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Abstract—Spectrally shaped forms of random frequency 

modulation (RFM) radar waveforms have been experimentally 

demonstrated for a variety of implementation approaches and 

applications. Of these, the continuous-wave (CW) perspective is 

particularly interesting because it enables the prospect of very 

high signal dimensionality and arbitrary receive processing from 

a range/Doppler perspective, while also mitigating range 

ambiguities by avoiding repetition. Here we leverage a 

modification to the constant-envelope orthogonal frequency 

division multiplexing (CE-OFDM) framework, which was 

originally proposed for power-efficient communications, to realize 

a nonrepeating FMCW radar signal that can be represented with 

a compact parameterization, thereby circumventing memory 

constraints that could arise for some applications. Experimental 

loopback and open-air measurements are used to demonstrate this 

waveform type. 
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I. INTRODUCTION 

The choice of a particular waveform is a crucial decision 

that bears on the performance of a radar system. It is therefore 

no surprise that substantial work (e.g. see [1-4]) has focused on 

waveform optimization. Of course, there is also the matter of 

whether an optimized waveform can actually be implemented 

in radar hardware, with FM signals having sufficient spectral 

containment being particularly useful [4]. 

In contrast to identifying a single best waveform for a given 

application is the notion that the nonrepeating nature of 

randomness can instead realize the intrinsic benefits of high 

dimensionality. Noise radar [5,6] is the most well-known 

example of this waveform type, with FM noise or random FM 

(RFM) constituting versions suitable to high-power [7-10]. The 

class of spectrally-shaped RFM waveforms [10] address the 

Fourier relationship between power spectral density and 

autocorrelation, where maintaining low range sidelobes in the 

latter necessitates consideration of attributes in the former. 

Moreover, focus on spectral shape inherently contends with the 

need for containment to reduce (but never fully avoid) 

transmitter distortion effects. 

A variety of different methods have thus far been developed 

and experimentally evaluated for spectrally-shaped RFM (see 

references in [10]), with new capabilities subsequently 

emerging such as cognitive sense-and-notch [11], physical 

realization of complementary waveforms [12], and 

intermodulation-based nonlinear radar [13]. Nearly all of these 

design approaches entail some degree of optimization, either on 

a per-pulse basis or to produce a waveform generating function 

[14]. A noteworthy exception is CE-OFDM, which was 

originally devised as a power and spectrally efficient scheme 

for communications [15-18] and later examined as a means of 

generating diverse radar waveforms [19-27] since it inherently 

possesses an FM structure. In [24] it was recognized that, when 

allowing CE-OFDM to produce distinct signals by randomizing 

the underlying symbols, it becomes an optimization-free form 

of spectrally-shaped RFM since the spectral density is naturally 

Gaussian via the central limit theorem. 

Here we examine a subtle, yet meaningful modification to 

the CE-OFDM framework to undo the inherent periodic 

structure arising from the OFDM component. In so doing, yet 

another form of spectrally-shaped RFM is obtained that can 

produce a nonrepeating FMCW signal having an extremely 

compact parameterization. Consequently, this new form is an 

attractive prospect for applications in which memory storage 

and/or computational resources are at a premium. 

II. OVERVIEW OF CE-OFDM 

The well-known OFDM signal structure, commonly used 

for commercial communications, can be defined as [4] 
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for symbol interval T, where βn is the communication symbol 

(for some constellation, e.g. QAM) associated with subcarrier 

frequency fn (of N), the collection of which are centered around 

zero at complex baseband. Orthogonality between subcarriers 

is achieved by setting the corresponding subcarrier frequencies 

such that they are separated by 1/T. Clearly the superposition of 

these weighted subcarriers means that the amplitude envelope 

of u(t) is not constant, with values for the ensuing peak-to-

average power ratio (PAPR) commonly being on the order of 

10-12 dB. While OFDM is attractive from an information 

capacity standpoint for communications, the presence of 

significant amplitude modulation (AM) requires linear 

amplification on transmit. Consequently, OFDM has limited 

utility for radar due to the collection of losses that generally 

necessitate use of a saturated high-power amplifier on transmit 

to maximize “energy on target”, which introduces significant 

distortion when AM is present [28]. 

In the communication context, CE-OFDM was proposed 

[15-18] as a means to avoid the AM limitation (with attendant 

linear amplification) and associated poor power efficiency 

(noting that some hardware implementations can also perform 
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linearization at somewhat higher power efficiency [29]). In 

essence, CE-OFDM exponentiates the real part of OFDM via 
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thereby realizing a form of FM, where the constant amplitude 

and continuous phase structure of FM signals make them 

naturally amenable to high-power amplification. Here h is the 

modulation index that scales the FM spectral content, { }•  

extracts the real part of the argument,  (t) is the overall 

instantaneous phase, and |βn| and n are the respective 

magnitude and phase of symbol βn for n = 1, 2, …, N. 

This FM versus AM contrast means that (2) can be 

generated with higher power efficiency than (1). From a radar 

standpoint, (2) represents a physically meaningful signal 

structure with which to construct waveforms amenable to high-

power transmitters. This capability has been examined in [19-

27], and with new variants continuing to emerge under the 

auspices of multitone sinusoidal FM [30]. In [24], for each 

independent random symbol interval T separated into a distinct 

pulsed waveform, the nonrepeating nature of CE-OFDM was 

shown experimentally to realize a low-cost (i.e. optimization-

free) form of RFM, where the independent range sidelobes on 

a pulse-to-pulse basis provide an incoherent averaging effect 

during slow-time combining. Here we examine a subtle 

modification to the CE-OFDM structure that eliminates 

periodicity, thereby facilitating nonrepeating FMCW operation. 

III. IMPLICATIONS OF REMOVING PERIODICITY 

With the subcarrier frequencies in (1) and (2) separated by 

1/T, both signal structures are uniquely defined over the interval 

[0, T ], outside of which the signal repeats if the N values of βn 

remain fixed. From a radar standpoint, removing such 

periodicity either mitigates range ambiguities or avoids large 

range sidelobes, depending on whether one is performing slow-

time or fast-time processing, respectively. 

Obviously, periodicity would not occur if the set of βn values 

were changed each subsequent T interval. However, the nature 

of the symbol change must be addressed to avoid phase 

discontinuities that incur spectral spreading and distortion to the 

amplitude envelope in the same manner as phase codes (see 

[31]). It is for this reason that radar consideration of CE-OFDM 

has set symbol interval T to likewise be the pulse width. 

Extending this pulsed framework to realize a nonrepeating 

CW waveform within the CE-OFDM context suggests that we 

should reconsider the signal structure itself. To do so, write the 

subcarrier frequencies from (2) in the incremental form 
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for n = 1, 2, …, N, which clearly illustrates the frequency 

differences are integer multiples of 1/T (top line) and the 

difference between adjacent subcarriers is 1/T (bottom line). It 

is the relationship between these frequencies that we shall 

revisit, but first a quick review of periodicity. 

In general, it is well-known that for any sum of periodic 

functions (e.g. sinusoids) the period of the sum is equal to the 

least common multiple (LCM) of the individual periods. In 

short, if a(t) and b(t) are two such periodic functions, then a(t) 

= a(t + kTa) and b(t) = b(t + ℓTb) for Ta and Tb their respective 

periods and with k and ℓ integers. Therefore, the summation 

c(t) = a(t) + b(t) is likewise periodic with c(t) = c(t + mTLCM) 

for integer m and period TLCM = kTa = ℓTb for whatever are the 

smallest positive integer values of k and ℓ, i.e. the LCM of Ta 

and Tb . 

Denoting the inverse of the LCM period as the frequency 

f LCM = 1/TLCM , and likewise fa = 1/Ta  and fb = 1/Tb , it is easy 

to see that (k  f LCM) = fa and (ℓ  f LCM) = fb .  In other words, 

the frequencies fa and fb are integer multiples of f LCM, with a 

direct extension to multiple frequencies that meet this criterion 

while ensuring the LCM period remains unchanged. Moreover, 

we see that their ratio is fa / fb = k / ℓ, which is a rational number. 

Clearly, we have just described the OFDM framework that is 

likewise used in CE-OFDM. 

Since we are interested in FM waveforms specifically, let 

TCE denote the period for CE-OFDM in (2), which again is the 

same as OFDM. Accounting for negative frequencies at 

complex baseband, we can therefore denote 
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excluding fn = 0, with the frequencies selected to be integer 

multiples of 1/TCE to maintain a fixed period. Indeed, from the 

standpoint of information capacity within the communication 

context, it is generally desired for this period to be as short as 

possible so that as many symbols can be conveyed within a 

given time interval, i.e. maximize data rate. 

However, if our goal is instead to realize a nonrepeating CW 

waveform that has utility in the radar context, we wish to 

minimize correlation between different portions of the CW 

signal that would otherwise introduce range ambiguities or 

range sidelobes (depending on slow-time or fast-time 

perspective). Consequently, we now seek to maximize the 

period resulting from the LCM of the constituent frequencies. 

As it turns out, it is straightforward to produce a signal based 

on the general CE-OFDM structure of (2) that in fact never 

repeats. Noting the previous statement that the ratio of CE-

OFDM frequencies produces a rational number, all we need to 

do is select frequencies such that fa / fb is irrational. Put another 

way, now set 

         1 (1 )/n n nf f T−= + +  (5) 

given f1, letting each n for n = 2, 3, …, N be a unique, irrational, 

real number with |n | << 1. Consequently, each ratio 
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is likewise irrational. In short, we select (N −1) subcarrier 

spacings that are irrational (as opposed to being integers) and 

so refer to this form as non-integer constant-envelope OFDM, 

or NICE-OFDM (though the OFDM designation is no longer 

precisely true). The application of (4) with these irrationally 



 

 

related subcarriers therefore yields TNICE → ∞ (assuming all 

irrational components are unique). 

Moreover, note that the span of N subcarriers in (3) is 

         1 ( 1)/Nf f N T− = − . (7) 

The same general subcarrier span can be realized for NICE-

OFDM using (5) when 
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with the summation over n being approximately zero if we 

assume a uniform distribution on small interval [−, +], and 

after removing the common 1/T component. Therefore, along 

with N arbitrary symbols βn , a set of (N −1) irrational subcarrier 

spacings is the only parameterization required to produce an 

FM signal that never repeats, yet is completely known. In fact, 

the βn terms can be ignored as well (e.g. set =1) if non-repetition 

is the only goal, though we shall retain them for generality. 

It was noted in [24] based on work in [16,32,33] that the CE-

OFDM form in (2) can likewise be expressed using the Jacobi-

Anger expansion as 
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for coefficients  
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with Jm(⦁) the mth Bessel function of the first kind and the 

rect(⦁) function denoting pulsed time support on [0, TCE ]. The 

Fourier transform of each weighted infinite sum in (9) becomes 

a similarly weighted infinite sum of sinc(⦁) functions in the 

frequency domain (due to the rect(⦁) function), with each term 

centered at m fn . Consequently, since the N-fold repeated 

product in (9) becomes a repeated convolution in frequency, the 

overall result via the central limit theorem (CLT) causes s(t) to 

tend toward a Gaussian spectral density on average, given 

sufficiently large N and h. 

In regard to the NICE perturbation of subcarrier spacing via 

(5), one could surmise that the sinc(⦁) functions noted above 

collapse to impulses since we are replacing TCE with TNICE → ∞. 

However, because practical radar operation still only occurs 

during a finite interval, the repeated convolution of an infinite 

number of frequency-domain sinc(⦁) functions likewise still 

applies, implying the spectral density (on average) remains 

Gaussian since the frequency span via (8) and number of 

subcarriers N are fixed. Of course, a given waveform 

instantiation could deviate somewhat from this form, especially 

if the irrational n terms were to become large, and thus highly 

non-uniform. It is for this reason we have imposed |n | << 1. 

From a finite receive processing standpoint, denote TCPI as 

a coherent processing interval (CPI) that is segmented into M 

equal-length intervals seg .T  Per [34], some degree of overlap 

between adjacent segments is needed to account for 

convolutional tails when performing pulse compression, after 

which standard Doppler processing can be employed. Due to 

the nonrepeating nature of the waveform across the CPI, a 

clutter range sidelobe modulation (RSM) effect occurs just like 

with other RFM and noise signals [10]. An additional factor in 

this context arises when considering the instantaneous 

frequency, which is obtained from (2) as 
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Specifically, where CE-OFDM could include a (complex 

baseband) subcarrier at fn = 0, irrational perturbation via n 

could realize a fn  0 that is nonetheless small. If the inverse of 

this particular subcarrier roughly lies within TCPI > 1/fn > seg ,T
and N is not sufficiently large for the contribution of any single 

subcarrier to be disregarded, then (11) exhibits what appears to 

be a drift in center frequency across the segments of the CPI. 

While arising from a different cause (i.e. varying locations of 

spectral notches), this modulation of center frequency over the 

CPI can exacerbate the effects of clutter modulation [11]. 

Another important impact of instantaneous frequency arises 

when the collection of terms in (11) combines to produce a 

value for finst (t) that is sufficiently large relative to the “over-

sampling” used to discretize the signal for implementation (e.g. 

on an arbitrary waveform generator). In such cases, the 

discretized form of the FM signal becomes distorted because it 

cannot “keep up” with the rate of phase-change, resulting in a 

degree of AM emerging from the necessary “shorter path” 

through the unit phase circle (instead of around the circle). 

Given the Gaussian spectral density due to the CLT, combined 

with a practical trade-off for sample rate, such outlier 

frequencies are essentially guaranteed. Of course, abrupt phase 

changes like in the CE-OFDM case (CW version) produce more 

extreme distortion, which we observe in Sect. V. 

Finally, while the period of repetition can theoretically be 

driven to TNICE → ∞ by the use of irrational subcarrier spacings, 

this condition really just means that a perfect replica of one 

portion of the signal is not reproduced elsewhere. However, that 

does not mean that some relatively high sidelobe could not 

occur. While the complete avoidance of a higher sidelobe 

cannot be guaranteed, the likelihood (or severity) can clearly be 

reduced by simply increasing the number N of irrationally 

spaced subcarriers, thereby increasing the complexity of the 

signal, and thereby reducing the prospect of higher similarity. 

IV. HARDWARE LOOPBACK EXAMPLES 

To illustrate the benefit of non-repetition, two 100 ms 

waveforms (one CE-OFDM and one NICE-OFDM) were 

generated to have a 50 MHz 3-dB bandwidth that is 

oversampled by 4 (i.e. 200 MHz sample rate). Each waveform 

was constructed from N = 200 subcarriers using a fixed set of 

βn symbols randomly drawn from a 16-QAM constellation. 

For the first waveform, a uniform subcarrier spacing is set 

to 10 kHz, corresponding to a repetition period of TCE = 100 μs. 

Consequently, the signal repeats 1000 times over the 100 ms 

interval. Note that no phase discontinuities occur at the 

transition between symbol intervals because this form is simply 

allowing (2) to extend in time beyond the nominal period. 

The N − 1 = 199 values of n for the NICE-OFDM 

waveform were randomly generated by a uniform distribution 

within ±1 kHz. Here, the minimum subcarrier frequency was 

10 kHz and the maximum subcarrier frequency was 2 MHz 



 

 

(note that the actual bandwidth is only loosely dependent on 

these values since subcarriers are exponentiated and scaled by 

h). While random assignment does not necessarily ensure the 

n terms are irrational, for sufficiently large N the end result is 

indistinguishable. 

Using waveform versions captured in hardware loopback, 

Figs. 1 and 2 illustrate the respective autocorrelations for 

uniform and non-uniform subcarrier spacing, with the former 

clearly showing a repetitive structure, which is unsurprising 

since the symbols are fixed. In contrast, the latter reveals a peak 

sidelobe level of −58 dB, which is about an order of magnitude 

shy of the −10 log10 (TB) = −67 dB benchmark when using TB 

= (10010−3)(50106) = 5106. 

Fig. 3 plots the loopback-captured autocorrelation for 

standard use of CE-OFDM in which the 1000 symbol intervals 

contain variable random symbols (independently drawn from 

16-QAM for each subcarrier and interval). Here a peak sidelobe 

level of −58 dB is likewise realized, yet doing so entails a 1000 

increase in data representation and also incurs phase 

discontinuities at transitions between symbol intervals. 

 
Fig. 1. Autocorrelation of a 100ms “fixed symbols” CE-OFDM signal 

possessing 1000 repeated symbol intervals (zoomed-in view) 

 
Fig. 2. Autocorrelation of a 100ms NICE-OFDM waveform that does not 

repeat, despite the symbols remaining fixed 

While Figs. 1-3 illustrate the degree of self-similarity over 

the entire waveform, segment-wise receive processing is likely 

to be more appropriate for most applications. Therefore, Fig. 4 

shows the “per-segment” auto/cross-correlations averaged over 

M = 1000 segments (so Tseg = 100 μs) for NICE-OFDM, where 

each segment corresponds to TsegB = (110−4)(50106) = 5103 

so the associated −10 log10 (TsegB) = −37 dB benchmark is close 

to the RMS average peak autocorrelation sidelobe of −39 dB in 

Fig. 4. We also see the cross-correlation peak is −42 dB. Slow-

time combining (Doppler processing) of these segment-wise 

responses would realize a sidelobe level on par with Fig. 2. 

 
Fig. 3. Autocorrelation of a 100ms “variable symbols” CE-OFDM signal 

with 1000 independent (nonrepeating) symbol intervals 

 
Fig. 4. Per-segment RMS average of autocorrelation and cross-correlation 

for 1000 unique segments of NICE-OFDM (each segment is 100 μs) 

V. EXPERIMENTAL RESULTS 

To experimentally demonstrate the utility and trade-space of 

nonrepeating CW signals such as NICE-OFDM, open-air 

measurements at 3.45 GHz were collected from the roof of 

Nichols Hall at the University of Kansas (see [10] for 

description of test setup). Vehicles moving north and south 

were illuminated crossing the intersection of 23rd and Iowa 

streets, about a kilometer from the rooftop.  



 

 

The same 50 MHz / 100 ms waveform classes as above were 

transmitted (excluding the range-ambiguous case). Here the 

CW signals were separated into 104 segments of 10 μs each to 

form pulse compression filters (including some before/after 

portion of each to account for convolutional tails [34]). For the 

sake of computational efficiency, Doppler processing and 

clutter cancellation was performed using every 100th captured 

segment in a quasi-pulsed manner that emulates a pulse 

repetition interval (PRF) of 1 kHz and 100 “pulses”. This 

approach was repeated 100 times using each offset collection 

of 100 pulse-like segments. The resulting set of 100 

range/Doppler responses (still complex) was then combined via 

averaging. 

 Since CW operation also tends to necessitate separate 

transmit and receive antennas, direct path leakage must also be 

addressed so that meaningful receive sensitivity is obtained. We 

used a version of the CLEAN method (see [35]) that also 

accounts for range straddling. Clutter cancellation involved 

simple projection-based suppression at/around zero Doppler 

(since the platform is stationary). 

Fig. 5. Range-Doppler response for M = 104 segments of NICE-OFDM that 

has random subcarrier offsets and does not repeat 

 Fig. 6. Range-Doppler response for M = 104 unique segments of a “variable 

symbols” CE-OFDM signal that has uniform spacing and changes symbols 

every 100 μs 

 

This test setup and processing arrangement was used for 

both a NICE-OFDM signal like in Fig. 2 and a “variable 

symbols” version of CE-OFDM like in Fig. 3, neither of which 

repeat. These open-air captures were performed consecutively, 

so while the disposition of movers is not identical, the scene 

and hardware similarity are sufficient to permit qualitative 

comparison. 

Fig. 5 shows the NICE-OFDM result in which several 

movers are observed relative to the background after clutter 

cancellation. Fig. 6 depicts a similar result for the “variable 

symbols” version of CE-OFDM, albeit with a moderately 

higher background floor. The reason for the higher background 

can be understood when examining Fig. 7 that depicts the 

complex samples of each signal (loopback version), where we 

observe the “shorter paths” through the unit phase circle that 

each waveform takes (ideally both would only lie on the circle). 

The NICE-OFDM deviation from the circle results from only 

“over-sampling” the discretized representation by 4 (relative to 

3-dB bandwidth), while the more severe distortion of CE-

OFDM is due partly to this same effect, but is mainly due to 

abrupt phase transitions between symbols (hence traversals 

across the center). The sampling issue can be addressed by 

higher discretization rate (or perhaps imposing further spectral 

shaping within the FM structure). Eliminating abrupt phase 

transitions could, in general, be addressed with a structure like 

continuous phase modulation (CPM), such as developed in [31] 

for radar applications, though it is not clear how that structure 

would be incorporated into the CE-OFDM framework. 

Fig. 7. Plot of the complex signal samples for NICE-OFDM and “variable 

symbols” CE-OFDM after loopback capture, illustrating the relative 

distortion each incurs in this implementation (4 over-sampled based on 

3-dB bandwidth). Ideally each would remain on the unit phase circle. 

VI. CONCLUSIONS 

The nonrepeating nature of NICE-OFDM waveforms has 

been shown to provide a computationally-light, compact 

representation of a random FMCW signal having spectral 

characteristics that achieve low range sidelobes. Given 

sufficient transmit/receive isolation, this CW instantiation 

therefore facilitates easy generation of radar signals that may 

ultimately be useful in congested spectral environments since 



 

 

they exhibit lower peak power (for the same “energy on 

target”), while providing high dimensionality for separability 

from increasingly ubiquitous interference. 
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