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 Abstract—Pulse repetition interval (PRI) staggering is known 
to provide expansion of unambiguous Doppler. Random PRI 
staggering provides further diversity since each stagger sequence 
can be unique, though doing so tends to incur higher Doppler 
sidelobes. Expanding on recent work where the Doppler response 
is posed as a function of the sequence of continuously-
parameterized stagger values, here the formulation of a gradient-
based optimization framework is shown to flatten the response 
over a prescribed extended Doppler interval when applied to 
arbitrary random stagger sequences. A metric for uniqueness 
between PRI sequences is also examined. Both simulated and 
open-air measurements demonstrate that optimization 
significantly improves peak sidelobe performance while 
maintaining uniqueness of the random instantiation (i.e. does not 
collapse to a single solution). 
 
Index Terms—radar signal processing, diversity methods, Doppler 
radar, gradient methods, radar measurements 

I. INTRODUCTION 
N standard pulse-Doppler radar, pulses are transmitted with 
a uniform pulse repetition interval (PRI), which permits the 
use of simple Doppler processing via fast Fourier transform 

(FFT) [1-3]. However, this uniform structure also results in 
aliasing of the Doppler spectrum when radial motion involves 
a Doppler frequency shift whose magnitude exceeds one-half 
of the pulse repetition frequency (PRF). While mitigating such 
Doppler ambiguity can clearly be achieved by increasing the 
PRF, the reciprocal relationship of PRI = 1/PRF means the 
ensuing smaller PRI incurs a shortened range ambiguity. 

A well-known work-around to this fixed range/Doppler 
ambiguity trade-space is to avoid the uniform structure by 
introducing variability. Arguably the more common approach, 
generally denoted as “PRF staggering”, is to employ a fixed 
PRF for a coherent processing interval (CPI) that is then 
changed in a subsequent CPI so that ambiguities can be 
unwrapped via methods like the Chinese Remainder Theorem, 
Coincidence algorithm, or the Clustering algorithm [1,4-9].  

One could alternatively impose variability within a single 
CPI by performing “PRI staggering” on the individual pulses 
(note that the PRF and PRI staggering nomenclature is 
sometimes used interchangeably, but here we rely on the above 
definitions). This manner of pulse diversity can be further 
categorized into either static forms in which interpulse times are 
taken from a finite set of values (e.g. [10,11]), structured forms 
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for which PRIs exhibit a functional dependence on slow-time 
[12-15], or random forms in which PRIs are independently and 
randomly selected [16-25]. 

Random PRI staggering generally enjoys greater diversity 
than is realized by static or structured forms, particularly since 
randomness facilitates new and unique sequences on demand, 
though there are associated performance costs [26]. The degree 
of allowable random deviation from a uniform PRI structure 
determines how well the otherwise-repeated Doppler ambiguity 
mainlobes can be suppressed. Since ambiguity is conserved, 
higher deviation therefore tends to an average Doppler response 
that is flatter and approaches 1/M, for M the number of pulses 
in the CPI [26]. However, greater deviation from uniform does 
come at the cost of range swath loss and ensuing pulse 
eclipsing. Moreover, individual random instantiations can still 
produce spurious Doppler sidelobe peaks that would likely 
translate into false alarms, thereby limiting the utility of purely 
random PRI staggering. 

To address this limitation, while still realizing the diversity 
benefits of random PRI staggering, we propose a gradient-based 
approach that converts a given random instantiation into a 
pseudo-random PRI sequence having Doppler sidelobes that are 
flattened via optimization. Specifically, we leverage the 
parameterized stagger model developed and analyzed in [26] 
and apply the p-norm based gradient-descent approach 
developed in [27], albeit now in the context of Doppler response 
instead of waveform design.  

Subsequent analysis of these optimized pseudo-random PRI 
sequences reveals that worst-case random performance (in 
terms of spurious peaks) can be eliminated, with corresponding 
design guidelines developed in the process. Moreover, with 
sufficient stagger design freedom the uniqueness benefit of 
random staggering can be preserved. Both simulated and open-
air experimental measurements are used to illustrate the 
prospective benefits and trade-offs. 

From what the authors have been able to discern, rather little 
attention has been paid to the optimization of random PRI 
staggering. In the early 1970s Prinsen [28] proposed using 
random initializations to optimize a cost function based on 
signal-to-clutter ratio in a gradient-descent manner. Then 
within the last year of this writing de Martin and van Rossum 
[29] examined the use of sparsity and genetic algorithms, which 
tend to produce randomized sequences. In contrast, the 
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approach developed here relies on a stagger-parameterized 
version of the Doppler response from [26] that is assessed using 
a p-norm metric and optimized via gradient-descent. Of course, 
it is expected that a variety of other metric / optimization 
method combinations could conceivably arise from this 
framework. 

II. STAGGERED PRI DOPPLER RESPONSE 
It is convenient to pose the CPI of M staggered PRIs relative 

to a uniform CPI so a consistent dwell time is maintained for 
comparison (with Doppler resolution likewise fixed). Denote 
the mth PRI for m = 1, 2, …, M as the time interval 

 
 avgm mT T T= + ∆ ,                                (1) 

 
with the ∆Tm deviations independently drawn from interval 
[−δ, +δ] with uniform probability and the average PRI therefore  
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Consequently, the overall CPI extent is 
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which we shall enforce to be a fixed value through appropriate 
dilation/contraction scaling since a given random (or optimized 
pseudo-random) instantiation of Tm values cannot be expected 
to satisfy a fixed total. 

As developed in [26], the slow-time Doppler phase induced 
by a radial mover for the mth PRI can be expressed as 
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where fD = 2vrad/λ is Doppler frequency in Hertz for radial 
velocity vrad and wavelength λ. The term 
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for m = 1, 2, …, M  in (4) is the accumulated slow-time at the 
start of the mth PRI, with T0 = ∆T0 = 0, and thus Tacc(1) = 0 for 
the first pulse. The second line of (4) expresses slow-time phase 
in terms of normalized Doppler fnD = fD Tavg and similarly 
normalized accumulated slow-time 
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1 For simplicity, we are excluding the tilde notation on the scattering and noise terms from where (14) was derived in [26] since the same level of modeling detail 
is not required here. 

The summands in (6), via (1) and (5), are 
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for m = 1, 2, …, M and with 0 0 0ε ε= ∆ = . The normalized 
deviations mε∆  in (7) thus lie on the interval 
 

mδ ε δ− ≤ ∆ ≤ +   for  avg/Tδ δ= ,                  (8) 
 
which can be expressed as a percentage. It is worth noting that 
the accumulation in (4)-(6) means that the staggers produce a 
cumulative effect that can lead to sequences that are quite 
different from the uniform PRI arrangement. 

Using (7), now define the M × 1 stagger vector 
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where 1(M−1)×1 is a vector of ones and the bottom line of (9) 
collects the set of M − 1 optimizable parameters (i.e. the mε∆  
terms). Also define the M × M  lower triangular matrix B that 
has ones on/below the main diagonal and zeros above. 
Consequently, we can express (6) via (9) as 
 

acc( ) b εT
mmε =                                (10) 

 
with bm containing the elements from the mth row of B, i.e. 
 

1 2[ ]b b b BT
M = ,                           (11) 

 
for (•)T the transpose operation. Thus, (4) becomes 
 

( )nD nD( ) exp 2 b εT
m mv f j fπ= ,                     (12) 

 
noting the change to dependence on normalized Doppler fnD . 
By extension, the M × 1 stagger-parameterized Doppler steering 
vector becomes 
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with exp{•} denoting element-wise exponentiation. Note that if 

1 2 1 0,Mε ε ε −∆ = ∆ = = ∆ =  then (13) reverts to the usual 
Vandermonde form for uniform PRI. 

Subsuming beamforming, pulse compression, and in-
phase/quadrature (I/Q) sampling it is shown in [26]1 that the 
received signal model for Doppler processing can be written as 
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where nD( ; )x f  is the scattering in the th  range bin 
corresponding to Doppler steering vector nD( )fv , and ( )n   is 
an M × 1 vector of additive noise. Discretizing the Doppler 
continuum then yields the approximation in the bottom line of 
(14), with the columns of matrix V the Doppler steering vectors 
associated with individual scattering elements in ( )x  . 

Nominal discretization of Doppler given uniform PRI would 
involve M equally-spaced Doppler frequencies on the interval 
fD ∈ [−PRF/2, +PRF/2] (or fnD ∈ [−1/2, +1/2] in normalized 
form), with finer granularity realized via oversampling by 
factor K. Sufficient PRI staggering provides an extension of the 
Doppler interval above by factor β ≥ 1, yielding N = βKM 
total steering vectors for ceiling operation • . Thus, matrix V 
is M × N and can be written as 
 

{ }nDexp 2V Bε f Tj π= ,                            (15) 

 
again using element-wise exponentiation and with vector fnD 
containing N normalized frequency values after discretization. 
If N is even-valued, it is useful to insert an additional term so 
that zero Doppler is included. 

The value of β arises from the least common multiple over 
the set of (1/Tm) values, which could include Doppler 
frequencies that far exceed physical reality (especially if 
irrational values are permitted). In [26] it was suggested that a 
reasonable βmov value be used instead that sufficiently captures 
the radial velocities (and ensuing Doppler frequencies) of 
realistic movers. 

Here, since we are seeking to optimize a sequence of stagger 
values that provide a sufficiently flattened response over the 
expanded interval fnD ∈ [−βmov/2, +βmov/2], it is useful to 
introduce the term βopt for the intended optimization interval. 
Because the scattering from a large mover at one edge of this 
interval would induce a Doppler sidelobe response at the 
opposite edge, it is therefore appropriate to set βopt = 2βmov. 
Moreover, since it may be necessary to dilate/contract some 
random (or optimized pseudo-random) set of Tm values to 
achieve a prescribed (and fixed) TCPI, it is useful to increase βopt 
a modest amount further (see Section III-C). 

The relative Doppler response between two frequencies is 
shift-invariant, meaning that consideration of the zero-
referenced response yields a general performance assessment 
for the entire Doppler span of interest. Therefore, denote 
v0 = 1M ×1 for fnD = 0 so that the zero-referenced Doppler 
response is u(fnD) = vH(fnD) v0, which translates into the N × 1 
gain-normalized, discretized vector 
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for (•)H the Hermitian operation. Here, we have explicitly 

denoted dependence on the M × 1 stagger vector ε from (9). The 
parameters in ε lie on a (bounded) continuum and thus each 
element of (16) is a continuous function of these parameters, 
thereby permitting determination of a gradient. 

It was shown in [26] that the closed-form solution 
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(17) 
 
is obtained by taking the expectation of the magnitude-square 
of the zero-referenced Doppler response as a function of the 
number of pulses M and normalized stagger limit avg/ .Tδ δ=  
Fig. 1 plots (17) for different values of δ  and for M = 100, 
where it is observed that increasing the stagger limit yields a 
progressively flatter expectation response that is tending toward 
−10 log10 (M = 100) = −20 dB. 

 
Fig. 1. Expectation of zero-referenced Doppler response per (17) for different 
limits on random staggering and M = 100 pulses 

 
Fig. 2. Single instantiation of random staggering for ±30% limits compared to 
expectation via (17), illustrating Doppler sidelobe variation 

 
While Fig. 1 suggests flatter Doppler sidelobes are achieved 

with sufficient random staggering, the expected response does 
not tell the whole story since it only represents the mean. In 
contrast, consider the single random instantiation in Fig. 2 for 
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30% staggering. While we do see a general flattening relative 
to a uniform PRI (the 0% case in Fig. 1), we also observe some 
undesirable random sidelobe peaks that would likely translate 
into false alarms in a subsequent detection stage of the radar. 
Consequently, there remains a need to optimize the set of 
staggers into a pseudo-random form to ensure a flatter response 
in each instantiation (i.e. reduce the variance). Note that, as 
demonstrated in [26], there is essentially a conservation of 
mainlobe/sidelobe energy in each Doppler ambiguity interval 
so that a flattened response approaching −10 log10(M) is the best 
that one can achieve.  

III. STAGGERED PRI GRADIENT-DESCENT OPTIMIZATION 
The following develops a cost function that is appropriate 

for the particular problem of staggered PRI optimization in 
which the desired goal is to flatten Doppler sidelobes out to 
some multiple βopt of the nominal [−PRF/2, +PRF/2] interval. 
Because this cost function is posed as a continuous function of 
the underlying stagger parameters, the gradient is then 
determined for use in a gradient-descent framework. 

A. PRI Staggering Cost Function 
The random PRI formulation discussed above and 

analytically evaluated in [26] is based on bounded deviations 
from the uniform PRI structure. While preservation of the 
[ , ]δ δ− +  normalized limits could be achieved by introducing 
constraints into the optimization framework, we instead rely on 
a bounding function imposed as 
 

1 1 sin( )m m mε ε δ α= + ∆ +
                        (18) 

 
for m = 1, 2, …, M − 1 (recall that ε 0 = 0) such that (8) is 
satisfied with any real-valued αm . Collecting these terms into 
the M × 1 vector 1 2 1[0 ]T

Mα α α −=α   leads to the continuous 
functional dependence ( ) ( )→ε α u α  per (16), meaning the 
ability to compute a gradient is likewise preserved. 

Since the goal is to flatten the sidelobes within some 
prescribed Doppler interval, a p-norm cost function is a 
judicious choice. Specifically, we make use of the generalized 
integrated sidelobe level (GISL) metric that was employed in 
[27,30] for radar waveform optimization, which in the PRI 
staggering context takes the form 
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for 2 ≤ p < ∞ and with   the Hadamard product. When p = 2, 
(19) becomes an integrated Doppler sidelobe level (IDSL) 
metric, while letting p → ∞ likewise realizes a peak Doppler 
sidelobe level (PDSL) metric. The latter is more useful to yield 
a flatter response since it seeks to minimize the largest sidelobe 
(i.e. a minimax approach), though numerical instability can 
arise if p is too large. It was shown in [27] in the waveform 
design context that modest values of p can suffice; thus we shall 
limit attention to p = 10 here as well without loss of generality. 

The N × 1 selection vectors wml and wsl are comprised of 

ones and zeros to extract the respective mainlobe and sidelobe 
regions of ( )u α , with the latter subsuming the extended 
Doppler region available due to staggering out to the limit 
specified by βopt. The vector wml selects for the nominal 
mainlobe, which corresponds to fnD ∈ [0, 1/M], noting Dopper 
response symmetry. 

For wsl the obvious choice would be to select for 
fnD ∈ [1/M, 0.5βopt]. However, as Figs. 1 and 2 illustrate, the 
nominal sidelobe interval within fnD ∈ [1/M, 0.5] is not greatly 
affected by staggering, which can be understood based on the 
notion of Doppler “slope deflection” discussed in [26]. 
Moreover, the closest sidelobe to the mainlobe could readily 
dominate the GISL metric, despite the fact that staggering has 
almost no impact upon it. Consequently, to prevent the 
optimization from becoming fixated on this nominal Doppler 
interval, we instead define wsl to select fnD ∈ [0.5, 0.5βopt]. Put 
another way, the interval fnD ∈ [1/M, 0.5] is being ignored. 

Finally, it is worth noting that (19) is a nonconvex function 
of ,α  even ignoring the cyclic structure imbued by the 
sinusoidal mapping into .ε  Consequently, there will exist many 
local minima solutions that may realize qualitatively similar 
performance in terms of flattened Doppler sidelobes. Since the 
particular local minima attained depends on the given random 
initialization, we can therefore reasonably assume that each 
optimized pseudo-random stagger sequence obtained is unique, 
with a metric to that effect proposed and evaluated in Section 
IV-C. 

B. Gradient-Descent Optimization 
In [27] the gradient was determined for the GISL cost 

function within the context of frequency modulated (FM) 
waveforms parameterized according to the polyphase-coded 
FM (PCFM) signal structure [31,32], leading to physically 
realizable signals that were demonstrated experimentally in 
hardware. This approach was also recently extended to other 
“quasi-bases” for FM waveform optimization [33]. Here we 
leverage portions of that derivation since the GISL cost function 
is likewise employed, though the underlying Doppler signal 
model developed above does involve a distinctly different 
functional relationship.  

As derived in Appendix A, the gradient of (19) with respect 
to the α  parameters takes the form  
 

sl ml

sl ml
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where the N × 1 columns of matrix 1 1 1[ ]N M× −=G 0 g g  are 
 

( )( )( ){ }( 2)
nD 0(cos{ } )g u V f α e B v up H T T

m m
− ∗= ℑ     (21) 

 
via (39) and (37), respectively. Here, { }ℑ   extracts the 
imaginary part of the argument, em is an M × 1 elementary 
vector with a 1 in the mth element and zero otherwise, and (•)* 
denotes complex conjugation. In Section IV we examine a 
particular implementation of this gradient to assess the 
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achievable performance enhancement and other behavioral 
attributes. 

C. Contraction / Dilation Scaling to Preserve CPI Extent 
A random or pseudo-random (after optimization) stagger 

sequence must be scaled to preserve a fixed TCPI, though the 
pulse length remains unchanged. Accounting for the final (Mth) 
PRI as well, consider two extreme cases of CPI 
contraction/dilation in which M − 1 PRIs exhibit all maximum 
(or all minimum) staggers of 1mε δ= ±  and the single 
remaining PRI (denoted m ) conversely has the 
minimum/maximum of 1 .mε δ=



  Noting via (3) that the 
intended normalized CPI extent is CPI avg/ ,T T M=  the required 
scaling factor using (6) and (7) is therefore 

 

( ) ( )
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(1 )( 1)(1 ) (1 ) ( 1)
M M

M M M δδ δ δ δ
= ≈

±− ± + ± − 

.     (22) 

 
Assuming M is sufficiently large produces the approximation in 
(22). Thus, the final normalized and scaled extent for the thm  
PRI is  
 

,scale (1 ) / (1 )mε δ δ≈ ±




,                          (23) 
 
which can be viewed as a bound on the largest/smallest PRI that 
could be obtained. 

Since the bounds in (23) violate the per-PRI stagger limits 
of 1 δ± when performing scaling for the CPI extent, the degree 
to which random/optimized staggering instantiations actually 
approach these bounds merits examination. Fig. 3 depicts the 
results from 1000 independent Monte Carlo trials as a function 
of ,δ  illustrating the longest/shortest PRI after scaling (short 
dashed traces) determined over the entire set of trials. The 
individual PRI limits of 1 δ±  (long dashed traces) and the 
bounds above (solid traces) are included for comparison. In 
short, we observe that even the worst cases in 1000 trials exceed 
the 1 δ± per-PRI limits by only a small amount. 

The histogram in Fig. 4 further illustrates this effect via the 
distribution of 105 randomly staggered PRIs after scaling (for 
sets of M = 100), with the dashed trace denoting the uniform 
distribution used for stagger generation based on 30%δ = . A 
small tail is observed on each side, indicating the design 
boundary on minimum and maximum PRI is slightly violated 
due to scaling, though the degree and amount are rather small. 
The right side of the histogram, indicative of the case when 
large PRIs are dilated, exhibits a slightly longer tail than the left 
side, when small PRIs are contracted. This behavior agrees with 
Fig. 3, where dilation posed a higher tendency to exceed the 
design boundary. 

Of the two extremes, contraction could be problematic from 
the perspective of loss in the shortest PRI interval (i.e. 
exacerbating blind ranges), yet the worst case we observe is 
nearly identical to the 1 δ−  lower PRI limit. Conversely, the 
dilation case impacts the Doppler span (which contracts), with 
Fig. 3 suggesting that an expansion of βopt by the factor 1 δ+  
should be sufficient to accommodate the instances where 

scaling otherwise pulls an unoptimized portion of Doppler into 
the span of interest. Of course, one could also choose to dicard 
any random instantiation having PRIs that are too large or 
small, though doing so would mean the computational cost of 
optimization is essentially wasted. 

 
Fig. 3. Minimum/maximum PRIs (after scaling) for 1000 trials of M = 100 
pulses as a function of δ along with per-PRI limits and scaling bounds (23) 

 
Fig. 4. Histogram of randomly generated and scaled PRIs for 1000 trials of   M 
= 100 pulses and 30%δ =  

IV. ASSESSMENT OF STAGGERING OPTIMIZATION 
Given (20) and (21), there are many gradient-based 

optimization methods that one could employ. Here we use the 
limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm [34], which is an unconstrained quasi-Newton 
method that only requires a gradient calculation each iteration 
(i.e. avoids determining the Hessian). In the results that follow, 
the particular implementation involves using the “minf_lbfgs” 
function in Tensorlab [35], with the objective function’s 
iterative difference tolerance set to 10−7 and the step-size 
tolerance set to 10−8. 

Independent random draws from a uniform distribution on 
[−π, +π] are used to initialize the M −1 values of αm , which 
along with δ  produce an initial random stagger sequence via 
(18). Because the Doppler response is symmetric about zero, 
only the fnD ∈ [0, 0.5βopt] frequency interval is shown. 

 

A. PRI Staggering Optimization Examples 
Figs. 5 and 6 illustrate two particularly severe examples of 



6 
IEEE TRANSACTIONS ON RADAR SYSTEMS 

high PDSL (formally defined in Section IV-B) resulting from 
random stagger instantiations. Indeed, these were the worst 
cases observed over 1000 independent trials for M = 100 pulses 
and 30%δ = . Gradient-based optimization respectively 
achieves 9.8 dB and 8.8 dB reduction in PDSL for these cases 
when βopt is set to 4 (along with a 1 δ+ extension to account 
for possible Doppler span contraction). Most notably, the 
optimization serves to eliminate the spurious peaks that would 
otherwise likely translate into false alarms. 

 
Fig. 5. Single instantiation of random staggering for M = 100 and 30%δ =
compared to gradient-based optimization (9.8 dB PDSL improvement) 

 
Fig. 6. Single instantiation of random staggering for M = 100 and 30%δ =
compared to gradient-based optimization (8.8 dB PDSL improvement) 

 
We again observe that the nominal Doppler interval 

fnD ∈ [0, 0.5]) essentially follows the roll-off one expects from 
a uniform PRI, with modest deviation for fnD ∈  [0.25, 0.5] that 
is nonetheless still well below the level of the extended Doppler 
span. As noted in Section III-A, this behavior can be explained 
by the notion of phase “slope deflection” discussed in [26], 
where a sufficient amount of Doppler offset is necessary before 
any meaningful deviation from the standard uniform-PRI 
Doppler response is actually observable. 

 
2 In [26] IDSL was defined to comprise only the nominal normalized Doppler interval fnD ∈ [0, 0.5] while an extended version thereof denoted as EDSL expanded 

to include fnD ∈ [0, 0.5β ] for arbitrary β to illustrate the distinction between interval extent. Here we only consider the extended interval so simply use the moniker 
IDSL as a catch-all since it is directly analogous to integrated sidelobe level (ISL) in waveform optimization. 

 
Fig. 7. Aggregate mean and maximum of random staggering for M = 100 and 

30%δ = compared to gradient-based optimization 
 

Fig. 7 then illustrates the advantage of optimization when 
the Doppler response is examined in aggregate across the entire 
set of 1000 independent staggering trials. Specifically, while 
the root-mean-square (RMS) responses are quite similar for the 
initial and optimized versions, albeit with a modest flattening 
of the latter, the maximum response at each fnD value across the 
1000 trials reveals a 2-10 dB difference. Interestingly, the most 
significant difference for the maximum response occurs at/near 
fnD = 1, which corresponds to spurious peak locations in the 
examples of Figs. 5 and 6 and aligns with the first ambiguity for 
0% staggering in Fig. 1. This consistent behavior suggests that 
some random instantiations retain a degree of uniform PRI 
structure. Moreover, we observe that the RMS (purple) and 
maximum (red) responses after optimization are now much 
closer, indicating significant variance reduction. In short, 
optimization avoids the worst-case conditions that randomness 
may induce. 

B. Numerical Analysis of PRI Staggering Optimization 
Let us now formally state a couple useful metrics for 

analysis. The p  =  2 version of (19), normalized by the 
optimization interval βopt, realizes the integrated Doppler 
sidelobe (IDSL)2 metric  
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for wsl encompassing the extended interval fnD ∈ [0.5, 0.5βopt], 
and wml selecting the mainlobe fnD ∈ [0, 1/M]. Similarly, the 
peak Doppler sidelobe level (PDSL) metric can be expressed as 
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which simply computes the ratio of the largest Doppler sidelobe 
(over the extended interval) to the mainlobe value at fnD = 0. 

We can then apply these metrics to the previous two sets 
(initial and optimized) of 1000 random PRI stagger sequences 
that have M = 100 pulses, ±30% limits and βopt = 4. First 
consider the IDSL metric of (24), with Fig. 8 depicting the 
ensuing histogram for each set of stagger sequences. From this 
perspective the benefit of optimization is underwhelming, with 
significant overlap between the histograms and optimization 
providing only about 0.1 dB improvement when viewed in 
totality. Of course, like its waveform optimization counterpart 
ISL, the IDSL metric captures a collective sidelobe response, 
and per Fig. 7, the RMS initial and optimized results are similar. 

  
Fig. 8. Histogram of IDSL from (24) for 1000 independent initial and optimized 
random stagger sequences for M = 100, 30%δ = , and βopt = 4 

 
In contrast, since the purpose of optimization here is to 

flatten staggered Doppler responses so that false alarms are not 
introduced (with p = 10 used for optimization), it stands to 
reason that PDSL should yield greater disparity. Indeed, Figs. 9 
and 10 show precisely that distinction, with the PDSL 
histograms for the initial and optimized cases in Fig. 9 revealing 
a clear and significant separation. Moreover, along with 
reducing PDSL, optimization also greatly reduces PDSL 
variance, with 98.9% of trials between −17.0 and −16.0 dB 
centered on the median of −16.5 dB. In contrast, this same 
percent of trials for initial random staggering lie between −13.5 
and −8.4 dB centered on the median of −10.9 dB. 

If we then determine the difference in PDSL for each 
intial/optimized pair of stagger sequences, Fig. 10 shows that 
between 3 and nearly 10 dB of improvement is obtained, with a 
median improvement of 5.6 dB. Per the examples in Figs. 5 and 
6, we can infer that the cases with the most improvement 
correspond to those in which large initial sidelobe peaks occur. 

Now consider the impact of the random stagger bound (also 
for βopt = 4). As we observed in Fig. 1 from an analytical 
expectation perspective, increasing δ  likewise leads to a 
flattened Doppler response (on average). Again instantiating 
1000 independent random trials, though now for distinct values 
of  δ , we compute the ensuing mean PDSL for each δ  (prior 
to the log(•) calculation), with the result plotted in Fig. 11. Here 
we see that the difference between the initial and optimized 
responses is about 8 dB for 5%δ =  and trends down to about a 

6 dB difference at 50%δ = . Of course, as noted in [26], higher 
δ  comes at the cost of a greater blind range swath and should 
therefore be avoided if possible. As Fig. 11 illustrates, there is 
little benefit in using 30%δ > . 

 
Fig. 9. Histogram of PDSL from (25) for 1000 independent initial and 
optimized random stagger sequences for M = 100, 30%δ = , and βopt = 4 

 
Fig. 10. Histogram of PDSL improvement between 1000 independent initial 
and optimized random stagger sequences for M = 100, 30%δ = , and βopt = 4 

 
Fig. 11. Mean PDSL from (25) as a function of δ over 1000 independent initial 
and optimized random stagger sequences for M = 100 and βopt = 4 

 
Finally, Fig. 12 illustrates an assessment similar to that in 

Fig. 11, albeit now with fixed 30%δ =  and allowing the 
optimization Doppler span βopt to vary from 1 to 20. In other 
words, this result represents a mean PDSL evaluation over 
increasing amounts of the extended Doppler interval that 
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increases the likelihood of a larger PDSL for initial 
instantiations, which the optimization then seeks to minimize. 

One would intuitively expect a monotonically increasing 
relationship between mean PDSL and βopt, which is precisely 
what is observed in Fig. 12. An interesting inflection exists in 
the vicinity of βopt = 2 (noting that fnD ∈ [0, 0.5βopt]), which can 
be understood from the shape of the traces in Figs. 5 and 6 as 
the optimization span progressively expands to subsume fnD = 
1. Beyond this point the sidelobe response is considerably 
flatter, again due to the phase “slope deflection” discussed in 
[26]. For mean PDSL over the initial staggering set, less than 
0.5 dB further increase is observed for βopt > 6. While the 
optimized set incurs a slightly higher trend (about 1.5 dB as βopt 
increases from 6 up to 20), it is also at least 3 dB lower than 
mean PDSL for the initial set. The gradual upward trend for 
both sets makes sense when considering that PDSL is being 
computed (or optimized) over a progressively larger span. 

 
Fig. 12. Mean PDSL as a function of Doppler span βopt over 1000 independent 
initial and optimized random stagger sequences for M = 100 and 30%δ =  

C. Uniqueness Assessment 
A prospective benefit of random staggering from a diversity 

standpoint is that each CPI effectively realizes a unique 
sequence. While the highly nonconvex cost function of (19) 
suggests that the introduction of optimization should not cause 
a loss in uniqueness, this aspect bears further examination. 

In [15], the co-array concept more commonly used for 
sparse array design [36] was alternatively considered in the 
context of PRI staggering by forming a “location” vector 
representing the beginning of each pulse, the autocorrelation of 
which yields the stagger co-array. This assessment led to the 
observation that some degree of co-array redundancy can 
actually be useful for staggering, as opposed to the minimally 
redundant attribute often sought for sparse arrays.  

Here we generalize this perspective by also incorporating 
the pulsed waveform structure in a continuous-time context so 
that bandwidth (and corresponding range resolution) are also 
included, thereby accounting for the associated coherence span 
in range (see Fig. 15 in [26] and accompanying discussion). For 
repeated waveform s(t) having unit energy, let ( )s t  then denote 
the entire extent of the transmitted CPI, including each of the M 
pulsed waveforms and the zero-valued intervals in-between. 
Consequently, the response 

( ) (( ) )s t s t dc tτ τ∗= −∫                            (26) 
 

captures the autocorrelation of the entire CPI [10]. For uniform 
PRIs, generalizing (26) to also be dependent on Doppler would 
yield the well-known “bed of nails” version of the 
delay/Doppler ambiguity function [3]. 

The response in (26) can also be viewed as a waveform-
dependent extension of the co-array concept, an example of 
which is depicted in Fig. 13. We observe that the uniform case 
indeed produces a highly redundant triangular envelope as 
expected. In contrast, the random and optimized pseudo-
random staggering cases exhibit far less redundancy for the 
simple reason that PRI intervals are no longer aligned. While 
the random instantiation produces an almost minimally 
redundant co-array, the optimized co-array does realize a 
modest roll-off near zero lag, indicating that a small degree of 
redundancy may be associated with flatter Doppler sidelobes 
over a fixed (and finite) interval, an attribute explored in [15]. 

 
Fig. 13. Stagger co-array from (26) for M = 100 pulses in uniform, random, and 
optimized configurations shown in absolute scale demonstrating linear roll-off 
for uniform, and (in insert) decibel scale illustrating individual constituent 
waveform autocorrelations 

 
A small modification of (26) to instead perform cross-

correlation between different stagger arrangements can then be 
used to define a uniqueness metric via 

 

[ ]1 2 1 2
1 max( ), ( ) ( ) ( )s t s t s t s t dt
M τ

µ τ∗= −∫    .          (27) 

 
By using the same waveform s(t) for both stagger sequences, 
(27) provides a normalized measure of their PRI-dependent 
structural similarity, the result of which lies within [1/ , 1]M . In 
short, 1µ =  means the sequences are identical while 1/Mµ =  
corresponds to a single pulse correlation peak (due to unit 
waveform energy and normalization by M), which in turn 
implies no commonality between PRI intervals. A response 
closer to 1/M therefore means greater uniqueness. 

Now apply this metric pairwise to 1000 independently 
generated sets of random stagger sequences with M = 100 
pulses for each value of δ between 0% and 40%, the aggregated 
results of which are shown in Fig. 14. We used a linear FM 
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(LFM) waveform with an oversampling factor (relative to 
swept bandwidth) of 5. Clearly the 0%δ =  cases are comprised 
of uniform PRIs and are thus all identical (hence 0µ =  dB). 
The value drops sharply as δ  increases, and beyond 10% the 
RMS response has essentially reached an asymptote of −15 dB, 
noting that 10 log10 (1/M) = −20 dB for M = 100. The maximum 
and minimum value of (27) is also depicted, illustrating a fairly 
tight bounding about the RMS response and thereby suggesting 
a “typical” degree of uniqueness. 

 
Fig. 14. Uniqueness metric from (27) applied pairwise to 1000 random stagger 
sequences of M = 100 pulses for different δ  
 

With the behavior of purely random staggering established 
for the metric in (27), now consider the impact to uniqueness 
when optimization is performed. For δ  of 5% and 20% the 
1000 independent stagger sequences used for Fig. 14 were also 
optimized using the gradient-descent method above (and same 
parameters). Each set of 1000 optimized stagger sequences was 
then likewise evaluated using (27) in a pairwise manner (within 
the given set). Figs. 15 and 16 depict the respective histograms. 

 
Fig. 15. Histograms for uniqueness metric from (27) applied pairwise within 
1000 random stagger sequences and (separately) within 1000 optimized 
sequences for M = 100 pulses, βopt = 4, and 5%δ =  

 
For 5%δ =  (Fig. 15), the optimized median is −14.9 dB, 

compared to the initial median value of −13.9, suggesting an 
improvement in uniqueness overall. However, the extended tail 
for the optimized histogram also implies a degree of structural 
similarity can arise in some cases. Indeed, the largest value of 
µ encountered for the initial set of 1000 stagger sequences (at

5%δ = ) was −11.8 dB, while 10% of the optimized sequences 
exceed this value. Of course, this modest degree of allowable 
staggering could also be limiting the design freedom somewhat. 

Now consider the 20%δ =  case depicted in Fig. 16, where 
both the initial and optimized sets realize the same median of 
−15.0 dB. At a coarse level, the distributions are virtually 
identical, though optimization does again exhibit a modest tail 
with slightly degraded uniqueness. However, the span of 
uniqueness values is considerably less (and better) than that in 
Fig. 15, clearly indicating that greater stagger freedom 
translates to more consistent uniqueness between sequences. 

Fig. 16. Histograms for uniqueness metric from (27) applied pairwise within 
1000 random stagger sequences and (separately) within 1000 optimized 
sequences for M = 100 pulses, βopt = 4, and 20%δ =  

 
This assessment of uniqueness also leads to a related 

question: if the ordering of a particular sequence of staggers is 
shuffled, is optimized performance preserved? First consider a 
histogram of the metric in (27) obtained when a single arbitrary 
optimized sequence (using the same parameters as the set in 
Fig. 7) is compared to 1000 random permutations of the same 
set of PRIs. In so doing we find in Fig. 17 that this random 
shuffling actually provides a way to produce stagger sequences 
that are sufficiently unique from the original, even though the 
same PRIs are employed. 

 
Fig. 17. Histogram for uniqueness metric from (27) applied between a single 
optimized stagger sequence (M = 100 pulses, βopt = 4, and 30%δ = ) and 1000 
random permutations of the same sequence 
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However, Fig. 18 shows that there is a price to be paid for 
this seemingly free generation of new stagger sequences. Here 
we plot the PDSL histograms from Fig. 9 along with an 
additional histogram obtained by randomly shuffling each 
optimized sequence. The extent of each CPI remains fixed 
because we are only permuting PRI order within each sequence 
and not mixing between sequences. Clearly the PDSL 
performance of the optimized sequences has degraded back to 
roughly that of the initial PDSL performance. In other words, it 
is not just the PRI interval values, but also their particular order, 
that yields the optimized flattening of extended Doppler. This 
result can be intuitively understood by considering that the 
sidelobe cancellation (flattening) effect is achieved by a phase-
coherent combination via (4) and (16) determined by the 
accumulated PRI times from (5), which would be changed by a 
reordering of PRIs.  

 
Fig. 18. Histograms of PDSL from Fig. 9 for M = 100, 30%δ = , and βopt = 4, 
with each optimized sequence having its PRIs randomly shuffled 

D. Effect of CPI Scaling 
As discussed in Section III-C, some PRIs may fall outside 

of the prescribed staggering limit when scaling is performed to 
preserve a fixed CPI extent. Where Fig. 4 provided a histogram 
of purely random PRI staggers after scaling, Fig. 19 now shows 
PRI histograms for 1000 trials of M = 100 pulse CPIs based on 
random initializations per (18) and the corresponding optimized 
sequences, using the set from Fig. 7. 

 
Fig. 19. Histogram of initial and optimized PRIs after scaling for 1000 trials of 
M = 100 pulses, 30%δ = , and βopt = 4 

 

The modestly bimodal initial distribution imposed by the 
sine bounding function is clearly amplified by optimization, 
thereby worsening the impact of scaling. Relative to the near-
uniform distribution (after scaling) in Fig. 4 or the sine-bounded 
distribution after scaling here, the scaled PRIs after 
optimization exhibit a notable increase in the number falling 
outside the design limit. However, it is interesting to observe 
that optimization has almost eliminated the number of extreme 
contraction cases (that would have exacerbated blind ranges) 
while growing the number of dilation cases, which is less 
problematic since it can be addressed by a modest increase of 
βopt . Further, while the number of dilation cases has clearly 
grown, the degree has remained modest. 

E. Timing Quantization 
Finally, because the gradient-based optimization relies on 

staggering being performed on a continuum, a quick note on the 
impact of quantizing to a finite grid of stagger offsets, which is 
necessary for implementation in digital hardware. Due to the 
coherence span of ±1/B (for 3-dB bandwidth B) depicted in Fig. 
15 of [26], any timing quantization sufficiently less than 1/B 
experiences negligible deviation from the optimized result. 
With modern arbitrary waveform generators (AWGs) capable 
of operating at many Gigasamples/second, this effect would 
only need to be considered at wideband regimes. Moreover, 
while the receive sampling rate could conceivably be lower than 
what is needed for the AWG, it too must be sufficient to 
adequately capture spectral content. 

V. EXPERIMENTAL VALIDATION 
Open-air measurements were collected to experimentally 

validate the benefit of optimized pseudo-random staggering. 
The intersection of 23rd and Iowa streets in Lawrence, KS was 
illuminated from the rooftop of Nichols Hall on the University 
of Kansas campus, a distance of about 1.1 km, at a center 
frequency of 3.45 GHz. The measurements were captured when 
North/South traffic accelerated after a stoplight change. The 
intersection contains turn lanes, so other traffic motion may be 
present as well. Three CPIs of 250 ms each were generated 
sequentially to best capture the same set of movers. Each pulse 
was modulated with a linear FM (LFM) chirp having a swept 
bandwidth of 160 MHz and a 5 µs pulsewidth (thus TB = 800). 

To realize sufficient receive energy, the first two CPIs are 
composed of M = 100 sub-CPIs containing 10 uniformly 
spaced pulses at a PRF of 40 kHz. Each sub-CPI is coherently 
integrated via presumming after receive pulse compression, 
where the sub-CPIs have an effective PRF (on average) of 400 
Hz, which corresponds to an unambiguous velocity interval of 
±8.7 m/s for the uniform case. The random cases are based on 

30%δ = , with staggering occuring between the sub-CPIs. 
Consequently, the impact of Doppler aliasing/expansion can be 
assessed for movers within the context of a 40 mph (~17.9 m/s) 
speed limit and a transmit peak power of 22 dBm. 

The first CPI contains an instantiation of completely random 
PRIs, while the second CPI is an optimized version thereof 
using βopt = 8. Specifically, a Monte Carlo evaluation of 1000 
trials using these parameters reveals a median PDSL 
improvement of 4.4 dB when optimizing. The particular before/ 
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after pair depicted here realizes 6.8 dB PDSL improvement, as 
shown in Fig. 20 referenced to a hypothetical mover at the 
outermost positive edge of the radial velocity span. 

The third and final CPI contains 200 sub-CPIs having a 
uniform arrangement and an effective PRF of 800 Hz. 
Consequently, this case serves as a ground truth in which no 
Doppler aliasing occurs. Moreover, to establish an arrangement 
of 100 sub-CPIs at an effective PRF of 400 Hz that is 
commensurate with the staggering cases, we need only down-
select to use every-other uniform sub-CPI. 

 
Fig. 20. Instantiation of random staggering and optimized pseudo-random 
staggering for M = 100, 30%δ = and βopt = 8 used in subsequent open-air 
measurements. Response is referenced to a hypothetical mover at the speed 
limit. (6.8 dB PDSL improvement) 

 
Fig. 21. Ground truth range-Doppler response for uniform sub-CPIs without 
Doppler aliasing (effective PRF = 800 Hz) 

 
Each CPI is pulse compressed using a Hamming-weighted 

mismatched filter to reduce range sidelobes so the ensuing 
analysis can focus on Doppler sidelobe behavior. The resulting 
range-Doppler responses after pulse compression, presumming 
the 10 pulses in each sub-CPI, clutter cancellation (projection 
at/around zero Doppler), and Doppler processing are shown in 
Figs. 21-24. Fig. 21 illustrates the ground truth uniform sub-
CPI case in which the effective PRF (800 Hz) is high enough to 
prevent Doppler aliasing. Moreover, three particular movers 
have been identified for comparison in the results that follow. 
Indeed, Fig. 22 depicts the down-selected uniform case having 
an effective PRF of 400 Hz, where we observe that these three 

movers (and all the rest) are clearly aliased. 
Now consider the impact of staggering shown in Figs. 23 

and 24 for completely random and optimized pseudo-random, 
respectively. We see that the unambiguous Doppler space has 
been expanded so that aliasing is now avoided, though the cost 
of doing so is a Doppler sidelobe response containing spurious 
sidelobes in the form of false peaks (compared to Fig. 21) and 
horizontal streaks across Doppler. The optimized case in Fig. 
24 manages to avoid the false peaks, yet a cursory evaluation 
would seem to indicate that the streaks across Doppler are 
actually worse. Consequently, a closer examination is needed. 

 
Fig. 22. Range-Doppler response for down-selected uniform sub-CPIs causing 
Doppler aliasing to occur (effective PRF = 400 Hz) 

 
Fig. 23. Range-Doppler response for random sub-CPIs (average effective PRF 
= 400 Hz). Aliasing is avoided at the cost of higher Doppler sidelobes. 
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Fig. 24. Range-Doppler response for optimized pseudo-random sub-CPIs 
(average effective PRF = 400 Hz). Aliasing is avoided and Doppler sidelobes 
are flattened to the degree possible. 

Figs. 25 and 26 provide Doppler slices at the particular 
range cells corresponding to Movers #2 and #3, respectively, in 
which a 3 dB and 5 dB scintillation effect is observed. This 
variation in received SNR from one CPI to the next likewise 
translates into a variation in sidelobe level, though the Doppler 
sidelobes are also different due to random or optimized 
structures. Thus, when optimization is performed Mover #2 
collectively experiences 10.5 – 5.6 = 4.9 dB improvement in 
PDSL, while Mover #3 has 10.7 – 6.8 = 3.9 dB improvement. 

Figs. 27 and 28 also provide close-up range-Doppler views 
of the sidelobes induced by Mover #1, which exhibits some 
extent in range and is likely a large truck (typical length is ~22 
meters). The dynamic range depicted is also reduced somewhat 
to enhance visibility. In Fig. 27 we observe two pairs of false 
peaks that are separated by roughly 8-10 m/s in Doppler, 
coinciding with the spurious Doppler sidelobes observed in Fig. 
20 for this stagger instantiation. In contrast, Fig. 28 reveals a 
flattened sidelobe response that permits a different mover 
(identified in Fig. 27) to remain visible despite it now falling 
within those very sidelobes.  

 
Fig. 25. Doppler slice for Mover #2 range cell showing optimization yields a 
PDSL improvement of 4.9 dB 

 
Fig. 26. Doppler slice for Mover #3 range cell showing optimization yields a 
PDSL improvement of 3.9 dB 

 

 
Fig. 27. Close-up range-Doppler response of sidelobes induced by (range-
extended) Mover #1 for completely random staggering 

 
Fig. 28. Close-up range-Doppler response of sidelobes induced by (range-
extended) Mover #1 for optimized pseudo-random staggering 

Finally, it bears repeating that only M = 100 sub-CPIs were 
used for these open-air measurements, meaning the 
optimization-flattened sidelobe pedestal could at best approach 
−10 log10(M) = −20 dB, with a few dB less actually observed 
from the various Monte Carlo analyses. Thus, the improvement 
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achieved by optimization is expected to be greater for higher M, 
especially relative to worst-case random instantiations. 

VI. CONCLUSIONS 

It is well-known that random PRI staggering provides the 
means to expand the unambiguous Doppler space. However, it 
does so at the potential cost of high spurious sidelobes. Here a 
p-norm based approach has been developed, analyzed, and 
experimentally demonstrated in the Doppler context to provide 
a way to achieve pseudo-random staggering sequences via a 
gradient-descent optimization. The highly non-convex nature 
of the cost function also essentially ensures that uniqueness 
imposed by randomness is preserved. While beyond the scope 
of the present paper, it is expected that combining such 
optimized staggering with adaptive receive processing (e.g. 
such as recently experimentally demonstrated in [37] for purely 
random staggering) could be a useful pairing. 

APPENDIX A 
The following details the derivation of the gradient depicted 

in (20) and (21). First, rewrite (16) as 
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where vec{•} is the vectorization operation [39], ⊗  is the 
Kronecker product, and I is an identity matrix. Both the second 
line of (28) and the third-line replacement with 
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rely on the identity vec{ } ( )vec{ }XYZ Z X YT= ⊗ , with exp{ }  
denoting element-wise exponentiation. For convenience, let  
 

 1 nD( )NM × = ⊗θ B f ε                             (30) 
 
so that (29) becomes 
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Suppressing the explicit dependence on α for compactness, 
rewrite (19) as  
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By the chain rule and leveraging aspects of [27], the partial 
derivative of (19) with respect to αm is then 
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for { }ℜ   the real part of the argument. Using (28)-(31) and 
following the chain rule, the partial derivative in (34) 
subsequently becomes 
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where em is an M × 1 elementary vector in which the mth 
element is 1 and the rest are zero. 

Using the identity following (29) to now sequentially undo 
the vectorization operation leads to (35) becoming 
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(36) 
 

which is convenient from a computational perspective by 
avoiding the need to perform Kronecker products. Substituting 
(36) back into (34) yields 
 

( )( )( ){ }

( 2)

( 2)

nD 0

2

(cos{ } )

2

u
u u u

u

V f α e B v u

g

p
p

m m

p

H T T
m

m

p

p
M

p
M

α α

πδ

πδ

− ∗

−

∗

 ∂  ∂ = ℜ   ∂ ∂   
= 

ℑ 

=

 



  

 

(37) 
 
where we have denoted gm as the vector inside the brackets [•] 
comprising the Hadamard product between ( 2)| p−u  and the 

{ }ℑ   component, which takes the imaginary part of the 
argument. Then substituting (37) into (33) produces 
 

sl ml

sl ml

sl ml

sl ml

4

4 ,

w w g
w u w u

w wg
w u w u

T T
p

p mp pT T
m

T
p m p pT T

J
J

M

J
M

πδ
α

πδ

 ∂
 = −

∂   
 
 = −
  

              (38) 

 
where the bottom form of (38) permits collection of the m = 1, 
2, …, M − 1 terms (recalling that ε0 = α0 = 0) as 
 

sl ml

sl ml

4
α

w wG
w u w u

T
p p p pT T

J J
M
πδ  

 ∇ = −
  

            (39) 

 
for N × M matrix 
 

[ ]1 1 1 .G 0 g gN M× −= 

                      (40) 
 
As an aside, one could consider other bounding functions 

besides the sin(αm) approach in (18) as long as the function is 
continuous and its output maps to the interval [−1, +1]. For 
instance, the hyperbolic tangent function tanh(αm) could 
alternatively be used, with the previously resulting cos(αm) term 
in (35) then being replaced by sech2(αm). 
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