 
received directions. At 5 μs intervals the calibration model was 
updated based on the previous RISR DF estimates until 
convergence was achieved. Model uncertainty was initialized to 

2
z 1   and reduced every 5 μs until reaching 2 3

z 10 .   With 
this large uncertainty, RISR ignores low-power signals because 
they appear to be multiplicative error artifacts induced by the 
combination of high-power signals and model errors. The 
subsequent reduction of uncertainty as calibration estimation is 
refined permits the DF capture of these smaller signals. 

For both single and 15 snapshot RISR implementations, the 
calibration matrix converges after 75 μs. Figs. 7-10 again show 
DF estimates over time for nonadaptive, MVDR, and the two 
RISR implementations, albeit now with the self-calibration 
routine engaged from the beginning. The most significant 
improvement is observed in all four figures after the first 5 μs 
interval, with the 15-snapshot RISR case realizing a very precise 
determination of signal spatial angles. Note that the upper 
response in each plot is the lower-power OFDM signal that also 
possesses significant amplitude modulation. While quite visible 
after 20 μs of self-calibration by RISR in Fig. 10, it is rather 
blurry in the single-snapshot RISR (Fig. 9) and MVDR (Fig. 8) 
results, and completely lost in the nonadaptive case (Fig. 7). Fig. 
9 is thereby notable in the degree of accuracy that can actually 
be obtained when operating on only a single snapshot at a time, 
though there is clearly a benefit to using more (i.e. Fig. 10). 

 Fig. 11 provides a root mean-square (RMS) DF response 
after calibration has completed to assess the accuracy of each 
angle estimate. We see that the three adaptive approaches 
produce accurate angle estimates for the LFM and RFM signals, 
though each has a ~2 error for the OFDM signal, which could 
well be due to inaccuracies in the test setup. In terms of 
detectability, 15-snapshot RISR offers 2-3 dB improvement 
over MVDR for the lower power signals, while the 1-snapshot 
version incurs degradation relative to MVDR. Further utility of 
these results in terms of signal characterization after spatial 
isolation is examined in the companion paper [17]. 

 
 Fig. 7. Nonadaptive beamformer for N=8 ULA (calibrating) 

 
Fig. 8. MVDR beamformer for N=8 ULA, 15 snapshots (calibrating) 

 
Fig. 9. RISR beamformer for N=8 ULA, 1 snapshot (calibrating) 

 
Fig. 10. RISR beamformer for N=8 ULA, 15 snapshots (calibrating) 



 
Fig. 11. RMS DF estimates after calibration N=8 ULA 

B. N = 4 element ULA captured by RF-SoC 

To provide further assessment of RISR DF and self-
calibration, Dr. Ben Kirk at the U.S. Army Research Lab 
performed an independent collection using 4 channels of an RF-
SoC for data capture, which was calibrated using RISR 
beforehand, with /2 spacing corresponding to 3.75 GHz. Here 
an LTE uplink emitter at 3.71 GHz was placed at +15.9 and 
range of 21.8 feet, and a CW tone at 3.708 GHz was generated 
from an emitter at 12.3 and range of 20.0 feet. 

Parameterizing RISR with M=160, Iiter=20 iterations, 
0.45,   2 2

z 10 ,   and 2 2
u 5 10 ,   Fig. 12 depicts the 

DF estimates over time after calibration and using 9 snapshots. 
Once again, the amplitude modulation of OFDM produces a 
more variable response in the lower trace (positive angle), while 
the CW tone is rather constant, albeit with a small degree of 
estimation variation. That said, both signals are quite clearly 
isolated spatially, thus enabling further signal characterization 
(e.g. via [17]). 

 
Fig. 12. RISR beamformer for N=4 RF-SoC ULA, 9 snapshots (after 
calibration) 

C. 44 planar array via two 8-channel oscilloscopes 

Finally, in the interest of demonstrating the extension of this 
methodology to a two-dimensional “planar” arrangement, the 
rather ad hoc array depicted in Fig. 13 was “constructed”. The 
reader will note that the elements are not equally spaced, nor do 
the tilt angles of the elements align very well. Each element is 
fed directly into one of the receive ports of the two 

synchronized 8-channel oscilloscopes that are likewise shown. 
Our intent for this haphazard arrangement was to demonstrate 
the capability of RISR self-calibration to overcome limitations 
in fidelity caused by model error, since deviation from the ideal 
array manifold would most certainly be expected here. Indeed, 
as an homage we refer to this configuration as a “Van Trees 
array”, both because his well-known book is used as crude 
element spacing and because the pages within advocate the 
benefits of optimized receive processing, as demonstrated here. 

 
Fig. 13. Benchtop experimental setup for DF with 44 “Van Trees array” 

The nominal separation of elements in the horizontal and 
vertical directions corresponds to 𝜆/2 spacing at ~2.75 GHz. An 
indoor open-air test was conducted using three emitters at 
different azimuths and elevations. In this case a single signal at 
boresight (with prior angle knowledge) and distance of 10m 
was first used to perform RISR calibration. The two additional 
emitters were then switched on, both at about 10 elevation 
and about 6 in azimuth, significantly less than the nominal 
beamwidth in either dimension. 

The boresight signal in this case was a 3.82 GHz CW tone 
while the other two emitters used the same 3.82 GHz RFM 
signal and LFM waveform as in Sect. IV.A. Here we examine 
a 25 μs collect, process with 33 snapshots (L=16), and 
M=10,000 steering vectors uniformly spaced in azimuth and 
elevation (i.e. 100100). The RISR DF implementation also 
used Iiter=30 iterations, 0.45,  2 2

z 10 ,   and 2
u 0.5   

since array manifold uncertainty is rather higher than before. 
An RMS azimuth-elevation response is plotted for the 

nonadaptive (Taylor windowed) beamformer, MVDR, and 
RISR in Figs. 14-16. Both the nonadaptive and MVDR 
responses smear the lower elevation signals together, with only 
the former possibly identifying the boresight signal (with some 
bias). The MVDR response has particularly poor dynamic 
range. The RISR response, in contrast, clearly identifies the 3 
signals, albeit with a similar bias to the boresight signal, which 
may signify the limit to which calibration could be achieved. 
The presence of what looks to be a smaller fourth and fifth 
signal could also be a calibration artifact, or possibly multipath 
since the indoor environment had many possible reflection 
surfaces. The key take away is that, despite the rather ad hoc 
array in Fig. 13, a reasonable DF response could still be 
obtained by this calibrating form of RISR, suggesting a useful 
degree of practical robustness. 



 
Fig. 14. Nonadaptive beamformer for 44 array (calibrated) 

 

 
Fig. 15. MVDR beamformer for 44 array (calibrated) 

 
Fig. 15. RISR beamformer for 44 array (calibrated) 

V. CONCLUSIONS 

The reiterative super-resolution (RISR) algorithm has been 
shown via three distinct experimental arrangements to provide a 
robust direction-finding capability that achieves super-
resolution and enhances dynamic range. Moreover, a self-
calibration process is readily incorporated that can be performed 
“on the fly” using signals of opportunity or known signals. The 
resulting spatial isolation facilitates subsequent processing to 
realize improved signal characterization, which is demonstrated 
in the companion paper [17]. 
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