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Abstract—Time-frequency (TF) analysis is employed in numerous 

applications to characterize the attributes of signals. For cognitive 

radar it can provide valuable information regarding the particular 

signals/systems encountered to support automated decision-

making. Here an adaptive approach to spectrogram estimation is 

considered that relies on reiterative minimum mean-square error 

(RMMSE) estimation. Moreover, it is experimentally shown using 

open-air data that the combination of adaptive direction-finding 

(DF) and adaptive TF analysis provides enhanced signal 

characterization for congested spectral environments. 

Keywords—adaptive processing, spectrogram, signal estimation, 
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I. INTRODUCTION  

Today’s complicated radio frequency (RF) environment is 

increasingly congested and dynamic [1, 2], with the latter an 

emerging response to the former. The arise of cognitive systems 

necessitates real-time determination of spectral occupancy (e.g. 

via [3]), with rapid characterization of observed signals also 

important for automated decision-making. A key challenge with 

cognitive systems is their focus on a single optimization task to 

improve performance, often pertaining to a particular time, 

frequency, spatial, or waveform dimension. For example, time-

frequency dynamic spectrum access (DSA) cognitive radar 

approaches have been shown to be effective for coexistence with 

non-cooperative, ambient RF emitters [4]; however, DSA by 

itself cannot isolate spatial information (e.g. DF) and is limited 

to a particular application space. New methods are needed that 

exploit multidimensional aspects of spectral information and are 

practical to implement on realistic timescales (i.e. low latency). 

In the cognitive sensing context, TF analysis encompasses a 

broad class of tools with which the time-varying spectral 

behavior of signals can be evaluated [5, 6], including linear 

approaches such as the short-time Fourier transform (STFT) and 

nonlinear approaches like the Wigner-Ville distribution [7]. Of 

these, the STFT is a widely used benchmark that offers a multi-

resolution TF trade-space, with the resulting spectrogram 

providing a visualization of instantaneous frequency content that 

is commonly employed in a variety of applications spanning 

ecology, micro-Doppler, phonetics, musicology, neuroscience, 

astronomy, and more [4, 8, 9]. The spectrogram can also serve 

as preprocessing to aid machine learning [10]. 

Of course, the frequency resolution of the STFT is dictated 

by the temporal extent of the processing window, thereby often 

necessitating multi-resolution or wavelet analysis to achieve 

sufficient separability of TF components. Due to the inherent 

nonstationarity of signal structures – indeed, that is the very 

behavior being sought to understand – classical adaptive 

methods based on the formation of a sample covariance matrix 

of time snapshots (e.g. [11, 12]) are not always applicable. 

Alternatively, reiterative minimum mean-square error 

(RMMSE) estimation, originally developed for adaptive pulse 

compression [13], is here repurposed to obtain a structure-based 

adaptive spectrogram that refines the TF estimate. The parallels 

between frequency and spatial estimation enables direct use of 

the RMMSE DF formulation denoted as reiterative super-

resolution (RISR) [14] as well as its subsequent developments 

to enhance robustness [15, 16]. The key attributes of RISR that 

facilitate adaptive TF estimation are its ability to operate with 

extremely low sample support (even just a single snapshot), the 

incorporation of a tolerance term for model mismatch, and use 

of a tunable “partial constraint”, the combination of which 

provide robustness to time-varying signals.  

In the companion paper [17] these attributes were employed 

in conjunction with a self-calibration routine to experimentally 

demonstrate RISR in the context of DF for practical spatial 

isolation of co-channel signals occupying the same spectrum. 

Here, this process is reformulated for the TF application, and 

then experimentally demonstrated to enhance separability and 

visibility of TF components. Consequently, the sequential 

combination of these adaptive processes is shown to provide a 

practical way to achieve accurate TF analysis for increasingly 

congested spectral environments.  

II. SPECTROGRAM SIGNAL MODEL 

Consider the continuous-time receive capture 

( ) ( ) ( )y t s t v t= +                                 (1) 

where s(t) is some time-varying unknown signal and v(t) is 

additive noise. Because (1) is captured over some finite time 

interval, s(t) cannot be bandlimited, which means that aliasing 

in receive sampling is unavoidable (though possibly negligible). 

If we assume the use of some form of frequency-selective 

processing (e.g. [3]) to identify bands of interest and the absence 

(for now) of other spectrally overlapping signals, then this 

isolated signal-plus-noise perspective is meaningful. With that 

said, since the unknown signal s(t) in (1) is arbitrary, it could 

also represent the combination 

1

( ) ( )
K

k

k

s t s t
=

=                                   (2) 

where multiple unkown signals are present, which will 

increasingly be the case given growing spectral congestion. 

Consequently, TF analysis in the context of (2) produces an 

aggregate response, which would necessitate some other means 
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of discrimination to separate the components. The companion 

paper [17] demonstrated the use of adaptive spatial isolation to 

realize this separation. In the experimental results later in this 

paper, both aggregated and spatially isolated versions of 

measured open-air data are examined. 

Discretizing (1) at a rate that preserves noise-limited spectral 

content (i.e. passband and roll-off) yields the length-Q vector 

0 1 1[ ]T
Qy y y −=y ,                          (3) 

where the STFT could be applied to different segments of 

varying extent to realize a multi-resolution TF response. Here 

we denote N as some minimum reasonable number of time 

samples (based on expected signal nonstationarity, nominal 

resolution, or other factors). Then (3) is decomposed into length-

N overlapping segments denoted as 

1( ) [ ]N
Ty y y+ +=y ,                     (4) 

according to discrete time index .  For this time granularity 

and  , the STFT can be performed to obtain the length-M 

f )ˆ ( () H= As y ,                               (5) 

with AH the discrete Fourier transform, subscript ‘f ’ signifying 

the frequency domain, and the “hat” denoting an estimate. 

In practice, a taper (e.g. Taylor, Hamming, etc) may be 

applied to ( )y  prior to (5) to reduce sidelobes in trade for a 

wider spectral mainlobe, and A “over-sampled” (i.e. N  M with 

M >> N) to provide better visibility in frequency  . We shall 

use the latter approach for super-resolution. 

The straightforward STFT operation in (5) arises from 

modeling signals as a weighted superposition of sinusoids. A 

complete TF signal model can be expressed as 
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where ( )v  is N samples of additive noise, the N  1 vector
2 ( 1)( ) [1 ]j j j N Te e e   −=a for arbitrary   corresponds to 

complex amplitude f ( , ),s  and ( )b  is a catch-all for higher-

order nonstationarity effects not perfectly represented by the 

collection of ( )a vectors. The top line of (6) implies a 

continuum in frequency, and thus the 1M   vector f ( )s  and 

N M  matrix A in the bottom line have M →  .  

Taken together, the frequency continuum and higher-order 

behaviors imply that any TF estimate will always possess some 

degree of error. That said, keeping N sufficiently small and 

M N means we can approximate (6) using the STFT 

approach in (5) via 

f( ) ( ) ( ), +y As v                           (7) 

with the understanding that model error is unavoidable and 

therefore should be appropriately addressed when performing 

subsequent adaptive processing to achieve super-resolution. 

 Mathematically, (7) is a standard linear model and therefore 

appears identical to the idealized DF problem in which the 

discrete number of sources is generally assumed to be less than 

the number of antenna elements. Clearly the underlying model 

in (6) does not adhere to this discrete-source perspective, though 

we can still exploit the DF model-error framework from [15] to 

modify (7) as 
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 with 

z 1 f( ) ( ) [ ( )]N= −v z 1 As                        (9) 

incorporating model uncertainties incurred by discretization in 

frequency and any nonstationary effects. The nth element of 

N  1 vector z is (per [15]) 

φ,
a,[1 ]e j n

n nz = +                                (10) 

where the real-valued, independent random variables a,n  and 

φ,n  respectively account for amplitude and phase errors. 

III. RISR ADAPTIVE SPECTROGRAM 

The RMMSE formulation [13] was originally derived to 

realize adaptive pulse compression for radar, and has since been 

experimentally demonstrated for applications spanning stretch 

processing [18], Doppler processing [19, 20], brain imaging [21] 

and more. By mapping the TF model into (8) and accounting for 

error-induced tolerances, an N  M bank of RMMSE filters 

( )W is obtained by minimizing 

2
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for E{•} denoting expectation.  

Per the mathematically similar DF problem in [17], which 

also leverages the partial constraint form [16] to control the 

degree of super-resolution for robustness, (11) ultimately yields 

the mth adaptive spectrogram filter for the ith iteration as 
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for frequency m  and 0 1.   A value of   near 0 yields 

the best frequency super-resolution, though smaller components 

may be suppressed, while  near 1 preserves small components 

with less super-resolution capability. Here ( )ma  is the mth 

column of N  M matrix A and 
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for vR  the noise covariance, the structured signal component is 

( )( ) ( ) H=R AP A ,                            (14) 

and the uncertainty component is 

( ) 2
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for 2
z  the variance of (9). The M  M  matrix 

f f( ) { ( ) ( )}HE=P s s                          (16) 

is the time-localized spectral power density (diagonal by 

enforcing independence), with , ( )m mP  in (12) the mth diagonal 

element thereof. 

In practice, ( )P from (16) is not known a priori, but is 

instead estimated for the ith iteration via 
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where 
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comprises the complex amplitude estimates across the M 

frequencies for the th snapshot at the ith iteration, and filter 

bank 1 2( ) [ ( , ) ( , ) ( , ) ].i i i i M  =W w w w  The process 

is initialized by setting 0 ( )i= =W A  to obtain f , 0ˆ ( )i=s , with 

the RISR portion then sequentially applying (17), (12), and (18) 

for i = 1, 2, …, Iiter iterations. Setting L = 0 in (17) performs 

single-snapshot estimation for the finest time granularity, with 

higher L trading time granularity for a degree of noncoherent 

averaging over adjacent overlapping snapshots (i.e. smoothing). 

IV. OPEN-AIR EXPERIMENTAL VALIDATION 

In the companion paper [17], a self-calibrating version of 

RISR for DF (now “DF-RISR”) was shown to provide enhanced 

spatial isolation. Here we sequentially combine DF-RISR with 

the adaptive RISR spectrogram (now “Freq-RISR”) to separate 

the constituent signals in (2) prior to TF analysis. Practical 

assessment of Freq-RISR within this multi-signal context relies 

on the same open-air collection described in [17], where 8 

wideband log-periodic antennas in a linear array configuration 

feed a Tektronix MSO68B oscilloscope (12.5 GHz sample rate 

digitally downconverted to 20 MHz), with /2 spacing at ~3.95 

GHz (Fig. 1). The three emitters generate a 100% duty-cycle 

OFDM signal with 500 subcarriers (Tx1), a linear frequency 

modulated (LFM) chirp with 88% duty-cycle and 12.5 μs pulse 

duration (Tx2), and a random FM (RFM) waveform having a 

Gaussian power spectrum with 66% duty-cycle and 17.5 μs 

pulse duration (Tx3). All signals were centered at 3.82 GHz with 

a bandwidth of 10MHz. The transmit power of each was on the 

order of milliwatts, though Tx2 had 10 dB higher gain. 

 
Fig. 1. Open-air experimental setup (see [17] for further details) 

To demonstrate the prospective benefits of sequential 

spatial/TF adaptive processing, first a baseline case of 

nonadaptive TF processing with no spatial isolation (i.e. a single 

antenna element) is established. Assessment of spatial isolation 

and subsequent nonadaptive TF processing is then examined. 

Finally, the Freq-RISR adaptive spectrogram with and without 

spatial isolation via DF-RISR is considered, with these various 

processing arrangements illustrated in Fig. 2. 

Fig. 3 first depicts the aggregated TF response of the receive-

captured signal for a single antenna element (i.e. via Fig. 2a) 

with N = 10 and M = 200, which represents a baseline case 

without DF isolation or any form of adaptive enhancement. The 

time interval shown (45-65 s) lies roughly in the center of the 

collection interval shown in Fig. 3. We observe that the higher-

power LFM clearly dominates, with the more random variation 

in frequency noticeable between 47 and 57 s belonging to 

the RFM signal. The OFDM signal is not discernible. 

 
Fig. 2. Processing arrangements for open-air measurements 

 
Fig. 3. Aggregate spectrogram for a single antenna element (a.), showing 
the superimposed response of OFDM (Tx1), LFM (Tx2), and RFM (Tx3) 

A. Nonadaptive TF Analysis of Spatially Isolated Signals 

The comparison between DF-RISR and other methods 

(namely non-adaptive and MVDR) is discussed in [17]. Per Fig. 

2b, we leverage the adaptive DF response that employs a sliding 

window of 15 time snapshots, which DF-RISR noncoherently 

averages in the same manner as (17). Fig. 4 illustrates the result 

obtained in [17] when DF-RISR is used, where the upper blue 

trace is the OFDM signal (Tx1), the middle red trace is the LFM 

signal (Tx2), and the lower yellow trace is the RFM signal 

(Tx3). The OFDM signal has the lowest receive power due to 

amplitude modulation, which also causes a slight variation in 

estimated angle over time. 



 
Fig. 4. Time-angle response from DF-RISR using 15 snapshots, with Tx1-
OFDM (top), Tx2-LFM (middle), and Tx3-RFM (bottom) 

Now consider performing standard spectrogram processing 

on the spatially isolated results from Fig. 4 obtained via DF-

RISR [17]. To account for spatial estimation variability, which 

while notable for OFDM does occur to some degree for all three 

signals, a subtended angle is collected for each spatially isolated 

signal. These subtended angles comprise −40 to −28 for the 

OFDM signal (Tx1), −24 to −15 for LFM (Tx2), and −5 to 

+5 for RFM (Tx3). For each spatial interval, the maximum 

value is selected at each time sample in an attempt to preserve 

the dominant components resulting from adaptive DF 

processing (a mean operation could alternatively be used). 

Figs. 5-7 show (peak-normalized) spectrogram responses 

for the DF-RISR isolated signals (for the case of Fig. 2b). The 

LFM response (Fig. 6) is still prominent, though visible 

contamination by other signals is now absent. The responses in 

Figs. 5 and 7 are even more significant, with the removal of 

LFM permitting the RFM and OFDM signals to be easily 

perceived. Note that while RFM has a single instantaneous 

frequency (it is FM), the OFDM response is flatter due to all 

500 subcarriers being present throughout. Sharp pulse edges for 

LFM and RFM are also quite visible. 

 
Fig. 5. Spectrogram of OFDM signal (Tx1) after DF-RISR spatial isolation  

  
Fig. 6. Spectrogram of LFM signal (Tx2) after DF-RISR spatial isolation  

 
Fig. 7. Spectrogram of RFM signal (Tx3) after DF-RISR spatial isolation  

By comparison, the non-adaptive and MVDR beamformers 

examined in [17] realize poorer spatial isolation, which in Figs. 

8 and 9 translate into degraded TF results. Specifically, these 

standard spectrogram responses clearly exhibit cross-

contamination for the non-adaptive beamformer, and even 

show degradation of the LFM spectrogram response following 

MVDR beamforming due to the use of low snapshot support 

(15, same as RISR). For instance, note the lack of clear pulse 

edges for LFM and RFM below compared to Figs. 6 and 7. 

 
Fig. 8. Peak-normalized spectrograms from non-adaptive beamforming  
(left: OFDM, center: LFM, right: RFM) 



 
Fig. 9. Peak-normalized spectrograms from MVDR beamforming using 15 
snapshots (left: OFDM, center: LFM, right: RFM) 

B. Freq-RISR Analysis of Spatially Isolated Signals 

Now consider the utility of adaptive TF analysis via Freq-

RISR, which likewise uses N = 10 and M = 200, as well as 3 

overlapping snapshots for smoothing (i.e. L = 1 per (17)), 
0.6, = 2 2

z 10 , −= and 30 iterations. First the aggregated 

signal from Fig. 3 was processed with Freq-RISR (i.e. no spatial 

isolation via Fig. 2c), the result of which is shown in Fig. 10. 

What is immediately noticeable is that the time-localized 

frequency spread for the LFM signal is now far more compact, 

a consequence of super-resolution, with small perturbations in 

LFM frequency due to contamination from the other two 

signals (similarly visible in Fig. 3). It is difficult to discern 

which other parts correspond to RFM versus OFDM, despite 

the enhanced dynamic range being much greater than in Fig. 3. 

 
Fig. 10. Freq-RISR applied to aggregate signal from single antenna 

element 

Figs. 11-13 then depict Freq-RISR adaptive TF responses 

following DF-RISR spatial isolation per Fig. 2d. For the OFDM 

signal (Fig. 11), the amplitude variation arising from 500 

subcarriers realizes a TF response with variable peaks, though 

the 10 MHz bandwidth is still clearly delineated. It should be 

noted that the 10-sample window is far shorter than an OFDM 

symbol interval (here 50 s, so 1000 samples), which would 

require a factor of 200 in super-resolution (clearly not achieved) 

to isolate individual subcarriers in the 20 MHz band. 

Consequently, the adaptive spectrogram response in Fig. 11 

may not provide much further clarity compared to the standard 

response in Fig. 5 for this particular data instantiation. 

 

 
Fig. 11. Freq-RISR applied to DF-isolated OFDM signal (Tx1) 

In contrast, the Freq-RISR response for the DF-RISR 

isolated RFM signal in Fig. 12 shows finer detail of the 

instantaneous frequency progression compared to the standard 

response of Fig. 7. That said, this meandering frequency path is 

broken up somewhat around the interval of 60-62 s, which is 

the precise time when the higher-power LFM closely overlaps 

in frequency. It is possible that increasing the number of 

snapshots used for noncoherent averaging in DF and/or TF 

analysis could improve this result further, though other trade-

offs may occur. The sharp pulse edges from Fig. 7 are also 

preserved. 

 
Fig. 12. Freq-RISR applied to DF-isolated RFM signal 

Perhaps the most interesting Freq-RISR result occurs for the 

DF-RISR isolated LFM response (Fig. 13) since its predictable 

structure allows us to identify differences more easily. Now the 

chirping component is quite linear, with very little of the 

seemingly random deviations otherwise observed for the 

aggregate case in Fig. 10. Moreover, not only are the sharp 

pulse edges clearly delineated (like in Fig. 6), there are now 

broader spectral “flashes” at those points, which are indicative 

of the extended spectral content caused by the rapid rise/fall of 

each pulse. The meandering nature of RFM and lower SNR in 



Fig. 12 made this effect harder to discern, though it should 

occur for any sharp pulse edges. Finally, from about 47-50 s 

and again at roughly 63-66 s in Fig. 13, there is another rapidly 

chirping component of much lower power, which appears to be 

a nonlinear distortion of the LFM. While these artifacts are 

visible in the standard response of Fig. 6, subtler features may 

now become available.  

 
Fig. 13. Freq-RISR applied to DF-isolated LFM signal 

The overall take away is that Freq-RISR, particularly when 

applied following effective spatial isolation such as via DF-

RISR, is able to identify finer details of physical signals by 

achieving practical super-resolution and enhanced dynamic 

range. Consequently, the combination of these doubly adaptive 

responses with some manner of characterization/identification 

may prove rather useful for rapid and accurate discrimination 

of signals in increasingly complex and dynamic spectral 

environments in which DSA is required. 

V. CONCLUSIONS 

A form of RMMSE estimation has been used to formulate an 

adaptive approach to time/frequency (TF) analysis, achieving 

frequency super-resolution while preserving the nonstationary 

attributes afforded by fine time granularity. The resulting Freq-

RISR method, when applied sequentially following the 

algorithmically similar DF-RISR method that adaptive achieves 

spatial isolation, is expected to provide improved signal 

characterization/identification in increasingly congested and 

dynamic RF environments, thereby supporting cognitive radar 

and related applications. 
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