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Abstract—The single pulse imaging (SPI) algorithm was devel-
oped as a means to generalize adaptive pulse compression (APC)
by incorporating fast-time Doppler, thereby enhancing separa-
bility of scatterers in both range and Doppler. Here, we modify
this model-based method by introducing dynamic beamspoiling
to provide additional robustness. Open-air experimental results
for this robust instantiation of SPI are then shown using an
ultrasonic testbed at a center frequency of 47.5 kHz, which is
analogous to an RF center frequency of 41.25 GHz. The low
propagation velocity and associated wavelength of sound permits
meaningful emulation of the high speeds that introduce fast-time
Doppler effects for RF operation.

Index Terms—Doppler processing, radar imaging, adaptive
processing

I. INTRODUCTION

Legacy radar systems typically gather range and Doppler
information via illumination with a repeated waveform such
as the linear frequency modulated (LFM) chirp. The repeated
illumination and low mover velocities (relative to the speed
of light) yield a decoupling of range and Doppler, thereby en-
abling separation of fast-time (range) and slow-time (Doppler).
Range estimation is then performed via pulse compression
via a matched/mismatched filter and Doppler estimation is
realized by Fourier transform of the phase progression across
slow-time. However, higher center frequencies and/or higher
radial mover velocities can invalidate the decoupled “stop-and-
hop” assumption [1]. Consequently, ambiguities or losses are
incurred depending on the type of waveform employed.

For applications where range/Doppler coupling occurs there
are two schools of thought. The first, and more traditional, uses
a Doppler-tolerant waveform like LFM [2], where tolerance
arises because the waveform’s ambiguity function possesses
an intrinsic coupling between range and fast-time Doppler, as
evidenced by the prominent “delay-Doppler ridge”. While this
ridge ensures little loss is incurred when a given scatterer has
significant Doppler, it also introduces a delay ambiguity, which
can create confusion when multiple high-speed scatterers are
present in close proximity.

Alternatively, waveforms having a thumbtack ambiguity
function are Doppler selective (or intolerant depending on
one’s perspective). As a result, a Doppler filter bank with
sufficient granularity is necessary to cover the expected span of
velocities that may be encountered with an acceptable degree
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of mismatch loss. However, this increased receive complexity
does come with the benefit of avoiding the delay/Doppler
ambiguity encountered by LFM and other Doppler-tolerant
waveforms.

While the Doppler selectivity of thumbtack waveforms
provides mainlobe separability for scatterers at different veloc-
ities, there still remains the issue of sidelobes, whereby a large
scatterer can mask a nearby smaller scatterer. The reiterative
minimum-mean-square-error (RMMSE) [3] formulation first
developed to perform adaptive pulse compression (APC) takes
an adaptive nulling approach in which a unique filter is created
for each individual range cell, thereby suppressing sidelobes
induced by other nearby scatterers. By subsequently incorpo-
rating appropriate robustness measures, this formulation has
since been experimentally demonstrated in the APC context [4]
and has likewise been used for adaptive beamforming [5, 6],
brain imaging [7], active sonar [8], weather radar [9], synthetic
aperture radar (SAR) [10], Doppler estimation [11, 12], and
adaptive spectrogram estimation [13].

The single pulse imaging (SPI) [14, 15] algorithm was
first proposed in 2006 as a fast-time Doppler extension of
the RMMSE-based multistatic adaptive pulse compression
(MAPC) [16] algorithm, where the various Doppler-shifted
versions of the transmitted signal are treated (by SPI) as
distinct waveforms illuminating distinct scattering such as
one encounters in a multistatic setting. Consequently, the
adaptive nulling procedure to suppress interfering sidelobes
is generalized to include both range and fast-time Doppler,
thereby realizing enhanced sensitivity. The same idea was later
used for the iterative adaptive approach (IAA) method derived
in a least-squares context [17], with [18] noting that RMMSE
(prior to the robustness measures noted above) and IAA are
actually equivalent.

The previous work on SPI [14, 15] examined simulated
scenarios. Here we apply this approach to experimental mea-
surements obtained from an ultrasonic testbed. As part of
this examination, it has been observed that further robustness
from unavoidable model mismatch is required, which is now
incorporated into a modified version of SPI.

II. RECEIVE SIGNAL MODEL

Consider the continuous waveform s(t), for which a delay
and Doppler shifted version can be expressed as

s̃ (t) = s

(
t− 2v

c
t

)
(1)



for c the speed of light and v the Doppler-inducing radial
velocity (positive/negative if approaching/receding). Now dis-
cretize the transmitted waveform as s ∈ CN×1, noting that
the pulsed nature means the signal cannot be bandlimited, and
thus some degree of aliasing is unavoidable. Consequently,
“over-sampling” with respect to a measure of the passband
bandwidth (e.g. 3-dB) is necessary to achieve sufficiently low
aliasing depending on the waveform’s spectral roll-off. Ne-
glecting relativistic effects, a fast-time Doppler-shifted replica
in discretized form can then be represented as

s̃k = s⊙ pk (2)

where ⊙ is the Hadamard product and the N×1 phase pro-
gression vector

pk =
[
1 ejθk . . . ej(N−1)θk

]T
(3)

represents the fast-time frequency shift (with each θk propor-
tional to a discretized value of radial velocity v). Here

θk = −π + 2π
k − 1

K − 1
, k = 1, . . . ,K (4)

spans the 2π phase space with sufficient granularity, though
a smaller portion may be feasible depending on the particular
application and system parameters.

We can effectively treat the received signal as a super-
position of distinct scattering induced by distinct Doppler-
shifted waveforms. The discretized received signal vector
y(ℓ) =

[
y(ℓ) . . . y(ℓ+N − 1)

]T
corresponding to the ℓth

range delay index is then

y(ℓ) =

K∑
k=1

Skxk(ℓ) + v(ℓ) (5)

where v(ℓ) is additive noise of an arbitrary distribution. The
nth column of matrix Sk ∈ C(N×2N−1) contains s̃k shifted
by n−N samples and zero filled so that

Sk =
[
s̃k,1−N s̃k,2−N . . . s̃k,N−1

]
(6)

(i.e., s̃k,−2 =
[
sk(2) . . . sk(N − 1) 0 0

]T
). The range

profile vector

xk(ℓ) =
[
xk(ℓ−N + 1) . . . xk(ℓ+N − 1)

]T
contains the 2N−1 complex contiguous scattering coefficients
surrounding the ℓth range cell and corresponding to the kth

discretized Doppler shift.

III. REVIEW OF SINGLE PULSE IMAGING (SPI)

Let wk(ℓ) denote the pulse compression filter that estimates
the scattering at the ℓth delay and kth Doppler shift via

x̂k(ℓ) = wH
k (ℓ)y(ℓ). (7)

For the standard non-adaptive approach, it is convenient to
normalize this Doppler-tuned matched filter as

wk(ℓ) =
s̃k

∥s̃k∥2
, (8)

the collection of which across the Doppler indices k comprise
a filter bank. While the matched filter maximizes signal-to-
noise ratio (SNR), it does not address the estimation in-
terference induced by the range/Doppler sidelobes of other
scatterers.

Like its RMMSE predecessors, the SPI algorithm [14, 15]
poses the MMSE cost function for the ℓth range cell of the
kth range profile as

J(ℓ, θk) = E
{
|xk(ℓ)−wH

k (ℓ)y(ℓ)|2
}
, (9)

where E {•} is the expectation operator and xk(ℓ) is the
scattering ground truth we wish to estimate. Using the matched
filter response from (8) to obtain the initial scattering estimates
x̂k,0(ℓ) for k and ℓ, the underlying RMMSE framework
adaptively provides an updated version of the filter via

wk,i(ℓ) = ρ̂k,i(ℓ) (Rs,i +Rz,i +Rv)
−1

s̃k, (10)

where i denotes iteration index and ρ̂k,i(ℓ) = |x̂k,i(ℓ)|2 is the
current power estimate of the given range-Doppler cell. The
structured signal covariance matrix

Rs,i =

K∑
k=1

SkPk,i(ℓ)S
H
k (11)

likewise contains these current power estimates in the form of
the source covariance matrix

Pk,i(ℓ) =
[
x̂k,i(ℓ)x̂

H
k,i(ℓ)

]
⊙ I2N−1 (12)

in which I is a 2N−1×2N−1 identity matrix and scatterers
have been assumed to be uncorrelated. The term

Rv = E
{
v(ℓ)vH(ℓ)

}
= σ2

vIN (13)

is the noise correlation matrix, which for simplicity we assume
to be white Gaussian with noise power σ2

v, though doing so
is not a requirement. The remaining term

Rz,i = σ2
z [Rs,i ⊙ IN ] (14)

arises from the realization [5] that model mismatch is unavoid-
able and therefore provides an additional diagonal weighting
based on model uncertainty variance σ2

z . Determination of
this value is application and system dependent. Computational
complexity of the matrix inversion in (10) clearly increases
with waveform dimensionality and Doppler granularity, though
efficient implementations exists [19] that seek to alleviate this
burden. And while a coarse partitioning in Doppler can also
ease computational cost, it does so at the expense of signal
degradation due to straddling effects. Setting 2N < K < 10N
has been found to work well, while excessively large K
yields little practical benefit and could also induce numerical
instability.

IV. FURTHER ROBUSTNESS BY DYNAMIC BEAMSPOILING

While the inclusions of (14) does provide some robustness
against model mismatch, the unconstrained form of (9) still has
the tendency to over-suppress small signals as it attempts to
fit the measured data to point scatterers. In reality, physical



scattering is a continuum that does not adhere to a point-
like model, meaning that range and Doppler straddling [20]
is always present. In a move toward alleviating such effects,
[21] proposed the incorporation of a unity gain constraint
akin to the minimum variance distortionless response (MVDR)
beamformer [22], which serves to temper the degree of
super-resolution and thereby reduces over-suppression in the
RMMSE context. This attribute was later supplemented [4]
with a “beamspoiling” aspect involving the removal of com-
ponents in the source correlation matrix (11) that correspond
to range cells immediately surrounding a given scatterer, again
with the intent of relaxing super-resolution. An alternative
beamspoiling approach was recently explored in [23] by
merging adjacent RMMSE filters. Here a notion similar to
[23] is employed at the covariance matrix level.

Consider a localized beamspoiling matrix for the ℓth range
cell and kth Doppler bin that encompasses range-Doppler bins
extending ±A in range and ±B in Doppler, represented as

R̄b,i (ℓ, k) =
k+B∑

k′=k−B

S̄k′P̄k′,i(ℓ)S̄
H
k′ . (15)

Here S̄k′ ∈ CN×(2A+1) is the center 2A + 1 columns of
Sk′ from (11) and likewise P̄k′,i(ℓ) ∈ R(2A+1)×(2A+1) is
the diagonal matrix of the centermost 2A + 1 elements in
Pk′,i(ℓ) from (12). This localized source correlation matrix
can be incorporated into the RMMSE filter (10) to provide
beamspoiling as

w̄k,i(ℓ) = (Rs,i +Rz,i +Rv)
−1

R̄b,i (ℓ, k)
s̃k

∥s̃k∥2
. (16)

We observe that, if A and B are set equal to zero (the case
of no beamspoiling) then (16) simplifies to (10) via

w̄k,i(ℓ) = (Rs,i +Rz,i +Rv)
−1

s̃kρ̂k,i(ℓ)̃s
H
k

s̃k
∥s̃k∥2

= ρ̂k,i(ℓ) (Rs,i +Rz,i +Rv)
−1

s̃k

= wk,i(ℓ).

(17)

The beamspoiling matrix is effectively undoing the super-
resolution (i.e. decorrelating) effect imposed by the inverted
matrix so that the estimated response does not collapse to non-
physical point scatterers.

V. EXPERIMENTAL SETUP

To experimentally demonstrate the efficacy of the SPI
algorithm, an open-air test was performed using a low-cost
ultrasonic testbed. While the speed of sound is significantly
slower than the speed of light, the scattering phenomenology is
still basically the same (lack of polarization notwithstanding).
Moreover, ultrasonic experimentation can be performed at a
fraction of the cost of RF and within a much smaller physical
footprint. Indeed, this “open-air” test was actually conducted
indoors because at such a short wavelength (here <1 cm) and
low transmit power (∼1mW) an indoors vs. outdoors setting
really makes no difference. Ultrasonic wavelengths can also

be readily matched to their electromagnetic counterpart to en-
able experimentation without concern over already congested
spectral resources.

A pulsed psuedo-random optimized frequency modulated
(PRO-FM) [24] waveform was generated with a center fre-
quency of fc = 47.5 kHz, a 3-dB bandwidth of B = 10 kHz,
and pulse width of T = 15 ms, which provides a nominal range
resolution of 1.7 cm and a time-bandwidth product of TB =
150. This center frequency corresponds to a wavelength of
∼7.2mm, which at RF would be associated with an effective
center frequency of 41.5 GHz.

An initial open-air ”loopback” measurement was performed
in which the direct path of the transmitter was used to estimate
distortion from the transducer, and fast-time Doppler shifted
matched filters were generated using this transmitter-distorted
version. Clearly this method of matched filter generation is
still imperfect since it inherently assumes the receiver imparts
no further distortion and that the Doppler-tuned matched filter
bank exactly matches reality, though the incorporation of the
model mismatch term in (10) and beamspoiling in (16) is
sufficient to facilitate adaptive estimation enhancement.

To produce a scene containing a variety of “high-speed”
Doppler signatures, a plastic tricycle (see Fig. 1) was attached
to a rope and pulled backwards from the receiver. In this
way the dynamic motion of the body, wheels, and pedals
all produce unique range-Doppler features (exploiting the low
speed of sound and short wavelength). The tricycle had a total
length of 58.4 cm, with a 25.4 cm front wheel diameter, 14
cm diameter of the back wheels, and pedal radius of 7.6 cm.
Sound absorbing material was placed below the tricycle to
reduce acoustic noise from the wheels hitting the floor.

The transmit transducer was driven by a Keysight function
generator that produced a 10 Vpp replica of the PRO-FM
waveform to illuminate the scene. A pulse repetition interval
of 31.25 ms captured multiple ”looks” of the range-Doppler
characteristics as the scene progressed (i.e. as the tricycle
moved). The receiver was a wideband ultrasonic transducer
(Fig. 2) connected to a real-time spectrum analyzer (RSA)
with a sample rate of 100 kHz. While efforts were made to
minimize in-band acoustic noise, the function generator and
RSA both produced low power spurious noise that was not
sufficiently stationary to completely mitigate.

VI. EXPERIMENTAL RESULTS

Two data collections were made to verify the efficacy of
beamspoiled SPI. The first consisted of a ”quiet scene” in
which the tricycle was absent, thereby serving as a baseline
measurement of the stationary components in the room, and
which was also used for background subtraction. The second
collection involved the moving tricycle as described above.
This latter dataset was processed with the standard matched
filter bank and beamspoiled SPI, both without and with
background subtraction.

Fig. 3 shows the range-Doppler response when applying a
standard matched filter bank via (8). A scattering structure is
faintly seen around 0.2 m that is moving at a velocity of +0.5



Fig. 1: “High-speed” tricycle tied to a rope that was pulled to emulate
a scene with complex motion

Fig. 2: Transmit transducer (left) and receiver (right) secured to
optical breadboard

m/s, though the high sidelobe floor makes the shape and extent
of the scattering source nearly indistinguishable from the
background. Although simple to implement, the matched filter
bank visually provides little meaningful information about the
scene aside from the general location and velocity of some
scattering “blob”.

Next, seven iterations of beamspoiled SPI were performed
on the same data using range beamspoiling of A=4, Doppler
beamspoiling of B=3, model uncertainty variance of σ2

z =
0.05, and noise covariance estimated from the receiver noise.
Fig. 4 shows that the high range-Doppler sidelobes have now
been significantly reduced and the tricycle scattering centers
are clearly visible. While the SPI estimate does appear to
match the theoretically expected structure [25], the remaining
background scattering does limit determination of whether the
estimation floor of noise / model mismatch error is being
reached.

We subsequently performed a simple form of background
cancellation by subtracting the quiescent response from the
“moving” data collection. Fig. 5 shows that performing
matched filter processing on the ensuing background-cancelled
data does alleviate a notable amount of the sidelobe response
caused by background scattering, thereby allowing the moving
tricycle to be more visible.

Beamspoiled SPI was then applied to this background-

Fig. 3: Range-Doppler image for matched filter processing via (8)

Fig. 4: Range-Doppler image after seven iteration of beamspoiled
SPI via (16) with A=4 and B=3

cancelled data using the same parameters as before. Fig. 6
now reveals much greater visibility of individual scattering
centers, with the general shape and extent of the tricycle
readily apparent.

To examine the signature and features of the tricycle as
time progresses, the subsequent two pulses processed with

Fig. 5: Range-Doppler image for matched filter processing via (8)
after background cancellation



Fig. 6: Range-Doppler image after seven iterations of beamspoiled
SPI via (16) with A=4 and B=3 after background cancellation (1st
pulse)

Fig. 7: Range-Doppler image after seven iterations of beamspoiled
SPI via (16) with A=4 and B=3 after background cancellation (2nd
pulse)

Fig. 8: Range-Doppler image after seven iterations of beamspoiled
SPI via (16) with A=4 and B=3 after background cancellation (3rd
pulse)

Fig. 9: Range-Doppler image for matched filter processing of LFM
via (8) after background cancellation, illustrating the need for a
Doppler-sensitive waveform

beamspoiled SPI are shown in Figs. 7 and 8. An oscillatory
behavior in power and extent of the leading edge of the
tricycle becomes visible, with a similar oscillating effect
occuring about midway along the body. While it is difficult
to say definitively, these aspects are presumed to be caused
by rotation of the wheels and pedals, with the latter in
particular rotating toward and away in alternating fashion as
has been observed for micro-Doppler phenomenology [25–
28]. The presentation that accompanies this paper includes a
movie with data processed over several pulses to illustrate the
evolution.

For the sake of completeness, Fig. 9 shows the matched filter
response resulting from an LFM waveform. The Doppler tol-
erance of LFM is clearly indicated by the diagonal smearing,
ultimately making visibility impossible. In short, a Doppler
sensitive waveform is necessary in this context.

VII. CONCLUSIONS

The RMMSE-based approach denoted as single pulse imag-
ing (SPI) has been experimentally demonstrated using ultra-
sonic measurements collected at the University of Kansas, em-
ulating the expected behavior at RF. This manner of adaptive
processing enhances signal separation in both delay and fast-
time Doppler for highly dynamic environments where station-
arity cannot be assumed and sidelobes can mask the actual
scattering structure. To provide necessary robustness, a model
mismatch component and a new form of beamspoiling were
each incorporated into SPI, collectively mitigating adverse
super-resolution effects that would otherwise produce non-
physical point-scattering results.
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