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Abstract—The purpose of this paper is to provide an overview
of challenges and methods to design and process a non-uniform
radar waveform in a shared spectrum with computationally
efficient algorithms to mitigate co-channel interference and en-
able standard constant false alarm rate detection and tracking
approaches. Computationally efficient processing approaches for
non-uniform radar waveforms paired with emerging computing
architectures are paving the way for real-time implementation.
However, these non-uniform processing schemes need to be
paired with interference informed radar waveform design to
support interference mitigation processing of OFDM signals
to achieve acceptable performance in real world environments.
Current challenges associated with optimizing a non-linear radar
processing chain for a non-uniform waveform discussed in this
paper include processing and signal environment informed wave-
form design, OFDM interference rejection, convergence speed of
reiterative minimum mean square error (RMMSE) based range
Doppler map (RDM) formation, and preservation of Gaussian
noise statistics for down-stream processing. Potential solutions
discussed to these problems include a waveform optimization
based on a restricted isometry property (RIP) constraint, re-
mod/demod inference rejection, standard RMMSE, and reduced
dimension RMMSE RDM processing.

Index Terms—Spectrum Sharing, Non-Uniform Waveforms,
RMMSE, Interference Mitigation

I. INTRODUCTION

Traditional radar systems employ N coherent processing
intervals (CPI) utilizing different fixed PRIs paired with M
of N non-coherent processing to enable disambiguation in
Doppler and mitigation of range blind zones present for
each unique PRI. Each CPI can be processed in a compu-
tational efficient manner by using a traditional match filter for
range compression and fast Fourier Transform (FFT) based
processing for Doppler due to the full and uniform sample
spacing in the range and Doppler dimensions. However, there
is performance regret associated with this scheme due to (a)

non-coherent integration across N CPIs over the time span
tCPI rather than coherent integration across tCPI, (b) undesirable
sidelobe structure and levels (c) infinite loss at some ranges for
each PRI, and (d) difficulty in tracking dynamic targets due to
either scan revisit rate or interleaved CPIs. On-going research
[1] [2] [3] into alternative waveform and non-linear detection
level processing has focused on improving radar performance
relative to the first three items listed.

In parallel to advancing radar technologies, the commercial
demand for increased spectrum [4] to support the prolifer-
ation of high-bandwidth wireless communication devices has
resulted in spectrum co-use amongst radar and traditional com-
munication users that will become increasingly commonplace
in the future. For ground based radars, medium to high power
base stations, such as those associated with 4G and 5G signals,
can be dense spatially, have higher interference to signal ratio
(ISR), and have higher temporal and spectral overlap due to si-
multaneous transmit and receive capabilities. Historically, co-
channel interference that was temporally aperiodic, low ISR,
and sparse spatially meant that spatial nulling and traditional
tracking approaches could be used with reasonable success.
However, overall radar system performance will degrade be-
yond acceptable performance bounds when using these ap-
proaches while faced with medium to high power interference
in the mainlobe. The mitigation of mainlobe communication
interference then needs to rely on signal separation of the radar
returns and the unknown communication interference. For a
ground based radar, OFDM signals used ubiquitously in the
communication industry can be mitigated via a combination
of radar modulation on pulse to improve separability, pulse
repetition interval to minimize cross correlation, and non-
linear coherent subtraction of the estimated OFDM signal.

The convergence of more capable radar processing with a
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more challenging signal environment provides an opportunity
to revisit optimal radar waveform design from a perspective
that captures target dynamics, co-channel interference, and
processing constraints rather than focusing on addressing
range blind zones and Doppler ambiguities.

II. CHALLENGE AREAS

The development of a sensing strategy based on non-
uniform waveforms in a shared spectrum requires address-
ing multiple challenges including but not limited to optimal
waveform design, utilizing combinations of non-linear pro-
cessing techniques, and a computational realizable solution on
available compute resources. Later sections discuss potential
approaches to address aspects of these challenges, developing
an end to end solution from waveform creation through
tracking across multiple beams is an on-going area of research
within the radar community.

A. Waveform Optimization

The transition from a simple dwell definition that consists of
N CPIs of P pulses that can each be described by a single PRI,
center frequency, bandwidth, and pulse width, and modulation
on pulse to a waveform that has on the order NP unique pulses
requires a new mechanism to optimizing the waveform rather
focusing only on satisfying range and Doppler disambiguation
criteria. Thus, the waveform optimization procedure can be
tailored to balance the following factors:

• Co-channel Interference Structure: Improving signal sep-
aration via adjusting modulation on pulse [14] can im-
prove coherent cancellation of interference and increasing
and randomizing the PRI could reduce the impacts of
slow-time coherent gain for cyclic interference signals.

• Variable Slow Time Support Per Range Bin: Traditional
M of N dwell structures had full support, no loss, for
some ranges while blind zones have infinite loss. With
variable PRIs using coherent processing across across
pulses assuming a fixed dwell time, the waveform de-
signer can optimize the structure of unobserved slow-
time events for a given range bin. Example optimization
approaches could be to prioritize receive scheduling to
improve observability at long ranges, for known targets,
or provide structure that aids processing algorithms.

• Hardware Complexity: The ability to command pulse to
pulse unique transmit and receive events can challenge
traditional architectures built upon simple waveform def-
initions which may be a constraint in the optimization.

• Processing Approaches: Many approaches to interference
cancellation and non-uniform processing rely on non-
linear processing strategies that can be biased towards
better performance, faster convergence, and/or computa-
tional short-cuts when the waveform contains structure.

Additionally, the waveform optimization process may need to
run in real time to improve run-time optimization and environ-
mental tailoring which means that the waveform optimization
algorithms themselves may need to be computational efficient.

B. Radar Detection Processing

The migration to non-uniform waveforms in a shared spec-
trum necessitates addressing the following:

• Doppler Processing and Expansion: Non-uniform sample
spacing in slow-time due to non-observability and vari-
able PRI require a method to control Doppler sidelobes
and address a large Doppler space to support tracking.

• Range Compression and Partial Target Returns: Fixed
PRI waveforms have partial target returns at the edges the
receive windows but consistent in Doppler. Non-uniform
PRIs can result in partial pulse returns for all targets at
a subset of pulses which can degrade performance.

• Residual Interference: The residual co-channel interfer-
ence post mitigation will impact the ”noise” regions that
are utilized in traditional CFAR based detectors. Mea-
suring and minimizing this residual will impact detection
and false alarm rates.

• Non-Traditional Detection Statistics: Many approaches
to addressing the non-uniform sample support involve
non-linear approaches that can change detection statistics
that impact target detection and tracking algorithms.
Minimizing or measuring these changes is important for
performance.

• Computational Complexity: A constraint on the entire
detection process is the assumption that the algorithms
must be real-time realizable.

III. WAVEFORM OPTIMIZATION VIA THE RIP

Reconstructing an accurate representation of a range-
Doppler space with a number of resolvable cells that exceeds
the time-bandwidth product of the waveform is inherently
compressive. Furthermore, as time-bandwidth product of the
waveform is increased, resolution improves, so even though
the number of fast-time/slow-time samples may increase, the
maximum range-Doppler extent does not. Any attempt to
reconstruct a larger range-Doppler space, therefore, necessarily
involves sensing artifacts such as high sidelobes and ambi-
guities. True ambiguities can be avoided by staggering pulse
repetition times, but signal processing must attempt to handle
the resulting high sidelobes. These measurement and process-
ing strategies are consistent with sampling and reconstruction
strategies from compressive sensing. In compressive sensing
(CS), the quality of a compressive measurement scheme can
be quantified by the restricted isometry property (RIP), which
quantifies the fraction of distance lost between two unique
signals during the compression process, given by

(1− δ)|x1 − x2||2 ≤ ||Ax1 −Ax2||2 = d2c , (1)

where d2c is the distance between the any two compressed
signals, x1 and x2, and A is the signal compression operator
[6]. The RIP property is defined as the minimum value of
δ for which the inequality holds over all pairs of signal
realizations. This property is, therefore, useful in quantifying
the performance of a particular sampling schemes such as
non-uniform PRI staggering [2]. Figure 1 shows the results
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Fig. 1. CDF of distance ratio for different pulsing schemes found from Monte
Carlo trials.
of calculating a RIP-style metric for 1D (slow time) pulsing
schemes using a Monte Carlo simulation. In the simulation,
the Doppler bandwidth of signals was limited such that 96
pulses, constrained to a fixed CPI duration, resulted in an
uncompressed and unambiguous scenario. From there, using
fewer pulses resulted in a decrease of the average PRF, such
that the situation became compressive. Random PRI intervals
were generated during the Monte Carlo simulation. Pulse
widths were normalized to maintain a fixed amount of energy
in the pulse train. For a measurement scheme to behave well,
the distance between two unique signals should be preserved,
with a ratio of 1 having the same distance between the two
signals before and after compression. It’s clear from the figure
that increasing the number of samples, holding constant the
total transmitted energy, results in fewer values below 1, i.e.
the measurement scheme is better able to reconstruct the
original signal.

The use of the RIP property may be able to help inform the
choice of measurement scheme, which is vital when trying
to detect targets when non-uniform PRI staggering is used.
Extension of the RIP to 2D range-Doppler including receiver
blanking and pulse diversity is ongoing.

IV. COMMUNICATION INTERFERENCE MITIGATION VIA
REMOD/DEMOD

Communications are a growing source of in-band and out-
of-band interference, especially as more spectrum is allocated
for communications systems [4]. Here we consider actively
cancelling in-band interference from communication signals
by leveraging knowledge of the signal structure. Specifically,
we attempt to demodulate the communications signal in order
to remodulate and create a perfect synthetic copy of the signal.
This technique is well-known in the passive radar community
[10], [16]. Passive radar techniques use signals of opportunity
to illuminate the scene and use two antennas: One pointed
toward the scene and one pointed at the emitter. The direct
path signal from the emitter can be demodulated to extract
the data bits and then subsequently remodulated to create a
reference signal [11]. Recent passive radar work has shown
that the network and modulation parameters required to decode
5G signals can be extracted to demodulate the reference signal
[10].

For an active radar system operating in a simultaneous
transmit and receive (STAR) mode, the demodulation and
remodulation technique can be used to reconstruct the inter-
fering communications signal and subtract it from the data
[13]. However, high power, monostatic, pulsed radar systems
generally blank the receiver when transmitting [15]. The
receiver blanking results in lost information in the continuous
wave communications signal. Figure 2 demonstrates the loss
of information for each symbol that results from the receiver
blanking with a staggered PRI.

To demodulate the OFDM signals, zeros are inserted into the
symbols. To understand the performance degradation caused
by the receiver blanking, a Monte Carlo simulation is carried
out. OFDM symbols are generated according to the parameters
in Table IV and white Gaussian noise is added for an INR of
25 dB. A vector of 32 pulses is created with a mean PRF and
those times are used to null the the OFDM symbol vectors.

TABLE I
OFDM PARAMETERS

Subcarrier Spacing 15 kHz
Subcarriers 1200
Sample time 32.55 ns
Symbol Duration 66.67 µs
Cyclic Prefix Duration 4.7 µs
3 dB bandwidth 18 MHz
Modulation 16-QAM
Samples/Symbol 2048
Samples/Cyclic Prefix 144

Pulse duration is also going to have an impact on the
demodulation performance, as a longer pulse represents more
missed symbol data. The pulse duration was tested as a
percentage of the mean PRI, here called the duty cycle. Figure
3 shows the reduction in the interference plus noise power
using the demodulation/remodulation technique when there are
no radar returns present.

The best results occur with a longer mean PRI and a shorter
pulse. Using shorter pulses and reducing the frequency of
pulses reduces the amount of data loss and the frequency of
data loss resulting in the most accurate reconstruction of the
interfering communication signal.

Three distinct cases occur when attempting to reconstruct
the interference signal. First, when the receiver null occurs
during the cyclic prefix of the symbol, the cyclic prefix
acts as a buffer between symbols and is stripped off before
demodulation. Therefore, the reconstruction of the signal is
unaffected by a loss of cyclic prefix information, assuming
the receiver is already time-aligned to the channel.

t
- Cyclic prefix
- Symbol
- Receiver Blanking

Fig. 2. OFDM symbols with receiver blanking.
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Fig. 3. Interference plus noise power reduction for staggered PRIs with mean
PRFs and various duty cycles.

Second, when the receiver is blanked in the middle of a
symbol, the reconstruction has reduced power for the time
duration of the pulse. The reconstruction of the signal also
has this lower power area that rolls to the correct power before
and after it in the symbol, which results in a slight increase in
interference at the maximum range of the previous pulse and
the very close range of the current pulse.

Finally, when the receiver is blanked at the end of the
OFDM symbol the data loss heavily impacts the performance
of the interference removal. The end of the symbol is used to
generate the cyclic prefix and therefore losing the end of the
symbol results in a remodulated symbol with a very low power
cyclic prefix and minimal interference removal in the time
duration of the cyclic prefix. This third case can be mitigated
by detecting the loss of the end of the cyclic prefix and using
the received cyclic prefix to fill in the end of the OFDM
symbol. This allows for better reconstruction of the cyclic
prefix and mitigates the performance loss of the interference
subtraction that would otherwise be encountered.

Checking for receiver blanking at the end of the symbol
and replacing it with the cyclic prefix results in an average
performance increase of 1 dB. More importantly, carrying out
this check makes the output of the technique more consistent
across time and therefore range.

V. RMMSE PROCESSING FOR RDM FORMATION

Pulse repetition interval (PRI) staggering enables expansion
of both Doppler and range ambiguity regions but at the cost of
higher Doppler sidelobes, with standard Doppler tapering [2].
In [8] it was shown that structure-based adaptive processing
based on reiterative minimum mean-square error (RMMSE)
estimation in the form of the reiterative super-resolution
(RISR) algorithm [5] can suppress these higher Doppler side-
lobes down to the noise floor, thereby compensating for one of
the main difficulties that arises from staggering. Additionally,
by incorporating the benefits of adaptive pulse compression
(APC) [1] into a joint 2D range/Doppler RMMSE framework

Fig. 4. Open-air range-Doppler response for LFM waveform and uniform
PRI: (Upper Left) standard pulse compression and Taylor-windowed Doppler
processing, (Upper Right) adaptive pulse compression and Taylor-windowed
Doppler processing, (Lower Left) standard pulse compression and RISR
Doppler processing, (Lower Right)Time range adaptive Processing (TRAP)

further suppression of sidelobes is achieved as described in
[9] but with significant computational burden.

Figures 4 further illustrates the benefits of the performance
of various adaptive receive processing techniques using open-
air data involving the simple arrangement of repeated LFM
waveforms having uniform PRI (i.e. not waveform-diverse).
The point of this comparison between standard Doppler pro-
cessing (using a Taylor taper) and RISR is to illustrate how
sidelobe suppression can be achieved without the attendant
tapering loss that is otherwise incurred (0.7 dB). A modest
degree of Doppler super-resolution is also achieved, though
care must be taken because excessive super-resolution can lead
to severe mismatch loss. The benefit of improving Doppler
sidelobes is seen in the center of the white circle where a
large mass in standard processing resolves to separate movers
(adjacent blue circle) that are slightly offset in Doppler. Fur-
thermore, by extending to a 2D TRAP formulation, improved
separability in range (red circle) is achieved in comparison to
RISR that uses standard range compression.

While RMMSE processing can address Doppler sidelobes
induced by staggering [8], further complications are introduced
when one considers the expansion of the range ambiguity
region via the same approach. Specifically, as discussed in
[2], relative to a uniform PRI case (and for a constant overall
coherent processing interval (CPI) extent) the use of staggering
actually reduces the farthest range for which the entire set
of PRIs are accessible. Consequently, it becomes necessary
to consider both multiple-time-around (MTA) scattering from
farther range intervals and the impact of blanked range inter-
vals for particular PRIs that are simply unavailable due to their
coinciding with the transmission of a later pulse (i.e. a per-PRI
form of blind ranges). These effects can be incorporated into
the scattering model so that the usually Vandermonde form of
the Doppler steering vector for uniform PRI now becomes



v(fD, l) =


α1(l)

α2(l)e
j2πfdTacc(2)

. . .
αM (l)ej2πfdTacc(M)

 . (2)

This generalized steering vector is clearly dependent on
Doppler frequency fd, with the impact of staggering incor-
porated via the accumulated slow-time [2]

Tacc(m) =

m−1∑
q=0

Tq (3)

for m = 1, 2, . . . ,M , with initial condition T0 = 0 and thus
Tacc(1) = 0 for the first pulse. We have further denoted
a dependence on range index l by introducing the PRI-
specific scaling term αm(l). At a particular range index for
which a given PRI is effectively blanked, αm(l) = 0 would
occur. While one might otherwise expect αm(l) = 1 for
all other cases, the unity condition actually assumes that no
pulse eclipsing occurs, which in general may not be true.
Consequently, for each PRI and each range index this scaling
value can be 0 ≤ αm(l) ≤ 1 depending on the degree of
eclipsing (the = 0 blanking case is essentially fully eclipsed). It
is likewise interesting to note that, should variable pulsewidth
also be permitted during the CPI, this same steering vector
model remains applicable, with the αm(l) = 1 condition now
associated with longest pulse width and no eclipsing.

To improve separability between different MTA range in-
tervals one could introduce slow-time coding, which as dis-
cussed in [2] effectively yields an affine transformation of
the Doppler manifold when combined with staggering. Even
greater separability could be achieved by allowing for non-
repeating waveforms (but with same spectral support) across
the CPI. Of course, the latter also imposes a coupling between
slow-time and fast-time that requires compensation to address
the attendant range sidelobe modulation (RSM). Overall, this
increasingly complex emission/scattering framework possesses
inherent non-stationary attributes that can greatly benefit from
non-uniform waveform receive methods.

VI. REDUCED-DIMENSION RMMSE

Adaptive pulse compression (APC) via RMMSE estimation
has been shown to be an effective technique for mitigating
range sidelobes and uncovering masked targets, which makes
it extremely useful when trying to detect targets masked by
the high sidelobe structure of non-uniform PRI staggering [1].
However, APC has a computational complexity of O(N3) for
each stage of processing, making it difficult to implement in
real-time for high- or multi-dimensional problems. Significant
reductions are required as the total degrees of freedom in the
full-dimension of the problem can be quite high. When non-
uniform data collection schemes are introduced to expand the
achievable range-Doppler space, the traditional range-Doppler
ambiguity structure no longer applies. When sufficient random
staggering is used, the range-Doppler space essentially be-
comes infinite; therefore, limitations are tied to detectability (in

20 40 60 80 100 120

-80

-70

-60

-50

-40

-30

-20

-10

Matched Doppler Output

RD-RMMSE Adaptive Filter

Doppler Bin

P
o
w

e
r 

(d
B

)

Fig. 5. Matched versus adaptive filter patterns for 64 pulses with randomly
staggered PRI.

presence of high sidelobes) and processing constraints. There
may be performance benefits using joint RMMSE processing
in range and Doppler; however, the large range-Doppler space
and number of fast-time/slow-time measurements result in
a large number of degrees of freedom that makes real-time
implementation difficult. Dimensionality reduction techniques
are, therefore, helpful for lessening this computational burden
and enabling implementation in real systems. Fast APC is
one such technique that has been used to reduce compu-
tational complexity by nearly an order of magnitude [3].
The technique proposed here is inspired by post-Doppler
STAP techniques that leverage Doppler processing and data
formatting to achieve a reduction in computational complexity
without sacrificing performance.

Space-Time Adaptive Processing (STAP) is another adap-
tive filtering technique that provides interference cancellation
and improved detection of targets when performing ground-
moving target indication [17] but suffers from a similar
computational burden. Computational and training data lim-
itations have motivated several reduced-dimension techniques,
improving STAP performance and realizability [12]. For ex-
ample, post-Doppler and beamspace STAP are popular choices
of suboptimal approaches that rely on a static processing
stage followed by adaptive processing on reduced degrees of
freedom [7]. These techniques make use of efficient Doppler
processing methods and a reduction in degrees of freedom to
achieve reduction of computational complexity up to N2 from
a baseline of N3.

Motivated by reduced-dimension STAP, reduced-dimension
RMMSE techniques use similar strategies to significantly
reduce computational load. This partially adaptive technique
will make use of data formatting to statically process portions
of the data that can then be adaptively combined. The static
portion of the processing can be performed by traditional
matched filtering, highly efficient for which implementations
exist, while the following adaptive approach uses an RMMSE
approach to form adaptive filters and produce updated es-
timates. A one-dimensional post-Doppler RMMSE approach
proposed here first splits a single CPI consisting of N pulses
into K sub-CPIs, each containing Mk pulses. For formation



of L Doppler bins, the N × L slow-time manifold V is
reformatted into a series of K size Mk×L Doppler manifolds
- one for each of the K sub-CPIs. If the slow-time PRI
structure is identical for each sub-CPI, then the sub-CPI
manifolds are identical, but this structure is not required and
the PRI structures within each sub-CPI can be arbitrary. The
sub-CPI manifolds are applied to each of the sub-CPIs to
produce K coarse-resolution Doppler profiles. Being the result
of only a few staggered-PRI pulses in each sub-CPI, these
coarse-resolution profiles have high sidelobes and, potentially,
Doppler ambiguities that must be resolved by the second,
adaptive stage of processing.

The coarse-resolution profiles serve as the input to the
adaptive stage of the RD-RMMSE processing. The outputs
corresponding to the same lth Doppler bin from each of the
K sub-CPIs are adaptively weighted to obtain an estimate of
that Doppler bin. The adaptive weights are computed using
the RMMSE architecture, which accounts for the strengths
of other Doppler bins in the current iteration as well as the
correlation between phase histories of different Doppler bins
in the second-stage processing. This requirement results in a
need to maintain a library of second-stage (length-K) steering
vectors for every Doppler bin at the output of every Doppler
bin formed at the coarse stage. However, these manifolds are
known up front and only need to be computed once. At each
iteration of the adaptive processing stage, the current Doppler
bin estimates are used along with a K ×L signal manifold to
produce a K×K covariance matrix (one for each Doppler bin),
which is used in the RMMSE formulation to obtain adaptive
weights [1]. The reduction from an N×N matrix estimates and
inversion to L different K×K matrix estimates and inversions
is similar to the way that, for example, post-Doppler STAP
reduces computational load [7]. An adaptive filter is calculated
and applied for each of the L Doppler bins of interest to
produce an updated estimate of the Doppler profile for each
stage of iteration. The output of each iteration stage is then
used as the input for the next iteration stage, and the process
repeats. Figure 5 shows an example of the Doppler response
of an adaptive Doppler filter that is produced by the partially
adaptive approach described here. This adaptive Doppler filter
has been built for Doppler bin 100, where the peak of the
filter output occurs. The previous iteration indicated a strong
signal in the 120th Doppler bin; hence, the adaptive weights
place a null 20 bins away to prevent energy from the 120th
bin corrupting the estimate of the 100th Doppler bin.

The main computational savings that result from this
reduced-dimension technique come from the smaller matrix
inversion required for every filter. Rather than inverting a
N×N matrix for each Doppler bin, a K×K matrix inversion
is needed instead.

VII. CONCLUSIONS

Non-uniform radar waveforms can be processed with
RMMSE class methods and designed to have near uniform
data support in range and Doppler via the RIP constraint.
The computational load of RMMSE based methods can be

significant but on-going work into methods such as reduced
dimension RMMSE and TRAP offer a path to near term hard-
ware. The successful utilization of this technology will involve
further maturing and integration of co-channel interference
mitigation techniques, such as demod/remod, to enable robust
performance of this technology in real world environments.
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