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Abstract–While the suppression of range sidelobes has received 
considerable attention, with a variety of solutions now possible, the 
mitigation of cross-correlation sidelobes for multistatic/MIMO 
scenarios remains a difficult problem. Here, leveraging the recent 
MiCRFt method that was experimentally shown to achieve 
complementary receive cancellation, a multi-emitter extension is 
posed that provides the degrees-of-freedom necessary to reduce 
both auto- and cross-correlation sidelobes. The ensuing MIMO 
MiCRFt formulation is experimentally demonstrated using 
simulated, loopback, and open-air measurements obtained using 
random FM (RFM) nonrepeating waveforms. 
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I. INTRODUCTION 

The combination of high radar transmit power (up to ~106 
W) and low receive power (down to ~1018 W) can introduce 
electromagnetic fratricide problems [1] between different 
radars occupying the same spectrum if careful management 
between systems is not performed (i.e. not pointing a high-
power transmit beam directly at a sensitive receiver). However, 
even when fratricide can be avoided, such as in the case of 
colocated multiple-input multiple-output (MIMO) operation, 
there still remains the issue of sufficient waveform separability. 

Because scattering is a continuum (i.e. not discrete points) 
over range and spatial angle, the notion of so-called 
“orthogonal” radar waveforms is not physically meaningful in 
the context of shared-spectrum operation (notwithstanding the 
trivial case of time-division multiplexing that expands the 
resource management timeline and reduces the unambiguous 
range interval) [2]. Consequently, quasi-orthogonal (QuO) 
waveforms having low cross-correlation are of great interest. Of 
course, a given waveform has finite degrees-of-freedom (DoFs) 
according to its time-bandwidth product (TB). As a 
dimensionality metric, TB dictates both the autocorrelation 
sidelobes achievable by receiver matched filtering and the 
cross-correlation sidelobes that the same matched filter would 
encounter when applied to a different waveform [3]. This cross-
correlation fundamentally limits the performance of previously 
theorized code division multiple access transmit schemes for 
MIMO radar [4, 5, 6]. 

It has been shown [7] that the use of nonrepeating (pulsed) 
waveforms introduces an “aggregate TB” attribute that 
multiplicatively expands waveform dimensionality, thereby 
likewise reducing the achievable autocorrelation and cross-
correlation sidelobes by the same factor. For example, the 
separability of two arbitrary frequency modulated (FM) 
waveforms having TB = 1000 is, on average, on the order of 
10 log10 (TB) =  30 dB. By extension, two independent 

streams of M = 104 nonrepeating waveform sets with the same 
TB would yield separability on the order of 10 log10 (M •TB) = 
70 dB. However, if even higher receiver dynamic range is 
required, or if TB and/or M are more modest for a given 
application, transmit dimensionality alone may not suffice. 

To contend with inadequate waveform separability the 
multistatic adaptive pulse compression (MAPC) algorithm was 
developed [8] and later experimentally demonstrated [9] as a 
means to iteratively separate the received scattering induced by 
different radar waveforms that are coincident in time and 
spectral occupancy. Being adaptive, this approach can suppress 
cross (and auto) correlation sidelobes down to the noise floor, 
suggesting it should be applied as late as possible in the receive 
processing chain to make best use of coherent gain. However, 
doing so may complicate other processing stages, such as 
necessitating enhanced range-walk compensation [9]. 

Here we instead consider an expansion of the well-known 
least squares (LS) mismatched filter (MMF) [10, 11] to provide 
additional separability between dissimilar, spectrally-
coincident emissions. Noting that the LS-MMF is defined in the 
context of a single emitter (i.e. no cross-correlation), it uses the 
available DoFs from waveform TB to suppress “self” 
correlation sidelobes (the MMF no longer truly yields an 
autocorrelation). Care must be taken to limit the amount of 
mismatch loss, which can be particularly severe if super-
resolution or range-straddling occurs; hence phase-continuous 
waveforms and preservation of the nominal matched filter 
resolution are preferred [11, 12, 13]. 

On its face, attempting to directly extend the LS-MMF to 
address both cross-correlation and self-correlation sidelobes is 
hindered by insufficient DoFs. Thus, we shall expand the 
available DoFs by modifying the mismatched complementary-
on-receive filtering (MiCRFt) formulation [14, 15], which 
jointly solves for LS-MMFs for subsets of contiguous 
waveforms so that the resulting mismatch filtered responses can 
be combined before Doppler processing to suppress range 
sidelobes. When used in conjunction with nonrepeating 
waveforms, MiCRFt has been demonstrated experimentally and 
in simulation to greatly reduce the range sidelobe modulation 
(RSM) that arises from time-varying self-correlation sidelobes 
over the coherent processing interval (CPI). The version here, 
denoted as MIMO-MiCRFt, extends to multiple concurrent 
emissions, and is likewise demonstrated experimentally and in 
simulation to suppress both self-correlation RSM and similar 
cross-correlation modulation (CCM). It is also shown that the 
latter effect is not adequately addressed by standard single-
waveform filtering methods. 
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II. MULTI-EMITTER SINGLE-PULSE LS-MMF DESIGN 

The standard LS-MMF pulse compression problem is 
formulated as follows: construct the L-length FIR filter w such 
that the output matches some desired response. The LS-MMF 
filter is then realized by solving 

 min
𝐰

 ‖𝐒𝐰 − 𝐝‖2
2 , (1) 

where S is an (𝐿 + 𝑁 − 1) × 𝐿 convolution matrix constructed 
from delay-shifted versions of N-length vector s obtained by 
discretizing waveform s(t) to capture sufficient spectral roll-off, 
and d is the desired response having length (𝐿 + 𝑁 − 1). The 
exact form of d is somewhat arbitrary, though it was shown [11] 
that choosing the mainlobe of the matched filter, with zeros 
elsewhere, provides a good tradeoff between SNR loss and 
sidelobe level. Alternatively, [16] sets the desired response 
according to the waveform spectral design template. Both 
approaches can preserve the matched filter nominal resolution 
and thereby mitigate the severe loss that tends to accompany 
super-resolution. 

It should be noted that (1) is a convex problem. As such, the 
regularized solution for a single waveform is 

 𝐰LS = (𝐒𝐻 𝐒 + 𝜇𝐈)
−1𝐒𝐻𝐝 (2) 

for LS-optimal filter 𝐰LS and diagonal loading factor 𝜇.  
We could also generalize (1) to account for the superimposed 

effects of K distinct emissions. Define 𝐳𝑘𝑖  as the convolution 
between the waveform emitted by transmitter k (in discretized 
form) and receive filter i (for ith transmit waveform) as 
 𝐳𝑘𝑖 = 𝐒𝑘𝐰𝑖 .  (3) 

The multi-emitter optimization problem for the ith receive filter 
is therefore 

 min 
𝐰𝑖 ∑ 𝐽𝑘(𝐰𝑖)

𝐾−1

𝑘=0
 (4) 

where 

 𝐽𝑘(𝐰𝑖) = 
⎩⎪
⎨
⎪⎧ ‖𝐒𝒌𝐰𝑖 − 𝐝𝑖‖2

2 ,   for 𝑖 = 𝑘

 ‖𝐒𝒌𝐰𝑖 − 𝟎‖2
2 ,   for 𝑖 ≠ 𝑘

 (5) 

for 𝑖, 𝑘 ∈ {0,1, … , 𝐾},  which states that the desired pulse-
compressed MIMO response is 𝐳𝑘𝑖 = 𝐝𝑖 𝛿[𝑘 − 𝑖]  for 𝛿[𝑘]  the 
discrete delta function. Assuming the design statements in (5) 
all possess equal importance; we can collect them into a single 
design statement by adopting block matrix notation as  

 min 
𝐰𝑖

‖𝐒𝐰𝑖 − 𝐝𝑖‖2

2
, (6) 

in which 𝐒 = [𝐒1
𝑇   𝐒2

𝑇  … 𝐒𝐾
𝑇

]
𝑇

 and 𝐝𝑖 = 𝐞𝑖  𝐝𝑖, for elementary 
vector 𝐞𝑖 and  the Kronecker product. Therefore, the objective 
in optimizing 𝐰𝑖 is to yield desired response 𝐝𝑖 when applied to 
the ith transmit waveform while minimizing the response to the 
remaining K1 waveforms. The ensuing solution to (6) is  

 𝐰ME,𝑖 = (𝐒𝐻 𝐒 + 𝜇𝐈)
−1

𝐒𝐻𝐝𝑖 , (7) 

where 𝐰ME,𝑖 is the regularized multi-emitter (ME) least squares 
filter. As shown later, (7) provides marginal improvement over 
the LS-MMF from (2) since the limitation of both is insufficient 
DoFs to address cross-correlation, which is addressed next. 

III. MULTI-EMITTER MULTI-PULSE LS-MMF DESIGN 

The goal of complementary design (be that for waveforms 
[17, 18] or filters [14]) is to increase DoFs as a means of 
improving sidelobe suppression. Here, pulse compression 
filters are designed such that the superposition of their 
responses combine coherently to provide cancellation of both 
self- and cross-correlation sidelobes. 

To avoid confusion with the term “pre-summing”, which has 
been used in the context of slow-time receive combining (of 
repeated waveforms) both before and after pulse compression, 
we use “post-summing” for the latter. Consequently, post-
summing the responses from P consecutive pulses modulated 
with unique waveforms (having the same spectral support) is 
now equated with the desired response for the ith receiver. Of 
course, post-summing results in a reduction in the observable 
Doppler space by a factor of P and incurs some coherence loss 
for fast movers that exhibit a phase ramp across slow-time 
(ignored during post-summing). As an extension of (5), we seek 
to determine a set of P LS-MMFs such that 

𝐽𝑘(𝐰𝑖1, 𝐰𝑖2, . . , 𝐰𝑖𝑝) =

⎩⎪
⎪
⎪
⎨
⎪
⎪
⎪⎧

 
‖∑ 𝐒𝑘𝑝𝐰𝑖𝑝

𝑃

𝑝=1
− 𝐝𝑖‖

2

2

,   for 𝑖 = 𝑘

‖∑ 𝐒𝑘𝑝𝐰𝑖𝑝

𝑃

𝑝=1
− 𝟎

‖
2

2

,   for 𝑖 ≠ 𝑘

 .  (8) 

Like (6), we can rewrite the multi-emitter optimization 
problem (4), using the complementary cost functions in (8), in 
block form as 

 min
𝐰̅𝑖

‖𝐒̿𝐰𝑖 − 𝐝𝑖‖2

2
 , (9) 

where matrix 𝐒̿ = [𝐒1 𝐒2   …  𝐒𝑃] is comprised of P convolution 
block matrices, which for the pth pulse takes the form 𝐒𝑝 =
[𝐒1𝑝

𝑇   𝐒2𝑝
𝑇  … 𝐒𝐾𝑝

𝑇 ]𝑇  for K concurrently emitted waveforms, and 
the associated concatenated filterbank 𝐰̅𝑖 = [𝐰𝑖1

𝑇  𝐰𝑖2
𝑇  … 𝐰𝑖𝑝

𝑇 ]𝑇 . 
We can further expand to encompass all K pulse-compression 
filters (agnostic to the particular receiver) as 

 min
𝐖

‖𝐒̿ 𝐖 − 𝐃‖2

2
 , (10) 

where 𝐖 is the block filterbank matrix whose kth column is 
comprised of the P LS-MMFs corresponding to transmitter k, 
and 𝐃 is a matrix whose kth column is the desired response for 
the kth emitter. The MIMO-MiCRFt (MM) solution is therefore 

 𝐖MM = (𝐒̿𝐻 𝐒̿ + 𝜇𝐈)
−1

𝐒̿𝐻 𝐃 . (11) 

For convenience, the matrices 𝐒̿, 𝐖, and 𝐃 are constructed as 

𝐒̿ =

⎣
⎢
⎢
⎢
⎢
⎡𝐒11 𝐒12 … 𝐒1𝑃

𝐒21 𝐒21 … 𝐒2𝑃

⋮ ⋮ ⋱ ⋮
𝐒𝐾1 𝐒𝐾2 … 𝐒𝐾𝑃 ⎦

⎥
⎥
⎥
⎥
⎤

∈ ℂ(𝐿+𝑁−1)𝐾×𝐿𝑃 , (12)  



𝐖 =

⎣
⎢
⎢
⎢
⎡
𝐰11 𝐰12 … 𝐰1𝐾

𝐰21 𝐰22 … 𝐰2𝐾

⋮ ⋮ ⋱ ⋮
𝐰𝑃1 𝐰𝑃2 … 𝐰𝑃𝐾⎦

⎥
⎥
⎥
⎤

∈ ℂ𝐿𝑃 ×𝐾, (13) 

𝐃 =

⎣
⎢
⎢
⎢
⎢
⎡𝐝1 𝟎 … 𝟎

𝟎 𝐝2 … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 … 𝐝𝐾⎦

⎥
⎥
⎥
⎥
⎤

∈ ℂ(𝐿+𝑁−1)𝐾×𝐾. (14) 

IV. SPECTRAL CONSIDERATIONS 

When the interfering waveforms occupy similar spectral 
footprints, the formulation in (7) does not provide the necessary 
DoFs to suppress cross-responses without incurring large SNR 
loss in the self-response. To provide a peak in the self-response, 
the associated MMF must provide gain in the passband of the 
corresponding waveform. If interfering waveforms occupy this 
same band, cross-correlation sidelobe suppression is limited.  

Consider the dual-transmitter case depicted in Figs. 1-4 
where MMFs are formed according to (7) and (11) and are 
compared to the matched filter. The two emitters have 
completely overlapped passbands, resulting in worst-case 
interference. Here, two unique sets of 500 random FM (RFM) 
waveforms were generated via the pseudo-random optimized 
(PRO-FM) approach [12], each having TB = 64. The per-
waveform separability is therefore 10 log10 (TB) =  18 dB. 
The waveform design spectral template is a super-Gaussian 
function with shape parameter n = 8 [19]. Per [16], each MMF 
desired response is based on the inverse FFT (IFFT) of the RMS 
combination of the obtained waveform spectra, albeit with 
sidelobes set to zero (i.e. including only the mainlobe). The 
diagonal loading factor 𝜇 is set to (TB)4, or 72 dB. 

Fig. 1 provides a frequency-domain view of the two single-
pulse MIMO LS-MMFs from (7), where S1(f ) and S2(f ) are the 
spectra of the two concurrent waveforms, W1(f ) is the MMF 
spectra for the former, and Z11(f ) and Z12(f ) are the ensuing self-
correlation and cross-correlation when W1(f ) is applied to each 
waveform. Since the two emitters have identical spectral 
occupancy, the MMF is unable to meaningfully reduce cross-
correlation interference since the given DoFs are used to 
suppress self-correlation sidelobes. Fig. 2 in turn illustrates the 
time-domain view, where the MMF yields 5.2 dB of additional 
self-correlation sidelobe suppression in 𝑧11(𝜏) , for 𝜏  the lag 
index, at a cost of 3.4 dB of mismatch loss. The 4.4 dB cross-
correlation suppression in 𝑧12(𝜏) is likewise modest. The cross-
correlation of 24 dB has an extra 6 dB due to post-summing 
by 4 to facilitate direct comparison with the following case. 

Now consider the case in which P = 4 pulses having distinct 
waveforms are used in this two-emitter context to construct a 
set of 42 MMFs using MIMO-MiCRFt according to (11), the 
pulse compressed responses of which are post-summed as 
described in Sect. III. Figs. 3 and 4 show the ensuing frequency- 
and time-domain results, where Z11(f ) appears similar to Fig. 1 
while Z12(f ) is now greatly attenuated. Per Fig. 4, both the self-
correlation sidelobes of 𝑧11(𝜏)  and the cross-correlation 
interference of 𝑧12(𝜏)  are suppressed by nearly 150 dB. 
However, the price for this cancellation is 5.1 dB of loss, which 

is due to a low regularization setting. In subsequent sections, 
regularization is set to a higher value, thereby admitting higher 
sidelobes in exchange for much less mismatch loss. 

 
Fig 1: Power spectra for non-complementary LS-MMFs via (7) 

 
Fig 2: Filter response for non-complementary LS-MMFs via (7) 

 
Fig 3: Power spectra for complementary (P = 4) MIMO MiCRFt via (11) 

 
Fig 4: Filter response for complementary (P = 4) MIMO MiCRFt via (11) 



V. MMF FOR MIMO RADAR (LOOPBACK RESULTS) 

Now consider a comparison between four possible candidate 
pulse compression filters constructed for a dual transmitter 
arrangement. The candidate filters are the matched filter, 
standard LS-MMFs (2), MIMO LS-MMFs (7), and the MIMO 
MiCRFt filterbank (11) for P = 4. To provide a fair comparison 
in terms of dimensionality, the first three cases have their filter 
outputs post-summed by four as well. For the three LS-derived 
MMFs, the regularization factor was tuned for a much lower 
mismatch loss than in Sect. IV (detailed below). 

To provide further realism, the super-Gaussian PRO-FM 
waveforms from Sect. IV were captured in a loopback hardware 
configuration. A consequence of the spectral containment from 
super-Gaussian shaping is the appearance of near-in shoulder 
lobes around the pulse compression mainlobe. For this set of 
waveforms, the RMS peak value for the shoulder lobes is 17.0 
dB (matched filter), which modestly decreases to 17.8 dB, 
17.4 dB, and 21.2 dB for LS-MMF, MIMO LS-MMF, and 
MIMO MiCRFt, respectively. As discussed in [16], these 
shoulder lobes are persistent attributes that do not experience 
incoherent averaging suppression like other RFM sidelobes 
when slow-time processing is performed. However, their close 
mainlobe proximity makes them effectively indistinguishable 
from the modest broadening encountered when tapering 
standard LFM/NLFM waveforms. Therefore, Table 1 excludes 
these shoulder lobes from the sidelobe metrics. 

Fig. 5 depicts the post-summed response of standard LS-
MMF from (2) compared with a corresponding matched filter 
output. While the sidelobe floor of the MMF self-response 
𝑧11(𝜏)  is suppressed by roughly 30 dB, the MMF cross-
response 𝑧12(𝜏)  is hardly affected (decreasing by 0.8 dB 
relative to the cross-correlation). With autocorrelation sidelobes 
already low (typical for PRO-FM), the benefit of this approach 
is minimal, as illustrated experimentally in the next section. 

Fig. 6 shows the MIMO LS-MMF from (7), which seeks to 
suppress both self- and cross-response sidelobes on a per-pulse 
basis. Relative to the autocorrelation, 𝑧11(𝜏)  is now slightly 
raised (by 1.5 dB), but 𝑧12(𝜏) is reduced by 4 dB, a modest net 
improvement. 

Finally, MIMO MiCRFt via (11) is depicted in Fig. 7. Here 
both the self-response 𝑧11(𝜏)  and cross-response 𝑧12(𝜏)  are 
attenuated. Comparing with Fig. 5, we note that 𝑧11(𝜏) has not 
quite decreased to the level achieved by standard LS-MMF. 
Rather, MiCRFt uses the additional DoFs to balance the 
suppression of both self- and cross-responses. 

It is also useful to consider a collective sidelobe floor 
comprised of both self- and cross-responses for each approach, 
thereby depicting the limiting behavior. For each filter type, 
Fig. 8 plots the ensuing sum of self- and cross-responses, where 
we observe that the matched filters, standard LS-MMFs, and 
MIMO LS-MMFs all yield quite similar peak sidelobe levels, 
with the latter the lowest by about 5 dB. In contrast, MIMO 
MiCRFt provides an additional 20 dB in collective sidelobe 
suppression. Moreover, mismatch loss is 0.9, 1.55, and 1.54 dB 
for LS-MMF, MIMO LS-MMF, and MIMO MiCRFt, 
respectively, indicating that relatively low loss can be achieved. 

 
Fig 5: Matched filtering versus LS-MMF from (2) for P = 4 

 
Fig 6: Matched filtering versus MIMO LS-MMF from (7) for P = 4 

 
Fig 7: Matched filtering versus MIMO MiCRFt from (11) for P = 4 

 
Fig 8: Comparison of collective self- and cross-responses 

A quantitative comparison is shown in Table 1 using a 
variety of performance metrics that are root-mean-square 
(RMS) combined over the 125 independent responses obtained 



for each filter type when the 500 unique loopback waveforms 
are post-summed in sets of 4. Well-known metrics of peak 
sidelobe level (PSL), integrated sidelobe level (ISL), and 
mismatch loss (MML) [3] are shown along with metrics that 
capture cross-response.  

One of these is the peak cross-response level (PCRL) that 
evaluates the maximum cross-response between a given 
waveform and filter when both are normalized to have unity 
Euclidean length. For convolution matrix 𝐒𝑘  formed from 
discretized waveform 𝐬𝑘 and arbitrary pulse compression filter 
𝐰𝑖 (and for i  k), this metric can be posed as 

 PCRL𝑘𝑖 = max
{

(𝐒𝑘𝐰𝑖) ⊙ (𝐒𝑘𝐰𝑖)∗

‖𝐬𝑘‖2
2‖𝐰𝑖‖2

2 }
 for 𝑖  𝑘. (15) 

With (15) a cross-response analog to PSL, we can likewise 
define an integrated cross-response level (ICRL) akin to ISL as 

 ICRL𝑘𝑖 =
(𝐒𝑘𝐰𝑖)𝐻(𝐒𝑘𝐰𝑖)

‖𝐬𝑘‖2
2‖𝐰𝑖‖2

2  for 𝑖  𝑘, (16) 

which yields the total normalized energy in the filter output. 
The pairwise waveform/filter metrics in (15) and (16) can 

then be extended over the full set of K emitters (ignoring 
relative received power scaling). Thus, a peak total-interference 
level (PTIL) extension of (15) quantifies the maximum 
correlation-induced interference for a set of K independent 
transmit waveform convolution matrices {𝐒1, 𝐒2, … , 𝐒𝐾} via 

 PTIL𝑖 = max
⎩⎪
⎨
⎪⎧

||
|
|
|

𝐒̃𝑖𝐰𝑖

‖𝐬𝑖‖2
2‖𝐰𝑖‖2

2 + ∑
𝐒𝑘𝐰𝑖

‖𝐬𝑘‖2
2‖𝐰𝑖‖2

2

𝐾

𝑘=1
𝑘≠𝑖 ||

|
|
|2

⎭⎪
⎬
⎪⎫, (17) 

where 𝐒̃𝑖 is the ith waveform convolution matrix in which the 
middle 2⌈𝑓s /𝐵⌉ − 1 rows (corresponding to mainlobe samples) 
are zeroed-out based on oversampling ratio of 𝑓s /𝐵. Similarly, 
an integrated total interference level (ITIL) extension of (16) 
provides the total normalized sidelobe energy as 

          ITIL𝑖 = (𝐒̃𝑖𝐰𝑖)
𝐻 (𝐒̃𝑖𝐰𝑖)

‖𝐬𝑖‖2
2‖𝐰𝑖‖2

2 + ∑
(𝐒𝑘𝐰𝑖)𝐻(𝐒𝑘𝐰𝑖)

‖𝐬𝑘‖2
2‖𝐰𝑖‖2

2  
𝐾

𝑘=1
𝑘≠𝑖

. (18) 

These metrics are tabulated below for the given set of MMF 
methods and waveforms, along with mismatch loss (MML). For 
metrics (15)-(18) that capture the collective sidelobe response 
it is clear that MIMO-MiCRFt yields superior performance. 
 

Table 1: Pulse Compression Performance Metrics (dB) 
 Matched 

Filter 
LS-MMF 

(2) 
MIMO 

LS-MMF (7) 
MIMO-MiCRFT 

for P = 4 (11) 
PSL 34.3 45.7 32.4 53.0 
ISL 16.8 34.3 13.9 33.5 
PCRL 24.0 24.7 28.3 51.1 
ICRL 0.4 0.8 4.3 26.2 
PTIL 24.2 23.3 25.9 48.3 
ITIL 7.4 16.8 7.6 29.6 
MML 0 0.90 1.55 1.54 

VI. MMF FOR MIMO RADAR (OPEN-AIR RESULTS)  

We now use open-air measurements to compare these MMF 
methods. Here, K = 2 collocated emitters transmit the same two 

sets of 500 unique PRO-FM waveforms assessed in Sects. IV 
and V, parameterized by a pulsewidth of T=1.28 s and a 6-dB 
bandwidth of B = 50 MHz, so TB = 64. Each waveform was 
digitally upconverted to a center frequency of 3.40 GHz and 
produced by a 2-channel arbitrary waveform generator (AWG). 
Receive capture was performed by a real-time spectrum 
analyzer operating at 400 Megasamples/second. The loopback-
captured waveforms from Sect. V were used to instantiate the 
receive filters, again using P = 4 post-summing. 

The range-Doppler response obtained by matched filtering 
for emitter k = 1 is depicted in Fig. 9, which illustrates the 
difficulty caused by the superposition of RSM (a self-
correlation effect) and cross-correlation sidelobes. As expected 
from Sect. V, Fig. 10 likewise shows that standard LS-MMFs 
(each based on a single waveform) provide little additional 
benefit in this context, yielding 0.9 dB in sidelobe suppression. 

When the multi-emitter scenario is addressed on a single-
pulse basis for MMF design, per (7), the range-Doppler 
response in Fig. 11 is realized, with the sidelobe floor reduced 
by 2.7 dB relative to the matched filter case. In other words, 
while a MIMO extension to the LS-MMF framework does 
provide some benefit, there are simply insufficient DoFs to 
make a meaningful difference. In Fig. 11 it is not yet clear 
exactly where the movers are located. 

The most significant improvement (12.7 dB) is obtained by 
MIMO MiCRFt in Fig. 12 due to the additional DoFs afforded 
by complementary combining. Indeed, the full benefit is not 
even observed in these results because the self-/cross-
correlation sidelobes have been pushed below the noise floor, 
allowing the actual movers to be easily identified. 

 
Fig 9: Open-air range-Doppler response for 2 emitters: matched filtering 

 
Fig 10: Open-air range-Doppler response for 2 emitters: LS-MMF (2) 



 
Fig 11: Open-air range-Doppler response for 2 emitters: MIMO LS-MMF (7) 

 
Fig 12: Open-air range-Doppler response for 2 emitters: MIMO MiCRFt (11) 

 
As a final comparison to characterize the improvement in 

contrast between movers and sidelobe interference, the 
histograms in Fig. 13 were formed from the samples (in dB) for 
each of the range-Doppler responses. Comparing the peaks of 
each histogram (approximating the mode of each underlying 
distribution) shows the progressive improvement in self-/cross-
correlation suppression. Likewise, examining the right tail of 
each distribution shows why movers (lying between 100 dB 
and 85 dB) are obscured for the matched filter, LS-MMF, and 
MIMO LS-MMF cases. In contrast, MIMO MiCRFt exhibits a 
“heavy tail” corresponding to the movers since the overall 
sidelobe response has been significantly reduced. 

 
Fig 13: Histograms (in dB) of open-air range-Doppler responses of Figs. 9-12 

VII. CONCLUSIONS 

The mismatched complementary-on-receive filtering 
(MiCRFt) method from [14, 15] has been extended to account 

for multiple emitters. Building upon the existing separability 
provided by the dimensionality of distinct sets of nonrepeating 
waveforms, this MIMO MiCRFt formulation has been 
demonstrated via simulation, loopback, and open-air 
measurements to enable significant improvement in the 
suppression of both self- and cross-correlation sidelobes. The 
cost for this improvement is modest mismatch loss and some 
trade-off in the available Doppler space due to the need for 
slow-time post-summing.  
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