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Abstract—Random frequency modulation (RFM) comprises a 

diverse class of noise radar waveforms that have been shown to 

possess a number of useful and practical attributes. Specifically, 

the inherent FM structure makes such waveforms amenable to 

high-power transmitters, while the high dimensionality arising 

from non-repetition facilitates the exploration of new operating 

modes. Of course, trade-offs in computational complexity and/or 

storage limitations may in some cases preclude the use of 

completely unique waveforms during a coherent processing 

interval (CPI). Consequently, here we examine the impact of the 

degree of repetition and the particular manner in which it occurs 

via examination of the point spread function, Monte Carlo 

simulation, and open-air experimental measurements. 
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I. INTRODUCTION 

The origins of RFM waveforms (also referred to as FM 

noise) can be traced back to a US Navy patent filed in 1956 by 

Whiteley and Adrian that was issued in 1980 [1]. Since then, 

work on this class of noise waveform has continued to grow and 

expand (e.g. [2 - 4]), with the particular sub-class of RFM 

involving spectrum shaping (see [5] and references therein) 

enabling experimental demonstration of a variety of new 

capabilities, including real-time cognitive sense-and-notch 

operation [6], feasible complementary sidelobe cancellation 

[7], an intermodulation form of nonlinear radar [8], and more. 

The spectrally-shaped FM nature provides the useful 

waveform properties of constant envelope and sufficient 

spectral containment, the combination of which limits the 

distortion incurred by high-power radar transmitters while 

adhering to mandated spectral emission masks [9]. This 

physically realizable structure permits the practical deployment 

of these high-dimensional, diverse waveforms and thereby 

supports the feasible development of new sensing modes. A key 

component in this context is the noise-like attribute of 

waveform uniqueness realized by non-repetition, while the 

pulse-to-pulse spectral density is effectively preserved to 

maintain coherency. Put another way, the unique pulse 

compression response for each RFM waveform yields a 

coherent mainlobe but independent sidelobes, introducing a 

range sidelobe modulation (RSM) effect [5], thereby resulting 

in incoherent averaging that reduces sidelobes by an additional 

factor of M (for M unique pulsed waveforms) when slow-time 

processing is performed. 

This sub-class of spectrally-shaped RFM waveforms can be 

further delineated according to the particular design/ 

implementation strategies employed, which themselves can be 

categorized according to whether or not per-waveform 

optimization is necessary (see [5]). While RFM methods 

performing per-waveform spectrum-shaping optimization yield 

significantly lower range sidelobes than those that do not, they 

also incur a higher computational cost. One could conceivably 

perform this design process offline, though doing so may 

likewise involve a higher memory storage cost.  

If and when these computational/memory limitations arise, 

prospective solutions could be to seek more efficient (or sub-

optimal) per-waveform design approaches and/or exploit 

waveform representations that can be implemented using 

compact parameterizations (e.g. via the coded FM form in 

[10]). In the interest of more fully exploring the RFM 

implementation trade-space, here we instead approach the 

problem from the standpoint of determining the impact of 

permitting some degree of repetition to occur during the CPI, 

and subsequently consider appropriate strategies for doing so. 

II. OVERVIEW OF RANDOM FM WAVEFORMS 

The general and rather well-known form for an FM signal is 

 ( ) ( )( ) exp 2 ( ) exp ( )
t

s t j f d j t
−

= =    ,      (1) 

where f(τ) is the instantaneous frequency and θ(t) is the 

resulting instantaneous phase. The importance of this form lies 

in the obvious constant envelope it possesses and the somewhat 

less appreciated continuous phase that results from integrating 

frequency. The continuous phase aspect is needed to avoid the 

sinc-shaped “spectral skirt” [11] that occurs when phase 

discontinuities are present (e.g. for phase codes, see [10]). 

The spectrally-shaped forms of RFM either impose further 

structure on (1) – these are the methods that are not per-pulse 

optimized [12, 13] – or take an iterative approach [7, 14-16] to 

impose a desired template onto the waveform’s spectral density 

 2| ( ) | { ( )}S f r t= .      (2) 

Here ( )r t is the autocorrelation of waveform ( )s t  and { }  is 

the Fourier transform. Because these spectrum-shaping cost 

functions are highly non-convex, unique waveform 

initializations are effectively guaranteed to produce unique 

optimized waveforms via local minima solutions, thereby 

providing the requisite diversity. It is also worth noting that 

optimization of RFM waveforms without accounting for 

spectral shape (or at least out-of-band roll-off) tends to yield 

results with poor spectral containment (see [17]), which would 

incur greater transmitter distortion. Alternatively, even stricter 

containment also realizes a trade-off via the appearance of 

close-in “persistent” sidelobes that do not decrease with 

incoherent averaging during slow-time processing [18, 19]. 
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In the context of repeating what are intended to be non-

repeated waveforms, it is important to note that the slow-time 

combining of pulse-compressed responses from M independent 

RFM waveforms yields a 10 log10(M) sidelobe reduction. This 

effect occurs because the sidelobes are incoherent and therefore 

average in the same manner as noise. Consequently, repetition 

introduces redundancy and thus the degree of sidelobe 

suppression is degraded. That said, outside zero-Doppler the 

order of waveform repetition becomes important due to 

interaction with the slow-time combining, as discussed below. 

III. ANALYSIS OF REPEATED RFM 

While range-Doppler receive processing can be 

implemented in a variety of ways depending on the particular 

system/mode requirements, the general process involves pulse 

compression in fast-time (matched/mismatched filtering) 

followed by slow-time combining (Doppler/cross-range 

processing). For the purpose of discussion, discretize the mth 

waveform into N samples that adequately capture spectral roll-

off, denoting the result as ms  and the corresponding matched 

filter as mh . Likewise denote the collection of N discretized 

samples of the received echo response as ( )my  relative to 

some range index . Then the matched filter response at range 

index  is simply 

 ( ) ( )H
m m mx = h y ,      (3) 

with (•)H denoting the Hermitian operation. 

Now collect the matched filter response over L range 

samples and across the M waveforms into the M  L matrix X. 

Slow-time processing can then be realized by performing a 

Fourier transform on each M  1 column of X, which can be 

simply written as 

 H=Z A X       (4) 

with AH the discrete Fourier transform (DFT) matrix. For the 

purpose of Doppler visibility, we over-specify this matrix in 

terms of frequency granularity, resulting in A having more 

columns than the M rows. It is also useful to express (4) for a 

single delay/Doppler sample via 

 ( , ) ( ) ( )H
o oz  = a x ,      (5) 

where ( )a is an M  1 column of A for slow-time Doppler 

frequency   and ( )ox  is an M  1 column of X at range 

index o . 

If we consider the special case of a single point scatterer 

without noise located at ( 0, )o =  and employ the matched 

filter for each waveform, then Z would contain the point-spread 

function (PSF), which is rather useful to assess the combined 

fast-time/slow-time response for a CPI of nonrepeating 

waveforms. For example, Fig. 1 illustrates the PSF for a single 

Pseudo-Random Optimized FM (PRO-FM) waveform [14] 

having a time-bandwidth product (TB) of 300 that is repeated 

over a CPI of M = 500 pulses. Aside from the particular range 

sidelobe response for this waveform, this PSF is essentially the 

same as one would obtain for any CPI of repeated waveforms, 

with the typical periodic sinc roll-off in Doppler (normalized 

by pulse repetition frequency (PRF)) and likewise normalized 

by pulse width T in delay (only 10% of delay is shown). 

 
Fig. 1. Point-spread function for a CPI of M = 500 repeated PRO-

FM waveforms 

 

For this solitary scatterer case, the mth row of matrix X 

contains the discretized autocorrelation mr  for the mth 

waveform centered at o . Consequently, the autocorrelation 

peak value in ( )ox  across the set of M waveforms remains 

phase coherent (for 0 =  or arbitrary) and thus realizes a 

further coherent processing gain of M relative to noise when 

slow-time processing is performed. This result is the same 

regardless of whether or not the M waveforms are identical, 

unique, or somewhere in between. 

However, the range sidelobes present in ( )ox  and 

( )ox  do realize different outcomes from slow-time 

processing depending on the degree of waveform repetition. 

For a CPI of repeated waveforms, the autocorrelation is 

identical across the M pulses, and so the range sidelobes 

experience the same factor of M coherent integration gain as the 

mainlobe. At the other extreme, a CPI of completely unique 

waveforms means that each vector ( )ox  and ( )ox  

contains M independent sidelobe values that are incoherent, 

therefore realizing an incoherent averaging effect the same as 

the noise. As a result, the sidelobes are also suppressed by a 

factor of M relative to the mainlobe when slow-time processing 

is performed [5], as illustrated in Fig. 2 for a CPI of M = 500 

nonrepeating PRO-FM waveforms (note the prominent vertical 

response at zero Doppler from Fig. 1 has now disappeared). 

Careful comparison of Figs. 1 and 2 also reveals that, while 

the zero-Doppler range sidelobes are suppressed in the latter, 

they also spread across Doppler to form a sidelobe pedestal 

instead of rolling off in the usual sinc manner for repeated 

waveforms. This effect is the range sidelobe modulation (RSM) 

phenomenon discussed in [5]. 

Between these two extremes lies the prospect of duplicating 

some of the waveforms. For the sake of illustration, consider 

partitioning of the M-pulse CPI into N = M / K repeated sets of 

K unique waveforms (here M is evenly divisible by K, though 

this condition is not required in general). To further focus 

discussion, we assume each set of K unique waveforms occurs 



 

 

in a contiguous block of pulses, though in practice any ordering 

is possible. 

 
Fig. 2. Point-spread function for a CPI of M = 500 nonrepeating     

PRO-FM waveforms 

 

To assess slow-time processing for this scenario it is useful 

to partition each Doppler steering vector from (4) and (5) as  
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where 

 ( ) 2 ( 1)( ) [1 ]j Kn j j j K T
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for 0,1, , 1.n N= −  In other words, the steering vector 

partition ( )n a  is the same for each value of n, aside from a 

scalar phase shift. 

We can likewise partition the pulse-compressed responses 

in X according to each block of K unique waveforms. Denote 

( )nx  for o  or o  as the corresponding nth 

partitioned set of responses within the interval of sidelobes. 

Therefore, (5) for o  could be written as 
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by invoking the invariant structure (aside from a scalar phase 

shift) of the partitioned steering vectors in (7). 

The final line in (8) provides a convenient way to assess the 

impact of waveform ordering on sidelobe combining within 

each of the N waveform blocks. First, performing 

 0 ( ) ( ) ( , )H
n n  a x       (9) 

realizes a factor of K sidelobe suppression due to incoherent 

averaging regardless of the relationship between waveform 

blocks. However, subsequent summation weighted by each 
( )j Kne −  term in (8) is impacted by the relative waveform 

ordering across the blocks. 

For instance, if waveform ordering is exactly the same 

across all N blocks then ( , )n   for 0,1, , 1n N= −  

possesses coherency that translates into a factor of N gain in the 

form of a periodic sinc function. Of course, where the normal 

repeated waveform scenario involves a periodic sinc that 

repeats on PRF (or 1 if PRF-normalized), the extra factor of 

K in the exponential of (8) means that the periodic sinc in this 

case repeats on a Doppler interval of PRF/K (or 1/K if PRF-

normalized). This effect is illustrated in Fig. 3 for K = 10 unique 

PRO-FM waveforms repeated in the same order for N = 50 

times (so KN = M = 500 as before). 

On the other hand, if the order of the K waveforms is 

randomized across the N blocks then two distinct conditions 

arise. For 0 =  the partitioned steering vector simplifies to

0( 0) [1 1 1 1] ,T = =a  meaning (9) becomes a summation 

of the sidelobes in ( )nx  that is identical regardless of order 

across the N blocks. However, for 0   the resulting sequence 

of ( , )n   values become incoherent when the waveform 

order is randomized, realizing a further factor of N sidelobe 

suppression from incoherent averaging. In other words, outside 

of 0 =  the randomized ordering of repeated waveform sets 

can achieve the same degree of sidelobe suppression as when 

all M waveforms are unique. Fig. 4 shows the PSF for this case 

using the same K and N as in Fig. 3. 

 
Fig. 3. Point-spread function for K = 10 nonrepeating PRO-FM 

waveforms, repeated identically N = 50 times (so M = 500) 

 
Fig. 4. Point-spread function for K = 10 nonrepeating PRO-FM 

waveforms randomly repeated N = 50 times (so M = 500) 



 

 

Another way to assess behavior across these different 

waveform arrangements is through Monte Carlo simulation of 

sidelobe level. The notions of peak sidelobe level (PSL) and 

integrated sidelobe level (ISL) are more commonly used to 

evaluate performance of a given waveform in the range domain, 

though here we generalize them for use on the PSF. 

Specifically, the number of unique waveforms within a CPI 

of 1000 pulses was varied from K = 1 to 600, and for each case 

1000 independent trials were performed, with each trial 

involving an independent set of unique PRO-FM waveforms 

having TB = 300. Once each PSF is formed, the PSL and ISL 

values are determined both with and without the inclusion of 

zero-Doppler. In both cases, the zero-delay sinc rolloff in 

Doppler is excluded, since that portion of the delay/Doppler-

normalized PSF is identical regardless of the waveform (for 

fixed TB). Note that PRO-FM is used here for convenience and 

these results are expected to generalize to other types of 

nonrepeating waveforms. 

 
Fig. 5. Monte Carlo comparison of PSL (mean over 1000 trials) for 

repeated and randomly reordered sets of PRO-FM waveforms 

(excluding zero Doppler) 

 
Fig. 6. Monte Carlo comparison of PSL (mean over 1000 trials) for 

repeated and randomly reordered sets of PRO-FM waveforms 

(including zero Doppler) 

 
Fig. 5 shows the PSL after averaging across each set of 1000 

trials for each number K of unique waveforms. We clearly 

observe that randomizing the order of repeated waveforms 

essentially provides the same PSL (outside of zero-Doppler) 

regardless of the value of K (for K > 1). In contrast, the PSL 

realized for the repeated sets is capturing the repeated sinc 

peaks noted in Fig. 3 that decrease linearly with increasing K. 

Fig. 6 also shows Monte Carlo PSL results, albeit with zero-

Doppler (i.e. waveform autocorrelation) now included, which 

tends to dominate the PSL determination. Here we effectively 

see that the reordering of pulses has minimal PSL impact on the 

zero-Doppler component, with meaningful suppression 

requiring an increase in the number of unique waveforms K. 
Interestingly enough, computing ISL (Fig. 7) reveals that 

overall sidelobe energy across the PSF is effectively conserved 
regardless of the number of unique waveforms or their ordering. 
The implication of this result (confirmed by observation) is that 
suppression of sinc peaks in Figs. 1 and 3 is offset by a higher 
background pedestal in Figs. 2 and 4, respectively. 

 
Fig. 7. Monte-Carlo comparison of ISL (mean over 1000 trials) for 

repeated and randomly reordered sets of PRO-FM waveforms 

(excluding zero Doppler) 

IV. EXPERIMENTAL RESULTS 

To verify these simulated results, free-space measurements 

were collected from the roof of Nichols Hall at the University 

of Kansas, illuminating moving vehicles traversing the 

intersection of 23rd and Iowa Streets about 1km away. Multiple 

trees and buildings were also within the field of view of the 

intersection. Three different CPIs were emitted, each composed 

of M = 4,000 pulses at a PRF of 50 kHz and a duty cycle of 

almost 12%.  

The first and second CPIs were constructed from K = 150 

unique PRO-FM waveforms having TB = 300, with the former 

using repeated sets and the latter using a random selection from 

the 150 possibilities for each pulse. In other words, this 

randomization is different from the random reordering into sets 

discussed above (used for explanation purposes), though the 

same behavior is expected. The third case then provides a 

performance baseline by allowing all M = 4,000 waveforms to 

be unique PRO-FM with the same TB = 300. 

The received responses from the three cases were pulse 

compressed with the appropriate matched filter and then 

Doppler processed. Since the platform is stationary, simple 



 

 

clutter cancellation using a projection at/around zero-Doppler 

was also performed. 

Fig. 8 illustrates the baseline case using M = 4,000 unique 

PRO-FM waveforms, where we are focusing on the traffic 

intersection about 1 km away. The benefit of this multitude of 

unique waveforms is that range sidelobe modulation (RSM) is 

at/below the noise floor, and thus all movers are easily visible. 

The remaining cases were collected sequential to this one, so 

that the responses are readily comparable. 

 
Fig. 8. Range-Doppler response for M = 4,000 unique PRO-FM 

waveforms after clutter cancellation 

Figs. 9 and 10 then show the range-Doppler responses 

obtained from the repetition of K = 150 unique waveforms in 

the same order and via independent random selection, 

respectively. For the repeated case (Fig. 9) we observe the 

cohered sinc response that occurs at 8 m/s intervals in velocity 

(Doppler). In contrast, the random selection case (Fig. 10) 

appears to be nearly identical to the fully random case of Fig. 

8, though a slightly higher background is discernible. 

It is interesting to consider the trade-space that occurs when 

comparing the fully unique or randomized ordering cases 

observed in Figs. 8 and 10 against the repetition of a random set 

in Fig. 9. Because the latter preserves some coherence, even for 

sidelobes, there is ambiguity drawn into the repeated sinc 

responses that likewise lowers the RSM floor. Of course, 

portions of Doppler are also blocked by these additional sinc 

responses, which should not be confused with aliasing caused 

by Doppler frequencies exceeding PRF/2. While one could 

certainly suppress some of these Doppler-localized responses 

in the same manner as clutter cancellation (e.g. see Fig. 11), the 

result effectively amounts to additional blind Dopplers. 

Therefore, the main take away is that repeated random 

waveforms introduces another trade-space depending on how 

the repetition occurs. 

 
Fig. 9. Range-Doppler response for M = 4,000 pulses using 

repeated sets of K = 150 unique PRO-FM waveforms after clutter 

cancellation (zero Doppler suppression) 

 
Fig. 10. Range-Doppler response for M = 4,000 pulses using 

random selection from K = 150 unique PRO-FM waveforms after 

clutter cancellation  

 
Fig. 11. Range-Doppler response for M = 4,000 pulses using 

repeated sets of K = 150 unique PRO-FM waveforms after clutter 

cancellation and first repeated sinc cancellation at PRF/K 



 

 

V. CONCLUSIONS 

The nonrepeating nature of random FM waveforms has 

previously been shown to facilitate new radar capabilities that 

are amenable to high-power transmitters. Here we have 

explored the trade-space that arises when some degree of 

repetition is still permitted as a means to address possible 

limitations on processing/memory involved with the generation 

and storage of unique waveforms. It is observed that the 

repetition structure plays a significant role in the focusing or 

distribution of range sidelobe modulation (RSM) effects, which 

could be controlled based on the application. 
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