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Abstract – We consider the intersection between nonrepeating 
random FM (RFM) waveforms and practical forms of optimal 
mismatched filtering (MMF). Specifically, the spectrally-shaped 
inverse filter (SIF) is a well-known approximation to the least-
squares (LS-MMF) that provides significant computational 
savings. Given that nonrepeating waveforms likewise require 
unique nonrepeating MMFs, this efficient form is an attractive 
option. Moreover, both RFM waveforms and the SIF rely on 
spectrum shaping, which establishes a relationship between the 
goodness of a particular waveform and the mismatch loss (MML) 
the corresponding filter can achieve. Both simulated and open-air 
experimental results are shown to demonstrate performance. 

Keywords–mismatched filtering, inverse filtering, least squares, 
waveform diversity, noise waveforms 

I. INTRODUCTION 

Nonrepeating random FM (RFM) waveforms, shaped to 
provide good spectral containment, have been experimentally 
demonstrated for a variety of applications and design 
approaches (see [1] and references therein). Because they 
possess a thumbtack ambiguity function, individual RFM 
waveforms cannot attain quite the degree of low sidelobe 
performance, as a function of time-bandwidth product (TB), that 
is achievable with optimized chirp-like structures [2,3]. While 
slow-time combining (e.g. Doppler/cross-range processing) of 
M unique RFM waveforms does realize a 10 log10(M) 
incoherent averaging suppression of sidelobes [1], the use of 
appropriate mismatched filtering (e.g. [4-15]) provides even 
further suppression for when high dynamic range is required. 

Due to the Fourier relationship between spectral density and 
autocorrelation, RFM waveform design in terms of the former 
naturally addresses the latter. Here we examine how the spectral 
density perspective for optimized MMF design is impacted by 
this manner of waveform design. Specifically, the spectrally-
shaped inverse filter (SIF) is assessed relative to iterative 
waveform optimization that is driven to conform to a given 
spectral template. It is consequently shown that this shared (yet 
not actually joint) optimization formulation, in which both 
waveform and filter design are based on the same/similar 
spectral template(s), provides meaningful sidelobe suppression 
performance in a computationally efficient manner when the 
underlying model assumptions are valid. The impact of 
violating the model assumption is likewise examined. Further, 
while we specifically examine LS-MMF and SIF in the context 
of RFM waveforms, the filter considerations are applicable to 
arbitrary waveform structures as well. 

II. THE CONVOLUTION MODEL 

The well-known LS-MMF formulation [4] provides a 
closed-form solution to determine an optimal filter based on the 
discretized convolution model. This model can be expressed in 
the matrix form y = Sx + v, with L-length vector x comprising 
the true scattering, v a vector of additive noise, and y the length 
L+N1 resulting received signal. The (L + N 1)  L Toeplitz 
matrix S then contains a delay-shifted (and otherwise zero-
padded) N-length discretized version s of waveform s(t) in the 
columns. Matched filtering can then be represented as 

ˆ H H H  x S y S S x S v ,                      (1) 

with (ꞏ)H the Hermitian operation. For a general mismatched 
filter w of length M ( N), (1) can alternatively be written as 

ˆ   x Wy WSx Wv                       (2) 

for the LS-MMF convolution matrix W composed of delay-
shifted versions of w (in the columns). 

It is well-known that circular convolution can be performed 
in the frequency domain via discrete Fourier transform (DFT) 
of the convolution arguments. Therefore, approximation of S 
with the 
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addition of (N 1) “wrap around” delay shifts of s [16] yields 
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with A and AH the DFT and inverse DFT (IDFT) matrices, 
respectively, x  and s  denoting zero-padding to account for 
extra vectors in S


 as well as circular convolution, and   the 

Hadamard product. Consequently, the LS-MMF scattering 
estimate in (2) becomes 

ˆ (( ) )x A wyA AH                           (4) 

based on DFTs of the received signal and MMF (denoting as y  
and w to account for zero-padding). The length of x̂ produced 
by (4) may not be equal to that produced by (1), due to the 
various possible filter lengths of w . The convolutional tail of 
x̂ via (4) is a processing artifact and can therefore be ignored. 

Fig. 1 illustrates an example of how S and S


 are related by 
depicting a 1 or 0 magnitude in each element (assuming a 
constant amplitude waveform) for N = 100 and L = 200. While 
the approximation in (3) can introduce model mismatch when 
pulse eclipsing occurs, it is nonetheless commonly used in radar 
applications, especially those involving wideband operation, to 
take advantage of the attendant computational savings. Here we 
examine this efficient filtering approach in the context of 
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random spectrally-shaped waveforms since the design of w in 
this regard likewise employs spectral shaping, and because 
generation of a new optimized filter for each unique waveform 
could be computationally prohibitive for some applications. 

 
Fig. 1. Linear convolution matrix S (left) vs. circulant approximation S


(right) 

III. LEAST-SQUARES MISMATCHED FILTERING 

The LS-MMF problem was posed in [4] and takes the form 
2

2
min 

w
g Sw ,                                 (5) 

for g some desired response (e.g. in [4] an elementary vector). 
In short, this problem is seeking w that yields a perfectly 
whitened response when convolved with discretized waveform 
s. The regularized closed-form solution to (5) is 

1
LS ( )H H  w S S I S g ,                         (6) 

where the scaled identity matrix  I  serves as diagonal loading 
to ensure full rank (and thus invertibility). This term dominates 
as positive/real-valued   increases, in the extreme simplifying 
to 1 1

LS ( ) ,w I S g S gH H    a scaled version of the matched 
filter. Various “beamspoiled” forms of (6) have been examined 
to provide improved robustness in practical applications [9,11], 
including zeroing particular rows of S, smoothing across range-
straddled versions, and replacing the impulse in elementary 
vector g with the nominal matched filter mainlobe. This 
framework has even been extended to realize a 
“complementary-on-receive” form across a waveform set [13]. 

Due to the Fourier relationship between the cross-power 
spectral density (CPSD) and cross-correlation [17], (5) can 
equivalently be posed in the frequency domain as 

2

2
min ( )

w
Ag A Sw ,                               (7) 

which we shall use to define the relationship to the spectrally-
shaped inverse filter. On its face, the solution in (6) has a 
computational cost that is 3( ) ,O M  though exploitation of 
Toeplitz structure can reduce the cost to 2( )O M [18]. 

IV. SPECTRALLY-SHAPED INVERSE FILTERING (SIF) 

The SIF [18-21] relies on the circulant approximation in (3) 
and (4), thereby posing a modified version of the LS-MMF 
problem in (7) as 

2

2
min ( )

w
Ag A Sw


.                               (8) 

Because the DFT is implicitly assumed to be operating on a 
single period of a periodic signal [23], this circulant model 
(conforming to periodicity) facilitates the decomposition 

S
HS A D A


,                                  (9) 

with diagonal matrix DS having the DFT of s  as its diagonal 
values. Therefore, the cost function in (8) simplifies to 
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where gf = Ag and wf = Aw are DFTs of the (zero-padded) 
desired response and MMF, respectively, and vector fs


 

contains the diagonal elements of DS. 
The regularized solution for wf in (10) yields the SIF via 
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for Hadamard division  and 2
f f f| | .s s s    While the first 

line of (11) is akin to (6), the subsequent steps arise because DS 
is a diagonal matrix, resulting in a computational cost of  
O(L log(L)) since fast Fourier transforms (FFTs) can be used. 

It is important to note that the original convolution matrix S 
is not diagonalizable like in (9). Consequently, the efficient SIF 
approach of (10) and (11) can introduce error, particularly when 
pulse eclipsing occurs. 

V. SIF IN THE CONTEXT OF RFM WAVEFORMS 

Spectrally-shaped random FM (RFM) waveforms have been 
demonstrated to expand the operational radar trade-space by 
greatly increasing signal dimensionality while also being 
physically amenable to high-power transmitters (see [1] and 
references therein). The per-pulse sidelobe level that is 
achievable scales with 10 log10(TB), for TB of a single unique 
waveform. The LS-MMF has been shown [11,24] to provide 
further sidelobe suppression, being particularly useful to 
address range sidelobe modulation (RSM) of clutter that can 
hinder cancellation due to nonstationarity [1,25]. 

Of course, the LS-MMF can be computationally costly, 
especially when a completely new filter is required for each 
waveform. The SIF is therefore a pragmatic solution. Moreover, 
since both SIF and RFM waveforms rely on spectrum shaping, 
their relationship bears further consideration. 

Let Sq (f ) and Wq (f ) be the respective waveform spectra and 
corresponding (matched or mismatched) filter spectra for the 
qth (of Q) unique RFM waveforms. For desired spectrum shape 
|G(f )| for both the waveform and filter, ideally we would obtain 

2
( ) ( ) ( )q qS f W f G f  .                       (12) 

If waveforms could be designed such that |Sq (f )| = |G(f )| q, 
then the matched filter would satisfy (12). However, the time-
limited nature of any radar waveform (even CW in practice) 
requires infinite spectral support, which no practical system can 
actually accomplish. 

The argument can thus be made that mismatched filtering is 
better suited to more closely approximate (12) because doing so 
permits more degrees of freedom. Indeed, rearrange (12) as  



2
( )

( )
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q

G f
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                              (13) 

and the form of a spectrally-shaped inverse filter (SIF) emerges. 
However, the presence of Sq (f ) in the denominator implies the 
existence of poles not at the origin (in the z-transform domain), 
which is to say that (13) is an infinite impulse response (IIR) 
filter (as observed in [25]). Noting again that radar operation 
occurs on time-limited intervals (e.g. the receive interval 
between pulses) consequently means that truncation of the ideal 
Wq (f ) is necessary in practice, which translates into error. 

For instance, Fig. 2 illustrates the magnitude envelope of the 
SIF obtained via (11) for different amounts of zero-padding, 
thereby controlling the degree of truncation. The waveform is a 
super-Gaussian shaped RFM with shaping parameter n = 8 
[26,27] and discretized length N = 100. The matched filter 
magnitude is also plotted for comparison. The factor C indicates 
the multiplicative increase in MMF length via zero-padding, so 
that M = CN. We clearly see that increasing filter length exhibits 
an extended tail that is being truncated, with an attendant 
reduction in error (though never completely avoided). 

 
Fig 2: Impulse response comparison of shaped inverse filters based on degree 
of zero-padding of s and g to form filter SIFw  of length M = CN 

VI. SHAPING SELECTION & ASSESSMENT METRICS 

One could argue that the Gaussian power spectral template 
is ideal because the associated Fourier counterpart is likewise a 
Gaussian autocorrelation that theoretically has no sidelobes.  Of 
course, the roll-off of the Gaussian power spectrum also 
requires a not insignificant degree of “over-sampling” (relative 
to 3-dB bandwidth) that incurs both memory and computational 
costs and could be outright infeasible for wideband operation. 

Consequently, in [26,27] the super-Gaussian structure from 
optics was considered for RFM waveform design and then 
experimentally demonstrated. In short, shape parameter n can 
be set as low as 2 (standard Gaussian), with n   approaching 
a rectangular shape that is completely bandlimited (with 
attendant sinc(ꞏ) matched filter sidelobe response). Within these 
extremes is a trade-off between improving spectral containment 
and larger close-in “persistent” sidelobes as n increases (i.e. not 
reduced by incoherent sidelobe averaging via slow-time 
processing). We shall examine selected values of n to illustrate 

general behavior, though a larger catalogue of spectral 
templates can also be found in [28]. 

Using s(k) to denote the kth optimization iteration of the 
discretized form of waveform s(t), the total mean-squared 
deviation (MSD) can be written as 

    f

2
)

f
( ) (( ) ( )T k k

k
   1 As As g g  ,           (14) 

with gf the discretization of G(f ) and 1 a vector of ones. The 
MSD is useful to assess convergence for waveform design 
methods based on template matching. 

Another useful metric is mismatch loss (MML) 
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which determines the signal-to-noise ratio (SNR) loss of a given 
MMF compared to the matched filter. Here ( )w k  is the MMF 
computed from the kth iteration of waveform s(k), with w(k)[n] 
and s(k)[n] the nth sample of each. This loss is incurred as a by-
product of suppressing sidelobes. Moreover, with (12) satisfied 
by the matched filter under the ideal condition ( ) ( ) ,qS f G f  
we can infer that mismatch loss in (15) should decrease as 
waveform optimization iteratively approaches the desired 
spectrum shape (i.e. as (14) decreases). 

Finally, in addition to the fixed template G(f ) for both 
waveform and MMF generation, an alternative specifically for 
MMF design arises from minimizing an analytical form of 
MSD, yielding the ensemble average from waveform design via 

2

1

1
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  .                          (16) 

Consequently, the discretized form gf in the SIF formulation of 
(11) could be replaced with 
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noting the square-root is computed on a per-element basis. 

VII. MMF FOR RANDOM FM (SIMULATION RESULTS) 

As an example, Fig. 3 illustrates how MML from (15) is 
affected by the convergence of a spectrally-shaped RFM 
method. Specifically, Q = 100 pseudo-random optimized 
(PRO-FM) waveforms were generated according to [27] for 104 
iterations, using (super-Gaussian) n = 2, 8, and 32, and over-
sampled by a factor of 4 relative to 3-dB bandwidth (to capture 
spectral roll-off). At each iteration, (14) and (15) were 
computed and averaged across all 100 waveforms (having 
independent, random initializations). In Fig. 4 we see that MML 
from (15) and MSD from (14) are clearly related, with a nearly 
linear relationship in how each metric decreases as optimization 
progresses. In other words, better waveform template matching 
translates to lower loss in the associated SIF mismatched filter. 

Now using (super-Gaussian) n = 4, TB = 64, and again over-
sampling 3-dB bandwidth by 4, we compare the different filter 
responses. Specifically, the matched filter, the LS-MMF from 
(6), and SIF from (11) are examined. The SIF uses either the 
original ideal template G(f )  – denoted “Template SIF” – or the 



average waveform spectrum response via (17), denoted 
“Average SIF”. While the matched filter clearly has the same 
length N as the waveform, the MMF cases are set to have length 
3N. Finally, since doing so has been shown to work well [11], 
the LS-MMF desired response g is set to all zeroes except for 
the matched filter mainlobe, which in this case is taken from the 
inverse DFT of the n = 4 super-Gaussian spectral template. 

 
Fig 3: Mismatch loss (MML) of SIF vs. iteration for different super-Gaussian 
parameters and averaged across 100 independent PRO-FM waveforms 

 
Fig 4: Mismatch loss (MML) of SIF vs. MSD for different super-Gaussian 
parameters and averaged across 100 independent PRO-FM waveforms 

Consider a single PRO-FM waveform optimized for 1000 
iterations, ensuring MML convergence (per Fig. 3). Then Fig. 
5 illustrates the ensuing different filter responses, where the 
matched filter (as expected) yields the highest sidelobes but no 
mismatch loss. We see that LS-MMF largely compensates for 
the “persistent” sidelobe roll-off arising from the super-
Gaussian template [26,27], though it also incurs a 1.80 dB 
mismatch loss. The Average SIF further suppresses sidelobes 
(away from the mainlobe) while reducing MML to 0.99 dB. 
However, the real winner is Template SIF, which exhibits no 
meaningful sidelobe floor and a MML of 1.03 dB. 

Doing likewise for each of the Q = 100 unique waveforms 
and then performing slow-time processing for zero Doppler (i.e. 
a coherent sum) realizes the filter responses in Fig. 6. Since the 
waveforms are unique, we expect to observe 10 log10 (100) = 
20 dB of further sidelobe suppression due to incoherent 

averaging (mainlobes still combine coherently). The exception 
to this sidelobe trend is the Average SIF case, which is 
essentially unchanged between the single-waveform (Fig. 5) 
and coherent combining (Fig. 6) results, suggesting that the 
benefit of combining already occurred via (17). Put another 
way, the filtered data already matches the desired response and 
thus no additional reduction in variance occurs. 

The LS-MMF mismatch loss is now 1.78 dB, nearly 
unchanged from the single-waveform case. However, the 
Average SIF and Template SIF losses now shift some to 0.91 
and 1.09 dB, respectively. The relatively low loss and lack of a 
sidelobe floor for the Template SIF make it an attractive choice. 

 
Fig 5: Filter response comparison for single PRO-FM waveform designed 

according to n = 4 super-Gaussian spectral template 

 
Fig 6: Filter response comparison after coherent slow-time combining of 100 
PRO-FM waveforms designed according to n = 4 super-Gaussian template 

VIII. MMF FOR RANDOM FM (EXPERIMENTAL RESULTS)  

To experimentally assess the various waveform/filter 
combinations, a set of 5000 unique PRO-FM waveforms [11] 
were designed and physically transmitted to produce a 200 ms 
CPI. Another 200 ms CPI of 5000 repeated pulses (using a 
single PRO-FM waveform) was also generated for comparison. 
Each pulse had a 1.28 s pulsewidth and a 3-dB bandwidth of 
50 MHz, yielding a per-pulse TB = 64 at a center frequency of 
3.45 GHz. Open-air measurements were processed using the 
matched filter and Template SIF. 



Open-air results for the pulse-repeated CPI are shown in Fig 
7, with the matched filter in the top panel and Template SIF in 
the bottom. While several movers are visible in both cases, the 
former reveals sidelobe roll-off (in range) as vertical streaks 
associated with some of the larger mover responses. These 
artifacts are clearly suppressed in the SIF case. Note that the 
noise + interference floor for both is virtually identical since the 
use of a single repeated waveform avoids range sidelobe 
modulation (RSM). 

 

 
Fig 7: Open-air range/Doppler responses for a single repeated PRO-FM 
waveform after simple projection-based clutter cancellation using the matched 
filter (top) and Template SIF (bottom)  

The processing in Fig. 7 was then duplicated for the open-
air measurements shown in Fig. 8 where each waveform is 
unique, such that incoherent sidelobe averaging occurs (and 
associated RSM). These data collections occurred back-to-
back, so while not identical they are qualitatively the same. 

Visual inspection of the matched filter (top) and SIF 
(bottom) responses in Fig. 8 reveals no discernible difference. 
However, the cause for such similarity is the modest dynamic 
range achievable for this data collection given that incoherent 
sidelobe averaging has already pushed down sidelobes by an 
additional 10 log10 (5000) = 37 dB. Numerical assessment 
shows the SIF result does exhibit a 1.1 dB lowering in the noise 
+ interference floor, which could clearly be much greater in a 
high dynamic range scenario. 

 

 
Fig 8: Open-air range/Doppler responses for unique PRO-FM waveforms after 
simple projection-based clutter cancellation using the matched filter (top) and 
Template SIF (bottom) 

Finally, in the interest of completeness, the degradation that 
the SIF can incur when model mismatch arises is worth 
examining. To emulate this effect, the beginning of each PRI 
for the nonrepeating waveform case from Fig. 8 was range-
gated by half of the pulsewidth. This seemingly arbitrary 
amount serves to eclipse the direct-path between the separate 
transmit and receive antennas used in the data capture, thereby 
invalidating the approximation used in the circulant model. Fig. 
9 illustrates the result, again for the matched filter and SIF, 
where the former is no different from Fig. 8 since the observed 
traffic intersection is far enough away, but the latter experiences 
nearly 10 dB of degradation in the form of sidelobe increase. 
Consequently, we see that proper selection of the range interval 
for which SIF is applied is clearly important as a means to 
mitigate this effect. 



 

 
Fig 9: Pulse-eclipsed open-air range/Doppler responses for unique PRO-FM 
waveforms after simple projection-based clutter cancellation using the matched 
filter (top) and Template SIF (bottom) 

IX. CONCLUSIONS 

The spectrally-shaped inverse filter (SIF) is attractive as a 
way to obtained optimized mismatched filters (MMF) that can 
be implemented in a computationally efficient manner, 
especially when unique waveforms dictate generation of new 
MMFs. Moreover, with many random FM (RFM) waveforms 
likewise being designed via spectrum shaping, there is a natural 
connection between the two whereby the goodness of fit to the 
design template is directly related to the MMF mismatch loss.  
Experimental results demonstrate the efficacy of this 
waveform/filter combination, with the cautionary note that 
eclipsing can impose significant degradation. 
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