
This work was supported by the Office of Naval Research under Contract #N00014-20-C-1006. DISTRIBUTION STATEMENT A. Approved for Public Release. 

On the Optimality of Spectrally Notched  
Radar Waveform & Filter Designs
Jonathan W. Owen, Patrick M. McCormick, Christian C. Jones, Shannon D. Blunt 

Radar Systems Lab (RSL), University of Kansas, Lawrence, KS 

Abstract—Designing radar waveforms with notched spectral 
regions can mitigate mutual interference with other proximate RF 
users. However, this capability comes at the cost of degraded 
range-Doppler sidelobe performance. To evaluate the limitations 
of correlation-based processing, the null-constrained power 
spectral density that minimizes correlation sidelobe levels is 
determined for comparison with waveform and pulse compression 
filter design methods. Existence of the least-squares (LS) global 
optimum indicates a fundamental dynamic range limitation for 
notched power spectra (notwithstanding further receive 
compensation or range resolution spoiling). 

Recent work investigated spectrally notched random FM 
(RFM) waveform design where ad-hoc tapering was incorporated 
into the null shape as a heuristic means of reducing range 
sidelobes. Here, waveforms designed according to the optimal 
null-constrained spectral template are demonstrated to have 
improved sidelobe performance after pulse compression and slow-
time processing. Further, because these waveforms are designed 
according to the LS optimal spectral template, application of the 
LS mismatched filter provides additional sidelobe reduction 
(toward the global limit) with minimal mismatch loss. 
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I. INTRODUCTION

The pace of increasing spectral congestion creates a major 
challenge for radar systems, with traditional “stove-piped” 
spectrum allocations inadequately supporting the numerous 
competing demands for greater bandwidth [1-5]. Indeed, the 
position of the US DoD Chief Information Officer is “spectrum 
sharing is the way ahead to maintain economic dominance” [6]. 
Consequently, radar spectrum sharing techniques are necessary 
to preserve acceptable performance amidst the proliferation of 
other active RF users. Of course, depending on the particular 
manner of spectrum sharing, potential pitfalls may exist [7]. 

Cognitive radar (sometimes referred to as fully adaptive 
radar) attempts to improve performance and efficiency by 
“learning” from a priori observations to supplement decision 
making from low-level (e.g., waveform selection/design) up to 
high-level tasks (e.g., mission-level command and control) [5]. 
The most common forms of cognitive radar in the literature 
include optimization/selection of transmit parameters, 
waveforms, or filters [8-18]). In [8-10], a real-time transmit 
parameter optimization framework was implemented on the 
Ohio State CREW radar testbed via online optimization. 
Meanwhile, in [12–15] the Army Research Laboratory (in 
collaboration with multiple universities) implemented a real-
time waveform spectral avoidance and notching method. Both 
real-time approaches leveraged Ettus x310 software-defined 
radios, providing the hardware foundation to implement 
cognitive systems due to their flexibility, low-cost, and 

shortened development times compared to legacy radar 
systems. 

Growing RF congestion represents a transition from the era 
of noise-limited legacy radar to pervasive interference-limited 
operation. When in-band RF interference (RFI) is dynamically 
changing during the radar’s coherent processing interval (CPI), 
one way this condition can be addressed (to a point) is by 
enabling the radar to become similarly dynamic. For instance, 
[14, 15] experimentally demonstrated real-time spectrum 
sensing and reactive notched waveform generation for per-
pulse RFI mitigation.  

Achieving real-time reactivity on a practical time scale can 
make optimal solutions impractical, though the evaluation of 
optimality (for a given metric [19]) is still beneficial to 
determine bounds on performance. Specifically, in [20] a 
heuristic method was introduced that mitigates correlation 
sidelobes arising from waveform spectral nulls. That method 
attempted to reduce sidelobes by tapering spectral null borders, 
and thereby soften sharp transitions, within the context of the 
particular random FM (RFM) waveform [21] subclass denoted 
as pseudorandom optimized FM (PRO-FM). While PRO-FM 
does involve optimization (via alternating time/frequency 
projections) the computational cost is low and therefore 
realizable in real-time [15]. However, the heuristic approach in 
[20] does not guarantee optimality.

Here, PRO-FM is likewise used, but in conjunction with the
optimum LS null-constrained power spectrum to enforce low 
range sidelobe levels (based on matched filtering). The sidelobe 
level is then further reduced using LS mismatched filtering that 
was previously shown to be effective while maintaining 
spectral notches [22]. Since both the waveforms and 
mismatched filter are shaped according to the LS optimal power 
spectrum, their combination improves sidelobe performance 
with only rather modest mismatch loss. 

II. GLOBALLY OPTIMUM SIDELOBE REDUCTION BOUNDS FOR

NULL-CONSTRAINED POWER SPECTRA

To gain insight about the behavior of spectrally notched
power spectra when attempting to minimize correlation 
sidelobes, it is interesting to first examine solutions to a well-
posed (less constrained) objective statement. The power 
spectral density (PSD) and autocorrelation are a Fourier 
transform pair; therefore, waveforms designed to conform to a 
PSD template can be directly optimized for both autocorrelation 
and spectral properties. Moreover, doing so while constraining 
spectral null locations provides global minimum boundaries for 
waveform/filter spectral notches due to convexity.  



 

 

Consider the optimization problem to design the PSD 
template, which can be written as 

       min
𝐠

 ‖𝐞 െ 𝐀ு𝐠 ‖ଶ
ଶ 

        s. t.   𝑔  𝛾   for 𝑚 ∈ Ω                                      
                0  𝑔   for 𝑚 ൌ 0,1, …𝑀 െ 1                   (1) 

where 𝐠 is the 𝑀 ൈ 1 discretized PSD template with gm as the 
mth element, 𝐀ு  is an 𝑀 ൈ𝑀  inverse discrete Fourier 
transform (IDFT) matrix, e is the desired autocorrelation 
response, (∙)* denotes complex conjugation, ‖∙‖ଶ is the 2-norm 
operator, and 𝛾  is the constrained maximum value for the 
associated gm and for m in the subset Ω (i.e. null constraints).  
Each element of 𝐠 must be non-negative by definition of the 
PSD. The objective function in (1) therefore determines g such 
that the corresponding autocorrelation (via IDFT) has a 
minimized integrated sidelobe level (ISL), subject to spectral 
null constraints. 

The problem formulation in (1) is a hybrid of non-negative 
LS and boxed LS, each being convex and having unique global 
solutions if 𝐀ு has full column rank (true for the DFT matrix) 
[23]. Different degrees of beamspoiling [24] can be achieved 
by replacing 𝑀ഥ  rows of 𝐀ு  (corresponding to autocorrelation 
mainlobe roll-off) with zeros, thus permitting different 
mainlobe widths and achievable sidelobe levels. The resulting 
beam-spoiled matrix still maintains full column rank; therefore, 
(1) is still convex and yields the globally optimal solution for 
𝐠. 

  For convenience, (1) is solved using the Matlab 
Constrained Optimization Toolkit [25] “fmincon”. The 
resulting optimal PSDs for minimizing ISL, and their 
associated autocorrelation structures with various degrees of 
beamspoiling, are shown in Fig. 1. The spectral window length 
is chosen to be 𝑀 ൌ 200 samples. Notches are imposed at the 
band edges for containment, and an additional notch is imposed 
off-center. For all illustrated cases, each notch occupies 10% of 
the band with an enforced relative depth of 40 dB. The 
mainlobe resolution is defined by the ratio (%) of beamspoiled 
rows in 𝐀ு relative to the total spectral window length 𝑀. 

A notable characteristic of the power spectra in Fig. 1 is that 
the larger primary band (between digital frequencies 0.1 and 
+0.4) maintains a majority of the power, with the smaller 
supplementary band (between digital frequencies 0.4 and 
0.2) used to improve resolution. In fact, for the 6% 
beamspoiling case, the supplementary band is hardly occupied, 
implying that a sense-and-avoid [12] approach may be suitable 
depending on the desired resolution and sidelobe levels. Prior 
findings [26] that spectral notching near the band center 
degrades the achievable range sidelobe level is also confirmed 
in Fig 2. Compared to traditional windowing methods [27], the 
least squares optimal spectral templates are rather custom-
designed via (1) to include spectral notches based on a prior 
spectrum-sensing process. 

 
Fig. 1: Optimum ISL result for 40 dB spectral null and varied beamspoiling 
ratios of 1%, 2%, 4%, 6% relative to total window length 

 
Fig. 2: Optimum ISL result for 40 dB spectral null and beamspoiling ratio of 
2% relative to total window length, for different notch locations. 

The cost function in (1) can be readily generalized to a p-
norm framework 

       min
𝐠

 ‖𝐞 െ 𝐀ு𝐠 ‖
 

       s. t.    𝑔  𝛾    for 𝑚 ∈ Ω                                         
                 0  𝑔     for 𝑚 ൌ 0,1, …𝑀 െ 1                   (2) 

with sufficiently large p well-approximating the peak sidelobe 
level (PSL) metric. The p-norm version still maintains 
convexity, so therefore global optimality is likewise preserved. 
The gradient of (2) is 

            ∇𝐠‖𝐞 െ 𝐀ு𝐠‖
 

ൌ െ𝑝 ℜ൛𝐀൫|𝐞 െ 𝐀ு𝐠|ିଶ ⊙ ሺ𝐞 െ 𝐀ு𝐠ሻ൯ൟ,    (3) 

where ℜሺ∙ሻ extracts the real part of the argument. For example, 
the resulting optimal PSDs and their corresponding 
autocorrelations for various degrees of beamspoiling are shown 
in Fig. 3 for p = 8. The same constraints are enforced as in Fig. 
1 for the ISL case. Interestingly, these PSDs exhibit ridged 
structures when insufficiently beamspoiled. Similar to the ISL 
case, as the degree of beamspoiling is increased (relaxing 
autocorrelation mainlobe width) the sidelobe floor is 
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correspondingly reduced. This interplay between sidelobe level 
and mainlobe resolution is a fundamental trade-space for this 
design. A given degree of beamspoiling is necessary to achieve 
a desired dynamic range (i.e. sidelobe level); though increasing 
the beamspoiling factor does reduce 3-dB bandwidth and 
therefore degrades mainlobe resolution. 

 
Fig. 3: Optimum PSL result (𝑝 ൌ 8 ), for 40 dB spectral null and varied 
beamspoiling ratios of 1%, 2%, 4%, 6% relative to total window length 

III. SPECTRALLY-NOTCHED RFM WAVEFORM DESIGN 

Random FM (RFM) waveforms [21] provide design 
freedom and flexibility (due to non-repetition) while their FM 
structure ensures compatibility with high-power transmitters. 
Spectral notching algorithms [28-30] have been experimentally 
demonstrated to produce physically realizable RFM waveforms 
with >50 dB notch depths. Moreover, the low computational 
cost of spectral notching via zero-order reconstruction of 
waveforms (ZOROW) [30] enables real-time sense-and-notch 
(SAN) radar on an FPGA platform [14, 15]. 

The PRO-FM version of RFM [20] involves an alternating 
projections process to successively match a desired spectral 
template and a constant amplitude pulse of finite duration. Let 
𝑇 be the pulse width, 𝐵 the 3-dB bandwidth, and 𝑓ୱ a sample 
rate that establishes the granularity of discretization (generally 
some factor greater than B to capture spectral roll-off). Denote 
𝐬 as the length-N digital representation of the desired analog 
waveform 𝑠ሺ𝑡ሻ discretized according to sample rate 𝑓௦ that is to 
be designed to conform to desired PSD template 𝐠. The kth 
iteration of the PRO-FM optimization alternates between 
enforcing the desired spectral template via 

   ( ) 1/2 ( 1)expHk kj  A g As s            (4) 

and enforcing the pulse envelope as 

  ( ) ( )exp k kjs u s ,                         (5) 

where A  is the MN truncated DFT matrix with 𝑀  2𝑁1, 
HA  is theN  M truncated IDFT matrix, ( )  extracts the 

phase of the argument, and    is the Hadamard product. Note 
that the square-root of the PSD in (4) is the magnitude spectrum 

of the signal. The length-N vector 𝐮  is a discretization of 
rectangular pulse envelope u(t) having duration T.  

We compare the PRO-FM waveform spectra using two 
different desired templates 𝐠, both intended to reduce sidelobes 
in the context of spectral nulls. The desired templates are the 
optimal PSD template discussed above and the ad hoc tapering 
method described in [20], where the latter was shown to be an 
effective (though suboptimal) solution. For this comparison, 
both templates have the same nulled region(s) defined by Ω, 
with the optimal template based on the constrained LS 
framework from Sect. II and the ad hoc template adhering to a 
notched Gaussian shape (same as [20]).  

After PRO-FM optimization, the nulls of either spectrum 
may not achieve an acceptable depth; therefore, subsequent 
application of the ZOROW algorithm reinforces spectral 
notching while maintaining constant amplitude. The ZOROW 
algorithm operates on the phase values of the converged 
waveform, where the nth discretized element is 

 ሾ𝐬ሿ ൌ 𝑒థ, (6) 

which has associated phase values 𝜙 .  This representation 
conforms to the analytical zero-order hold model used in 
digital-to-analog conversion. Collecting the phases into vector 

1 2[ ]  T
N   ,                               (7) 

the spectral representation of s takes the form [30] 

   s

1
s

sin
( , ) exp (2 ) ,2( 1 )



  m
m m n

N

nm

S j
f T

f n
f

f T


 


   (8) 

where fm = mf for integer m   and f  1/(2T). The 
ZOROW formulation then employs cost function 

 2)min  ( || ; form
m

S f m 


   (9) 

in which the summation corresponds to frequency interval(s) 
from Ω for which notching is required and 𝐿 iterations of the 
method in [30] are applied to deepen the nulled region(s). 

IV. APPLICATION OF OPTIMAL TEMPLATE  
FOR SPECTRAL SHAPING 

Consider the case where 1000 waveforms are generated 
using the method above for both the optimal PSD template and 
the ad hoc template from [20]. The PRO-FM and ZOROW 
algorithms were implemented for 𝐾 ൌ 200  and 𝐿 ൌ 1000 
iterations, respectively, to ensure full convergence. The number 
of waveform parameters 𝑁 ൌ 200  is held constant. The 
spectrum template size is set to 𝑀 ൌ 4𝑁 െ 1. Spectral nulls for 
both templates are placed at both band edges and at a single off-
center location, with each null occupying a normalized spectral 
width of 0.1𝑓ୱ (so 0.3𝑓ୱ in total). 

For the ad hoc spectral template, g has a Gaussian shape 
with normalized 3-dB bandwidth 𝐵 ൌ 0.5𝑓௦ , which imposes 
low range sidelobes before spectral notches are inserted. The 
additional tapering of sharp nulls takes the form of a raised-
cosine function spanning 𝑓ୱ/16 at each null transition (one at 
each band edge and one either side of the off-center null, 
totaling four and spanning 0.25𝑓௦).  
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The resulting average power spectrum and average 
autocorrelation responses over all 1000 waveforms for the ad-
hoc case are shown in Fig. 4. The optimum PSD template (with 
beamspoiling ratio of 2%) is included for reference. While the 
ad hoc spectral template is clearly different from the optimal 
template (top panel), it does provide a reasonable 
approximation, with the resulting mean PSD response from the 
waveforms yielding a good match to the heuristic design. The 
coherently averaged (CA) autocorrelation computed over the 
waveform set (bottom panel) demonstrates the expected 
incoherent sidelobe averaging reduction [31] due to the non-
repeating nature of RFM waveforms. While approaching the 
optimum, the ad hoc autocorrelation response does experience 
some mainlobe broadening and “shoulder” lobes. 

 
Fig. 4: Notched PRO-FM average PSD and coherently averaged autocorrelation 
from applying an ad-hoc tapered [20] spectral template 

Now consider waveform design using the optimal template 
as shown in Fig. 5, which is based on the 2-norm version from 
(1). Clearly the mean PSD across the waveform set is closer to 
optimality than in the ad hoc case, and likewise for the ensuing 
CA autocorrelation. Of course, some deviation is also observed 
because perfect time-limited waveform spectrum shaping is not 
possible. Consequently, shoulder lobes are noticeably lower, 
yet are still present. However, the mainlobe broadening is 
essentially avoided. The sidelobe response is modestly lower 
than in the ad hoc case, though neither reach the optimal 
sidelobe roll-off. 
 

 
Fig. 5: Notched PRO-FM average PSD and coherently averaged autocorrelation 
from applying the least-squares optimal spectral template 

V. APPLICATION OF LS MISMATCHED FILTERING 

Because the optimum spectral template is based on LS in a 
2-norm sense, it is logical to apply the LS mismatched filter 
(MMF) to these same waveform sets. The regularized LS-MMF 
of dimension P ×1 is determined in closed form as [24, 32]  

                       1

LSw S S I S eH H


   ,                   (10) 

where  is a diagonal loading factor, I is a P×P identity matrix, 
𝐞 is a length N+P1 vector describing the desired correlation 
response, and (•)H is the Hermitian operator.  Convolution is 
represented by the (N+P1)×P banded Toeplitz matrix 
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 .                       (11) 

Here the desired correlation response is the IDFT of the desired 
spectrum 𝐞 ൌ 𝐀ு𝐠, such that 𝐠 has dimension M = N+P1 via 
(1) and P is set to 3N. The term  is set to 1% of the maximum 
eigenvalue of S SH to bias the MMF towards reducing spectral 
notch degradation (see [19]). 

For the ad hoc case, Fig. 6 depicts the individual signal and 
filter PSDs, their cross-PSD, and the optimum PSD. The MMF 
elicits an average mismatch loss of 2.59 dB, but the signal/filter 
combination also almost perfectly overlaps with the optimal 
response. Consequently, the sidelobes likewise reach nearly to 
the optimum level. It also mitigates the notch degradation 
observed in [19]. 

Fig. 7 then shows the optimal template case, where we see 
the filter and cross-PSDs now align well with the optimal PSD 
and the mismatch loss is now 1.37 dB, a 1.22 dB improvement 
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over the ad hoc case. Of course, mismatch loss for both could be 
reduced by increasing the diagonal loading , though doing so 
will increase deviation from the optimal sidelobe level. 

  
Fig. 6: Notched PRO-FM average PSD and coherently averaged autocorrelation 
from applying an ad-hoc tapered [20] spectral template. The individual signal 
and MMF responses are shown along with their combination (cross) and the 
optimum. While the former two (blue and red traces) appear to be almost 
complementary, the latter two (yellow and purple traces) achieve almost perfect 
overlap. 

 
Fig. 7: Notched PRO-FM average PSD and coherently averaged autocorrelation 
from applying the LS optimal spectral template. The MMF and combination 
(cross) are now both close to the optimum (purple), with the signal+MMF 
(yellow) nearly overlapping it. 

VI. CONCLUSIONS 

 The globally optimum power spectrum for correlation 
sidelobe reduction has been determined when portions of the 
spectrum are null constrained. By designing waveforms so that 
their spectrum closely matches the optimum, their attendant 
sidelobes likewise approach the optimum level. Application of 
the least-squares mismatched filter then closes much of the 
remaining sidelobe difference with mismatch loss in trade. 
Importantly, it is found that a previous ad hoc approach 
involving simple tapering of notch edges achieves near-optimal 
performance with a computational cost that is low enough for 
real-time implementation. 
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