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Abstract—It is well known that pulse repetition interval (PRI) 
staggering can expand the unambiguous Doppler domain, though 
doing so likewise increases Doppler sidelobes unless the staggering 
sequence is carefully constructed. However, there are also 
diversity benefits from generating random stagger sequences on-
the-fly. Within the context of arbitrary stagger sequence 
generation, we consider the intuitive interrelation to sparse array 
design in the spatial domain. In so doing, the spatial co-array 
concept is examined for PRI staggering, along with the effect of 
redundancy on Doppler sidelobe levels. The physically meaningful 
boundaries for each domain and associated co-array attributes are 
observed to provide general guidelines for random PRI staggering. 
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I. INTRODUCTION 

In pulse-Doppler radar, pulses are typically transmitted 
according to a uniform pulse repetition interval (PRI), thereby 
realizing a uniform sampling of slow-time (Doppler) phase that 
in turn aliases any Doppler exceeding half the pulse repetition 
frequency (PRF) [1]. In short, the unambiguous Doppler limit 
is ± PRF/2, where PRF is the inverse of PRI. However 
introducing non-uniform (i.e. staggering) PRI has the effect of 
expanding unambiguous Doppler in a manner that decouples 
(somewhat) the trade-off between unambiguous range and 
Doppler [2,3]. 

For pulse indices m = 1, 2, …, M, denote the mth pulse 
repetition interval as PRIm , which has corresponding PRFm = 
1/ PRIm . The maximum unambiguous Doppler when using 
staggering is thus known to be the least common multiple 
(LCM) of the set {PRF1, PRF2, ···, PRFM } [1,2]. Proper 
selection of stagger interval sequences can significantly 
increase the unambiguous Doppler domain. 

The Doppler response for random PRI staggering [4-9] still 
exhibits effectively the same mainlobe shape as the uniform 
PRI case, assuming fixed coherent processing interval (CPI) or 
dwell time. The sidelobes, however, become random as well, 
tending toward a raised and flattened response in the 
expectation as energy from the repeated mainlobes is smeared 
across Doppler [4,10]. From a detection vs. false alarm 
standpoint, it is preferable for a given staggered sequence 
instantiation to realize a flatter response (i.e. not just in the 
expectation). Consequently, it is prudent to consider useful 
attributes of pseudo-random PRI sequences, especially if on-
the-fly generation is necessary. 

Turning our attention to the lateral problem of sparse array 
design, the goal is to place array elements such that the spatial 

sidelobes are flattened. Clearly, there is an analogous 
relationship between determining the proper placement of both 
pulses (in time) and antenna elements to realize flattened 
Doppler and spatial sidelobes, respectively. This connection 
implies that the co-array concept employed in the latter should 
be applicable in the former. The relationship is explored in order 
to provide insight for randomly staggered PRI sequence 
generation. Notably, there are some “boundary effects” that 
lead to practical distinctions between the two domains. 
Moreover, the presumptive desire for minimally redundant 
arrays may not precisely translate to the PRI staggering 
problem, in which a small degree of redundancy (in the co-array 
sense) appears to yield a more preferable response. 

II. THE SPARSE ARRAY / STAGGERED PRI ANALOGY 

There is a well-known structural similarity between the 
mathematical models for antenna arrays (in phase angle form) 
and a CPI of pulses. Indeed, the associated spatial and temporal 
steering vectors (generally uniform) form the basis for space-
time adaptive processing (STAP) [11].  

The non-uniform sampling of slow-time realized by PRI 
staggering uncovers Doppler attributes that are masked 
(aliased) by redundancy in the uniform PRI case, thereby 
extending unambiguous Doppler. Similarly, a non-uniform 
sparse array mitigates grating lobes that would otherwise occur 
in the spatial beampattern [12]. Of course, there is a key 
difference in the purpose of non-uniformity in each case. For 
staggering, the overall dwell time can be kept fixed, with non-
uniform PRIs then yielding an expansion of the Doppler 
response. In contrast, sparse positioning allows for expansion 
of an antenna aperture for a fixed number of elements (hence 
finer spatial resolution) while mitigating the grating lobes that 
would otherwise arise from “under-sampling” a uniform array 
of the same size. 

Another distinction involves the delineation of boundaries 
in the two domains. For a linear antenna array (uniform or non-
uniform) the physical observation angle spans ±90°, noting the 
possibility of front/back ambiguity depending on the particular 
element patterns. If adjacent element spacing is less than a half-
wavelength (λ/2) it is possible to exceed this real-space limit, 
beyond which lies the imaginary-space or invisible-space [13]. 
In practice it is preferred to avoid this regime due to the distinct 
potential for transmitter damage, though this concern only tends 
to arise for wideband applications (via fractional bandwidth 
perspective). 

While the spatial domain element spacing is hard-limited by 
electromagnetic constraints, the Doppler frequency is soft-
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limited by radial velocity between the platform and an 
illuminated mover. In short, the “stop-and-hop” phase 
progression model becomes less accurate at high scatterer 
velocities, thereby incurring mismatch loss. However, given 
that appropriate forms of receive compensation can be applied 
as necessary (e.g. a Doppler-tuned filter bank), and the true 
upper limit is the speed of light, we can effectively ignore this 
limit for Doppler. 

Despite these domain-specific differences, the mathematical 
tools used for analysis and design are largely interchangeable. 
This similarity was explored to a degree in [14], where a sparse 
array design technique called Marginal Fisher's Information 
(MFI) [15] was used to optimize sub-Nyquist sampling based 
on a discretized grid. The analogy of coprime antenna arrays 
was likewise used in [16] to construct distinct PRI staggering 
sequences for subsequent combination. 

Consequently, consider the useful construct for sparse array 
design known as the co-array concept, which is akin to 
performing a spatial version of autocorrelation along the axis 
collinear to the array and based on the locations of the particular 
elements. For instance, a uniform linear array (ULA) with half-
wavelength element spacing exhibits a co-array comprised of 
impulses separated by λ/2 and having a triangular envelope. 
Specifically, M elements realize a weighting of M in the co-
array center that linearly tapers to unity at a spatial offset of 
±(M  1)(λ/2) and zero thereafter. Moreover, the Fourier 
transform of the co-array is the spatial power spectrum that 
describes the mainlobe/sidelobe response of the array (a 
|sinc(·)|2 response for the ULA). It is also from the co-array that 
the notion of minimum redundancy for sparse arrays first arose 
(see [17]). The following considers the role of the co-array and 
the impact of redundancy in the context of PRI staggering. 

III. PRI STAGGERING CO-ARRAY AND REDUNDANCY 

It is common [4-10] to model staggered PRI sequences as 
the accumulation of sequential time intervals like that illustrated 
in Fig. 1. We can therefore represent this arrangement as a 
staggered impulse train, with each impulse denoting the start of 
a given pulse. Consequently, these impulses can be viewed as 
locations in a temporal aperture analogous to the element 
locations along a linear antenna array. 

 
Fig. 1. Denoting the staggered pulses as an impulse train 

While the impulse locations lie on a continuum in time, it is 
useful to impose discretization for evaluation purposes. Let 
“location vector” w therefore denote a MK  1 vector comprised 
of (nearly all) zeros and (a few) ones, where K is a “granularity 
factor” that establishes the possible stagger spacing. For a 

specific implementation, K is proportional to (mean PRI 
extent)  (bandwidth) since it depends on the number of range 
cells in the listen interval. Here K is arbitrarily selected for 
convenient comparison of different stagger structures from 
which to draw inferences about behavior. 

The co-array (also discretized) can then be readily 
determined for a given location vector as [12] 

( ) ( ) ( )
n

c w n w n   ,                         (1) 

which is easily recognized as an autocorrelation. The Doppler 
power spectrum is then the Fourier transform (FT) of (1), noting 
that the granularity factor K also expands the evaluated 
frequency domain representation by K relative to the nominal 
Doppler response interval of ± PRF/2 for the uniform case 
(depicting a repeated response for uniform PRIs). Further, while 
direct FT of a given staggered PRI sequence requires use of a 
nonuniform version [18], as does any more sophisticated 
Doppler processing (e.g. [19]), determining the Doppler power 
spectrum from (1) needs only a standard FT (along with zero-
padding to aid visualization). 

 
Fig. 2. Pulse onset times for uniform and random cases with 20 pulses 

 
Fig. 3. Co-arrays for uniform and random cases with 20 pulses 

 
Fig. 4. Doppler responses for uniform and random cases with 20 pulses 

Figs. 2-4 illustrate a comparison between uniform (green) 
and randomly staggered (red) PRI cases for M = 20 pulses and 
setting K = 5000 (i.e. very fine granularity). Fig. 2 shows the 
onset times for each pulse while Fig. 3 depicts the ensuing co-
array for each sequence (one sided since symmetric), where the 



uniform PRI case realizes the expected triangle envelope and 
the random instantiation naturally achieves a minimally 
redundant arrangement, a consequence of the fine granularity. 
The FT of each co-array is then shown in Fig. 4, with the usual 
repeated Doppler mainlobe at multiples of the uniform PRF and 
a somewhat flattened Doppler response for random PRIs. 

While the notion of minimum redundancy in the co-array is 
known to provide flattened sidelobes for the spatial application, 
a slightly different behavior is observed for the staggering co-
array due to the spatial vs. Doppler intervals being considered 
(i.e. their bounds are quite different). Figs. 5-7 provide a similar 
comparison as the previous, albeit with the inclusion of a case 
in which the sidelobes over the predetermined Doppler interval 
of  ± 1.5 PRFavg have been minimized via the approach in [20], 
where PRFavg is the average PRF (i.e. same as the uniform case). 
This demarcation is denoted by the dashed black line in Fig. 7.  

 
Fig. 5. Pulse onset times for uniform, random, and sidelobe-optimized 

PRI sequences with 100 pulses   

 
Fig. 6. Co-array for uniform, random, and sidelobe-optimized PRI 

sequences with 100 pulses 

 
Fig. 7. Doppler response for uniform, random, and sidelobe-optimized 

PRI sequences with 100 pulses 
 

The important take-away in this context is that while 
completely random staggering (red) does indeed provide a 
nearly perfect minimally redundant co-array, which in turn 
corresponds to somewhat flatter sidelobes, that result has no 
boundary in terms of a Doppler interval of interest. Therefore, 
we can expect to obtain an even lower/flatter sidelobe pedestal 
when optimizing in a manner that limits the span of the desired 

interval, thereby pushing higher sidelobes outside the 
prescribed boundary. With that said, it is interesting and 
potentially useful to ascertain general attributes of good random 
stagger sequences by considering this notion of limiting 
Doppler span. In so doing, it may be possible to instantiate new 
stagger sequences without optimization that yield a sufficiently 
flat response, thereby avoiding the ensuing computational cost. 

For instance, another consequence of bounding the Doppler 
interval of interest when optimizing a stagger sequence is the 
close-in redundancy observed for the co-array in Fig. 6. In other 
words, some degree of redundancy may actually be useful.  

To further illustrate the impact of co-array redundancy, 105 
Monte Carlo trials of random PRI perturbation were performed 
for two different criteria. Specifically, starting with a CPI of M 
= 100 pulses having uniform PRI, each trial imposed a set of 
M  1 independent random perturbations according to either a 
granularity of K = 5 or K = 50, such that the latter exhibits a 10 
finer partitioning, though the actual amount of allowed stagger 
offset (in time) is the same for both. Consequently, we expect 
the former (coarser granularity) to possess higher redundancy. 

Fig. 8 shows histograms for the peak Doppler sidelobe 
determined over the same unambiguous interval for each case 
(i.e. 2.5 PRFavg). For completeness, a histogram of peak 
Doppler sidelobe for the entire unambiguous interval is also 
included for the K = 50 case (over 25 PRFavg). Because it covers 
a 10 greater Doppler span it is not surprising that the latter case 
(in black) is shifted farthest right. However, while the extent of 
values shown only covers a few dB, a clear separation is evident 
for purely random staggering as a result of redundancy when 
Doppler span is held constant, suggesting a useful trade-space.  

 
Fig. 8. Histograms of peak Doppler sidelobe for higher redundancy 

(blue), and lower redundancy (red), and lower redundancy over larger 
Doppler span (black) for completely random PRI sequences 

 
Further insight can be obtained by examining a single pair 

of random instantiations for each level of granularity, as shown 
in Figs. 9 and 10. The co-arrays in Fig. 9 reveal that the 10 
difference in granularity roughly corresponds to a similar 10 
change in the degree of redundancy, with the caveat that at some 
point finer granularity would make no further difference. 

The Doppler responses in Fig. 10 provide an even more 
interesting observation when one considers the relationship 
between the Doppler sidelobe level and the span of 
unambiguous Doppler for random instantiations. Specifically, 
the K = 50 case extends unambiguous Doppler out to 25 PRFavg, 
while the K = 5 case extends only to 2.5 PRFavg. However, the 
latter also exhibits lower Doppler sidelobes than the former. 
Taken together, these imply a trade-space between how flat/low 
the Doppler sidelobes can be made vs. the degree of 



unambiguous Doppler expansion that random staggering can 
achieve. 

 
Fig. 9. Co-arrays for uniform, high redundancy, and low redundancy 

randomized PRI sequences 

 
Fig. 10. Doppler response for uniform, high redundancy, and low 

redundancy randomized PRI sequences 

IV. STAGGERING CO-ARRAY STRUCTURES 

Based on the observation that some degree of redundancy in 
the staggering co-array may be useful, we consider a couple 
cases to understand the benefit of particular structures. While 
linearly staggered PRI structures have been examined for SAR 
to mitigate blind regions [21-23], here we examine nonlinear 
structures for the purpose of expanding Doppler. Note that these 
examples are for illustrative purposes and do not necessarily 
satisfy practical requirements such as ensuring a minimum 
allowable PRI. 

A. Exponential 

A location vector that realizes a co-array having a structure 
somewhat similar to that in Fig. 9 can also be generated via 

  
exp

1, if rnd /
( )

0, otherwise

n m M MK
w n

  


,             (3) 

for n = 0, 1, 2, …, MK  1, pulse index m = 0, 1, …, M  1,  
exponential parameter , and rnd{·} indicates rounding to the 
closest discretized location. Figs. 11-13 depict the behavior of 
this type of sequence for M = 100 pulses, K = 5, and  = 1.391. 

Specifically, Fig. 11 illustrates the exponential stagger 
structure across the CPI. Clearly the early impulses might be 
too close together to provide a reasonable listen interval and 
may not satisfy a minimum PRI requirement. However, the 
purpose here is to examine the general behavior of the stagger 
structure on the co-array and Doppler response. We observe in 
Fig. 12 that the ensuing co-array does produce redundancy that 
is qualitatively similar to a given random instantiation having 
the same granularity. Consequently, the extended Doppler 
response in Fig. 13 likewise exhibits flattened sidelobes over 

the depicted interval. In fact, the exponential Doppler response 
is noticeably flatter than that of this particular random case, 
which exhibits some spurious sidelobes that could potentially 
cause false alarms. While again noting the practical limitations 
above, this result suggests a prospective benefit to such 
nonlinear stagger structures. 

 
Fig. 11. Pulse onset times for uniform, exponential, and random PRI 

sequences with 100 pulses 

 
Fig. 12. Co-array for uniform, exponential, and random PRI 

sequences with 100 pulses 

 
Fig. 13. Doppler response for uniform, exponential, and random PRI 

sequences with 100 pulses 

B. Sine-Exponentiated 

The potential benefit of the nonlinear exponential structure 
suggests others may be useful as well. One in particular that is 
known to be beneficial for radar waveforms can be generally 
denoted as a “sideways-S” shape in time/frequency [24], for 
which there are a number of varieties [2]. For example, consider 
the sine-exponentiated structure from [25], where an associated 
location function is 

 
 se

sin 0.5 /
1, if rnd

( ) sin 0.5 /

0, otherwise

m b
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w n b









          


.       (4) 

Figs. 14-16 illustrate this case for M = 100 pulses, K = 5, 
b = 1.1, and  = 1.253. Now the stagger structure (Fig. 14) 
exhibits a “cross-over” around pulse number 20 relative to 
uniform staggering. The resulting co-array and Doppler 



response are similar to the previous case in terms of the degree 
of observed redundancy and flattened sidelobes, respectively. 
Again, the takeaway is the prospective benefit of nonlinear 
stagger structures, now suggesting the time/frequency 
parameterizations of nonlinear FM waveform designs could 
provide useful structures to explore.  

 
Fig. 14. Pulse onset times for uniform, sine-exponentiated, and 

random PRI sequences with 100 pulses 

 
Fig. 15. Co-arrays for uniform, sine-exponentiated, and random PRI 

sequences with 100 pulses 

 
Fig. 16. Doppler response for uniform, sine-exponentiated, and 

random PRI sequences with 100 pulses 

V. CONCLUSIONS 

Non-uniform sampling underlies both sparse antenna arrays and 
PRI staggering. Exploiting this analogy and posing staggering 
as a notional temporal aperture containing pulse “locations” 
permits exploration of the co-array concept. Interestingly, while 
minimizing redundancy is known to be a useful goal for sparse 
array design, it has been found that staggering co-arrays can 
actually benefit from some redundancy since only a portion of 
the (essentially) unbounded Doppler span needs to be 
considered (i.e. there is a meaningful limit on mover velocities). 
Consequently, a trade-space emerges regarding the meaningful 
Doppler span and the achievable sidelobe flatness that bears 
further examination, especially in the context of instantiating 
random PRI sequences on-the-fly without incurring the 
computational cost of optimization. 
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