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Abstract: The recently developed multi-waveform (MuW) space-time adaptive processing (or µ-STAP) formulation 
incorporates additional training data into the sample covariance matrix estimate by applying multiple different secondary 
pulse compression filters to the raw received data, where these filters have a relatively low cross-correlation with the 
transmitted waveform.  The inclusion of this additional training data has been shown to improve robustness to non-
homogeneous clutter due to a “range smearing” homogenizing effect of the secondary filters. Here we introduce Post µ-STAP 
(Pµ-STAP), a new form of µ-STAP that similarly generates additional training data, albeit after pulse compression has already 
occurred.  In addition, we combine Pµ-STAP with well-known partially adaptive STAP techniques to assess whether the 
enhanced performance is retained for reduced-dimension operation. Specifically, element-space post-Doppler, beam-space 
pre-Doppler, and beam-space post-Doppler implementations of Pµ-STAP are evaluated via SINR analysis and minimum 
detectable Doppler for different simulated clutter environments.   
 

1. Introduction 

Airborne ground moving target indication (GMTI) 
radar must combat angle-Doppler coupled clutter 
caused by platform motion. Space-time adaptive 
processing (STAP) generates a joint angle-Doppler 
filter to suppress this coupled clutter and interference 
for subsequent detection of moving targets. For each 
range/Doppler cell-under-test (CUT) a unique filter is 
formed via estimation of the associated clutter/ 
interference covariance matrix under the assumption 
that the training data used to form the matrix is 
independent and identically distributed (IID) [1]. The 
IID assumption implies that the clutter is stationary and 
homogeneous, and under this condition the STAP filter 
realized by the sample covariance matrix (SCM) 
estimate approaches the optimal filter, in a maximum 
signal-to-interference-plus-noise ratio (SINR) sense, as 
the number of training data samples increases  [3, 4]. 

However, in the presence of non-homogeneous 
clutter, STAP techniques can suffer severe degradation 
in SINR due to a variety of reasons [5] including 
insufficient sample support (of IID training data), 
contamination of the training data by targets of interest 
(leading to self-cancellation issues), and CUT clutter 
discretes that are not represented in the SCM. With the 
additional inclusion of practical effects such as internal 
clutter motion, aircraft crabbing, and channel mismatch 

[6], accurate estimation of the STAP SCM remains a 
difficult problem. 

Over the years numerous robust solutions have been 
proposed for this problem (e.g. [5, 7-30]) with varying 
trade-offs, assumptions, and degrees of success. A 
prominent trend among these is the down-
selection/modification of the training data itself as a 
means to achieve improved homogeneity [8-11, 15, 16, 
18, 20, 21, 24, 26, 27]. In a bit of a departure from these 
methods, the recently developed -STAP formulation 
[28-30] involves the generation of additional training 
data via the application of multiple pulse compression 
filters that possess relatively low cross-correlation with 
the actual emitted waveform. Because this new training 
data involves different mixtures (in range) of the same 
data, it clearly does not produce new independent 
snapshots. However, the range-domain “smearing” 
effect that occurs when applying these other filters 
provides a degree of training data homogenization that 
has been shown to be beneficial for non-homogeneous 
clutter [28-30]. Further, it should be noted that this 
process of generating additional smeared training data 
can be readily combined with other robust STAP 
techniques such as those cited above.  

Of course, legacy radar systems that perform pulse 
compression before analog-to-digital conversion would 
not benefit from the homogenization effect provided by 
-STAP since this formulation operates on the raw 
received data prior to pulse compression. Consequently, 
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a new form of -STAP called Post -STAP (P-STAP) 
is introduced here to generate additional training data 
and perform homogenization after pulse compression 
has occurred. 

For a radar with N antenna array elements, M pulses 
in the coherent processing interval (CPI), and assuming 
homogeneous clutter, the standard rule is that at least 
2NM independent space-time snapshots are required to 
estimate the SCM within 3 dB of the optimum (in terms 
of average SINR) [2]. This required number of 
snapshots is even higher if the training data is non-
homogeneous [5, 31, 32]. For typical array sizes and 
CPI lengths, it is generally not feasible to expect the 
availability of 2NM or greater IID training data samples. 
Likewise, the associated SCM of dimensionality  
NM  NM may incur too high a computational cost to 
invert, particularly since multiple SCM estimates are 
necessary and the result must be obtained at or near real-
time. Thus a variety of different partially adaptive and 
reduced-rank techniques have been developed (see [3, 
4] for an overview). 

Here P-STAP is also evaluated in the context of 
partially adaptive implementations [3]. Specifically, we 
examine element-space post-Doppler (previously 
considered for -STAP in [33]), beam-space pre-
Doppler, and beam-space post-Doppler. These reduced 
dimension implementations of P-STAP are assessed 
relative to optimal SINR (given clairvoyant knowledge 
of the covariance matrix) and minimum detectable 
Doppler (i.e. relative velocity).  

2. Multi-Waveform STAP 

In [30] two forms of µ-STAP were considered: a 
multiple-input multiple-output (MIMO) mode in which 
lower power secondary waveforms were emitted in 
directions other than the primary mainbeam direction, 
and a single-input multiple-output (SIMO) mode in 
which one waveform is emitted yet multiple different 
pulse compression filters are applied on receive. While 
the former may provide somewhat better sidelobe 
clutter rejection due to waveform separability, it is also 
a more complex hardware implementation. In contrast, 
the SIMO mode emission structure is no different from 
standard GMTI and thus requires no transmit hardware 
modifications. Because it is more widely applicable and 
easier to realize, we shall focus on the SIMO mode here, 
though these results should be directly extensible to the 
MIMO mode as well. 

For SIMO µ-STAP, consider an airborne pulse-
Doppler radar transmitting a CPI of M pulses modulated 
with a single waveform in a given spatial direction look 
via an N element uniform linear array (ULA) antenna. 
The received response from the illuminated scattering 
and noise for the mth pulse and nth antenna element is 
thus 

  ( )
look( , , ) ( ) ( , , , ) j m ny m n t s t x t e  

 
      

              ( )v t                                                   (1) 

where   denotes convolution, s(t) is the transmitted 
waveform, v(t) is additive noise, and x(t,,,look) is 
the induced scattering impinging on the array as a 
function of Doppler , spatial angle , and the direction 
of illumination look. 

Denote hprime(t) as the primary pulse compression 
filter, which is a matched filter (or possible mismatched 
filter) for transmitted waveform s(t). The SIMO version 
of µ-STAP [30] additionally defines the set of 
“unmatched” secondary pulse compression filters 
hsec,k(t) for k = 1, 2, …, K that possess a relatively low 
cross-correlation with the transmitted waveform. Where 
the matched filter provides a range-focused estimate of 
the radar scattering, the low cross-correlation responses 
produced by the secondary filters alternatively realize a 
smearing of the scattering in range that helps to 
homogenize the non-homogeneities of clutter discretes 
and targets contaminating the training data. These K+1 
pulse compression responses can collectively be 
expressed as 

prime prime

sec,1 sec,1

sec,2 sec,2

sec, sec,

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )K K

z m n t h t y m n t

z m n t h t y m n t

z m n t h t y m n t

z m n t h t y m n t

 

 

 

 


            (2) 

for the n = 0, 1,…, N−1 antenna elements in a ULA 
and m=0,1,…, M−1 pulses in the CPI. Discretising 
these filter outputs and collecting the MN samples for 
each th range index into a vector produces K + 1 
space-time snapshots denoted as prime( )z   and 

sec, ( )kz   for k=1, 2,…, K. Note that the order of 

receive filtering in (2) and discretization could clearly 
be reversed as well. 

Generally speaking, for a given spatial illumination 
direction look and Doppler frequency D, a space-time 
adaptive filter CUT look D( , , ) w   is generated and 
applied to each candidate CUT as                                               

CUT D CUT look D prime CUT( , ) ( , , ) ( ).H   w z      (3) 

The filter response CUT D( , )   can then be evaluated 
by a detector to determine if a moving target is present 
at the specified range and Doppler. The STAP filter that 
optimizes SINR is determined via 

1
CUT look D CUT st look D( , , ) ( ) ( , )   w R c  ,    (4) 
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where CUT( )R   is the covariance matrix of the clutter 
and interference in the CUT, and the space-time steering 
vector  

st look D t D s look( , ) ( ) ( )    c c c             (5) 

is formed by the Kronecker product of the individual 
temporal and spatial steering vectors [3].  

The clutter and interference covariance matrix is 
usually estimated using the sample data surrounding the 
CUT under the assumption that this data is statistically 
homogeneous with the CUT snapshot. Notwithstanding 
the variety of ways in which training data can be 
modified/down-selected (e.g. [8-11, 15, 16, 18, 20, 21, 
24, 26, 27]), the standard SCM estimate is obtained as 

CUT

prime

prime CUT prime prim
prime

1ˆ ( ) ( ) ( )
( )

H
e

L
G

n L 
 

 R z z

 

     (6)                                             

using the set of primary snapshots in Lprime with 
cardinality n(Lprime). The exclusion of range indices 

CUT G  comprising the CUT and surrounding guard 
cells from the training data is generally used to avoid 
including possible moving targets in/near the CUT.  

The problem with the SCM estimate of (6) is that it 
may not be an accurate reflection of the true covariance 
matrix due to all the reasons discussed in the previous 
section. To further supplement the many robust SCM 
estimators that have been developed (e.g. [5, 7-27]), the 
SIMO µ-STAP formulation in [30] proposed the use of 
additional training data obtained from the K secondary 
filters in (2). For example, a “no primary” (NP) µ-STAP 
form of SCM based only on secondary training data can 
be realized as  

prime

μ, NP CUT

sec, sec,
1prime

ˆ ( )

1
( ) ( )

( )

K
H

k k
k Ln L K  

  

R

z z




 
   (7)                                             

which does not exclude the CUT or guard cells, as doing 
so is pointless because of the range-smearing effect of 
the secondary filters. The homogenized SCM from (7) 
can also be combined with the traditional SCM from (6) 
to form the µ-STAP SCM 

μ CUT prime CUT μ,NP CUT
ˆ ˆ ˆ( ) ( ) ( ) R R R   .       (8)                                             

Diagonal loading is often used with the standard 
SCM in (6) by adding 2

v MN I , for 2
v  the noise power 

and INM  an NM  NM identity matrix. This structure can 
likewise be used with the µ-STAP SCMs in (7) and (8). 
It was shown analytically and via Monte Carlo 
simulation in [30] that the µ-STAP SCMs improve 
robustness to a variety of nonhomogeneous clutter 
structures.  

2.1. Post Pulse Compression Multi-Waveform STAP 

In its current form, µ-STAP operates on the raw 
received signal y(m, n, t), or its discretized form, prior 
to pulse compression to generate the K+1 responses in 
(2). However, for legacy systems such as those using 
stretch processing on receive, this raw data is not readily 
available.  

To that end, a new variant of µ-STAP denoted as 
Post µ-STAP (Pµ-STAP) is proposed that likewise 
realizes a set of range-smeared secondary data, albeit 
through manipulation of the primary data after pulse 
compression has already occurred. Since the pulse 
compressed data possesses a range-focused response 
due to matched filtering relative to the transmitted 
waveform, Pµ-STAP involves the application of 
subsequent homogenization filters to smear this match 
filtered response in range, and in so doing obtain 
essentially the same improved robustness to non-
homogeneous clutter as µ-STAP.  

In this arrangement the discretised version of the 
primary pulse compression response from the top line 
of (2) is then filtered as  

prime prime prime

sec,1 sec,1 prime

sec,2 sec,2 prime

sec, sec, prime

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )K K

m n g z m n

m n g z m n

m n g z m n

m n g z m n









 

 

 

 

  
  
  


  

 ,          (9) 

where prime( )g   is the primary homogenization filter 

and sec, ( )kg   for k=1,2,…,K are the secondary 

homogenization filters. The primary filter prime( )g 
simply introduces a delay to maintain proper time 
alignment with the secondary responses and otherwise 
preserve primary filter response from (2). The structure 
of the secondary filters is arbitrary and chosen here to 
have discrete length C with uniform amplitude and 
containing random phase coefficients. Thus 

 

    

prime

sec,

2

1
exp 2k k

C
g

g j
C



 

   
 



 

 

 ,           (10) 

where     is the impulse function and each phase 

value is independently drawn from a uniform 
distribution on [−, +], where the random structure 
tends to provide filters with relatively low cross-
correlation. The degree of range smearing provided by 
these random secondary filters is clearly dependent on 
length C and one could also design them to provide 
greater cross-correlation if desired. 

To illustrate the utility of these secondary 
homogenization filters, consider a linear FM (LFM) 
waveform that has been pulse compressed with a 
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normalized matched filter. Denote   as the pulse 
duration and B as the swept bandwidth, with time-
bandwidth product B  specifying the dimensionality 
of the waveform and the number of samples needed to 
represent the discretised matched filter without over-
sampling. In Figure 1, the pulse compressed response of 
an LFM waveform having 50B   is shown along 
with the responses from subsequent secondary filtering 
using lengths C B  and 2 .C B   

After primary matched filtering, the discrete pulse 
compression response for a point scatterer has duration  
2 1.B  After the subsequent application of a 
secondary homogenization filter, this response extends 
to 2 2.B C    As illustrated in Fig. 1, for ,C B  
the primary response mainlobe gets smeared over half 
of the primary sidelobe interval. For 2 ,C B  the 
primary mainlobe response gets smeared over the 
entire primary sidelobe interval, with 
commensurate reduction in average power as well. 
Therefore, as the homogenization filter length 
increases, the extent of mainlobe smearing 
increases, and the corresponding average power 
decreases.  

 

 
Figure 1: Mainlobe smearing for different homogenization 

filter lengths with C B  (top) and 2C B  (bottom) 

 
Collecting the MN space-time samples for each 

range delay from the responses in (9) into the snapshot 
vectors prime sec,1 sec,( ), ( ), ..., ( ),Kρ ρ ρ    SCM estimates 

similar to (6)-(8) can then be formed as 

CUT

prime prime

Pμ,prime CUT

prime prim

1

( )

ˆ ( )

( ) ( )H
e

L
G

n L 
 

 

R
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
 



       (11) 
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1prime

ˆ ( )

1
( ) ( )
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K
H

k k
k Ln L K  
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R

ρ ρ




 
   (12)   

and                                           

Pμ CUT Pμ,prime CUT Pμ,NP CUT
ˆ ˆ ˆ( ) ( ) ( ) R R R   ,      (13) 

respectively. As with the original µ-STAP formulation, 
these K additional channels of training data do not 
actually provide more independent sample support. 
While the smearing in range by these additional filters 
can make it appear that increased sample support is 
being obtained (when evaluating SINR for 
homogeneous clutter), this effect is really just a by-
product of accessing a greater range extent than would 
otherwise be achieved by the single focused pulse 
compression filter (range sidelobes notwithstanding). 
To illustrate this distinction, in Section 5 we consider 
Pµ-STAP cases involving K+1 filters for K=4 
according to (13) and the use of only 1 secondary filter 
without primary data via (11).        

3. Analysis of Post -STAP Covariance Matrix 

 As with the original -STAP formulation of [30], 
it is not necessarily obvious that a good estimate of the 
interference covariance matrix is obtained for the CUT. 
Consequently, we follow a similar analysis as that 
performed in [30] to examine this covariance matrix 
under the condition of homogeneous clutter in noise. 

The received signal model from (1) is first 
substituted into the first line of (2), yielding the primary 
pulse compression response 

     
        

   
     

 
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, , ,

        , ,
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        , ,
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a t x t e

v m n t





 

    

 

   







 

 

 

 

  

  

     

       (14) 

where      primea t h t s t   is the standard matched 

(or mismatched) filter response that provides coherent 
integration gain and is generally desired to possess low 

sidelobes, and  , ,v m n t  is the filtered noise. The pulse 

compression response in (14) is subsequently sampled, 
such that the fast-time variable t is replaced by the 
discrete range index  . Note that, unlike in [30] where 
the prospect of different transmit spatial beampatterns 
is also considered, here we consider the emission of a 
single waveform and thus it is not necessary in this 
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analysis to separate out the transmit beampattern from 
the scattering that it produces. 

This discretised primary pulse compression 
response can then likewise be substituted into the set of 
the homogenisation filter responses of (9) such that 

     
        
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(15) 

in which ( ) ( ) ( )k kd g a     is the cross-correlation 

between the primary pulse compression response of the 
waveform and the kth homogenisation filter, and with 

( , , )kv m n
   the (now twice) filtered noise. Note that we 

have indexed the primary homogenisation filter from (9) 
and (10) as k=0 for simplicity. For the th  range 
index and kth homogenisation filter, the NM elements 
of (15) can be collected into the space-time response 
vector  

       

 

look st, , , ,
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  
 

            

(16)      

Based on the first line of (10) we observe that the 
k=0 version of (16) is identical to the space-time 
snapshots used to form the standard SCM in (11). In 
contrast, the k=1, 2, …, K versions of (16) are those 
used in (12) to form the Post µ-STAP SCM. In general, 
the SCM corresponding to the kth space-time response 
alone can be expressed as 

      ,H
k k kE    R ρ ρ               (17)      

into which (16) can be inserted, thereby yielding 
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(18) 

Here , ( )v kR    is the corresponding noise covariance 

and, like in [30], it has been assumed that every clutter 
patch is statistically independent. Thus 2

clut( , )    is 

the expected clutter power as a function of Doppler and 
spatial angle, which as noted above, subsumes the 
transmit spatial beampattern.  

Given that the primary filtering in (10) is simply a 
delayed impulse, it is clear that the k=0 version of (18) 
simplifies to the expectation of the primary SCM in (6), 
which is likewise the SISO form in [30]. Likewise, 
accounting for the transmit spatial beampattern being 
subsumed within the clutter response and the direct 
relationship between the summation over discretised 
cross-correlation terms in (18) and integration over a 
continuous cross-correlation response in [30, equation 
(29)], it can be readily surmised that (18) is an 
alternative form of the SIMO covariance matrix from 
[30], where Monte Carlo trials demonstrated that they 
retain the space-time characteristics of the primary 
covariance matrix. 

4. Reduced-Dimension Multi-Waveform STAP 

To avoid the repeated inversion of large SCMs, 
partially adaptive approaches have been developed [3, 
34-36] that require less training data and incur a lower 
computational cost. As such, these implementations 
have become the standard means to actually realize 
STAP in practice. 

Here, in addition to the full-dimension 
implementation, the Pµ-STAP scheme is evaluated in 
the context of well-known reduced-dimension 
implementations to assess the impact of their 
combination. Specifically, we examine element-space 
post-Doppler (ESPoD), beam-space pre-Doppler 
(BSPrD), and beam-space post-Doppler (BSPoD) 
formulations. The following summarizes these 
implementations and discusses how Pµ-STAP is 
incorporated into each.  

4.1. Element-space post-Doppler P-STAP 

The multi-window element-space post-Doppler 
(ESPoD) implementation [34,35] applies different 
Doppler filters to the pulsed echoes received at each 
antenna element. In other words, for ESPoD the 
Doppler processing component is non-adaptive and 
localized to a set of Dt Doppler bins. Spatial processing 
is then fully adaptive across the N antenna elements.  
Therefore, each antenna element has an identical 
MDt filter bank Fm for the mth Doppler bin that is 
used to construct the MNDtN space-time transform 

m m N T F I .                         (19)  

There are different ways one can select the Doppler 
filters in (19). Here we consider the adjacent-bin 
approach [34], though pulse repetition interval (PRI) 
staggered [35] is likewise applicable in the Pµ-STAP 
context. Adjacent-bin post-Doppler employs the 
Doppler filters indexed by m – P, …, m, …, m + P for 
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        t 1 2P D ( ) / .                      (20) 

Let 0 1 1M U [u u u ]  be an MM discrete Fourier 

transform (DFT) matrix and a be an M1 Doppler 
taper. The tapered mth Doppler filter is thus [3] 

m f a ⊙ m
*u ,                         (21)  

for ⊙ the Hadamard product and (•)* denoting complex 
conjugation, so that the mth Doppler filter bank is 

 m m P m m P F f f f  .               (22)  

Note that Dt must be odd and the Doppler filter bank 
should wrap around the edges of the Doppler space [34].   

In the same manner as reduced-dimension µ-STAP 
discussed in [33], the transform in (19) is applied to the 
Pµ-STAP training data of (9) as                                                    

   
   
   

   

prime prime

sec 1 sec 1

sec 2 sec 2

sec sec

H
m m

H
m m

H
m m

H
K m m K









,

, , ,

, , ,

, , ,

ρ T ρ

ρ T ρ

ρ T ρ

ρ T ρ ,

  

  

  


  

              (23)  

thereby transforming the MN1 primary and 
secondary snapshots into DtN1 snapshots. The space-
time steering vector from (5) is likewise transformed as 

   st look D st look D
H

m m   ,c , T c , .      (24) 

Substituting (23) into (11)-(13) yields the ESPoD 
reduced-dimension SCM estimates 

   Pμ,prime CUT Pμ,prime CUT
H

m m m,
ˆR T R T             (25)                                              

   Pμ,NP CUT Pμ,NP CUT
H

m m m,
ˆR T R T    ,          (26)       

and                                          

   Pμ, CUT Pμ CUT
H

m m m ˆR T R T   ,            (27) 

respectively. The mth transformed filter is then obtained 
in the same manner as (4), yielding 

     

    

1
CUT look D CUT st look D

1

CUT st look D                       

m m m

H H
m m m

   

 









,w , , R c ,

ˆT R T T c ,

   


   

(28) 

for mR  and  CUTR̂   corresponding to one of the 

SCM estimates from (25)-(27), and response 

CUT D CUT look D prime, CUT( , ) ( , , ) ( )H
m m m    w ρ    (29) 

when the filter is applied to the transformed primary 
data from (23). As discussed in [3], the actual filter 

response is then taken as the maximum value from (29) 
over index m. 

The transformed adaptive filter can also be 
expressed in terms of the full MN-dimensional 
representation using the composite filter [3] 

   

    
CUT look D CUT look D

1

CUT st look D                       

m m m

H H
m m m m

   

 






w , , T w , ,

ˆT T R T T c ,

 


.              

(30) 

This composite filter perspective is used to facilitate the 
SINR analysis in Section 5. 

4.2. Beam-space pre-Doppler P-STAP 

Beam-space pre-Doppler (BSPrD) techniques are 
related to displaced phase center antenna (DPCA) 
processing [36]. In contrast to element-space post-
Doppler methods, in this formulation spatial 
beamforming is performed before adaptive processing, 
which may be performed over the full CPI, though the 
number of pulses M can be fairly large. It is therefore 
more efficient to reduce the MN-dimensional problem 
by beamforming over a subset of Dt pulses. 
Consequently, the CPI of M pulses is subdivided into a 
set of M  sub-CPIs consisting of Dt pulses each, where 

t 1M M D   .                       (31)  

Each sub-CPI employs an identical bank of Ds 
beamformers for the nth antenna element, thereby 
realizing the MNDtDs space-time transform 

mn m n T J G  ,                         (32)  

where mJ   is the MDt selection matrix for the thm  

sub-CPI defined as 

 

t

t

t t

m D

m D

M D m D



  

 
 
 
 
  

0

J I

0







                    (33) 

and Gn is the nth beamformer matrix. The latter can be 
structured via displaced-beam or adjacent-beam [3, 36], 
which are spatial analogs to the PRI-staggered and 
adjacent-bin Doppler filter banks. 

In like manner as before, we consider the adjacent-
beam formulation, though Pµ-STAP may be used with 
either. Define the nth beamformer as [3] 

n g b ⊙ n
*u ,                            (34)  

where b is an N1 spatial taper and un is the nth 
column of an NN DFT matrix (based on the 
assumption of an ideal uniform linear array). The 
adjacent-beam formulation combines temporal samples 
from Ds spatial beams indexed as n – Q, …, n, …, n + 
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Q centered around the nth column of the DFT matrix, 
with Q=(Ds−1)/2. 

 
Figure 2: Receive Processing Chain for Partially Adaptive Post -STAP 

 
The NDs reduced dimension beamforming matrix for 
the nth antenna element is thus 

n n Q n n Q    G g g g  .               (35)  

Applying (32) to the discretized training data from 
(2) for µ-STAP or (9) for Pµ-STAP in the same manner 
as (23) realizes transformed primary and secondary 
snapshots of dimension DtDs1. Likewise, the 
DtDsDtDs reduced-dimension SCM estimates m n,R 

   

and an associated transformed space-time steering 
vector st look Dm n  , ,c ( , )  can be obtained by applying the 

adjacent-beam transform (32) as in (25)-(27) and (24), 
respectively. Therefore, the nth adaptive beamformer 
for the m th sub-CPI is, like (28),  

     

    

1
CUT look D CUT st look D

1

CUT st look D                       

m n m n m n

H H
mn mn mn

   

 









, , , ,w , , R c ,

ˆT R T T c ,

  

  

   



(36)  

for each particular combination of transformed 
primary/secondary data, with the corresponding full-
dimension composite filter similar to (30) via 

   

    

CU look D CUT look D

1

CUT st look D                       

m n T mn m n

H H
mn mn mn mn

   

 






, ,w , , T w , ,

ˆT T R T T c ,

  

   

 


.              

(37) 

4.3. Beam-space post-Doppler -STAP 

Finally, the beam-space post-Doppler (BSPoD) 
implementation pre-processes over both space and time 
by using the Doppler filter bank Fm from (22) as well as 
the beamformer matrix Gn from (35). This combined 

adjacent-bin/adjacent-beam formulation realizes the 
MNDtDs space-time transform 

mn m n T F G ,                      (38) 

which can be employed in the same manner as in (23)-
(30) to transform the primary/secondary data, the space-
time steering vector, the various SCM estimates, the 
reduced-dimension adaptive filter, and the full-
dimension composite filter. 

These space-time transforms and subsequent STAP 
implementations are all well known. Our purpose here 
is to consider them in the context of the Pµ-STAP 
scheme, which itself involves a transformation of the 
training data in the range domain, albeit for the purpose 
of enhanced robustness to non-homogeneous data 
instead of reducing dimensionality. Figure 2 illustrates 
a general diagram of the receive processing chain for 
reduced dimension Pμ-STAP. In the next section these 
various combinations are evaluated. 

5. Assessment of Reduced-Dimension P-STAP 

SINR analysis is performed using a normalized 
SNR metric [4] cast in the partially adaptive framework. 
Using the optimum covariance Ropt based on 
clairvoyant knowledge and any composite filter via (30), 
the SINR for these reduced-dimension implementations 
can be stated as [3] 

 
2

st

D
opt

SINR max
H
m

Hm
m m


 
   
  

w c

w R w
,             (39) 

where the dependencies on 
CUT , 

look , and D  in wm 

have been suppressed for brevity. By setting

 CUT opt
ˆ R R within the determination of wm, (39) 

becomes the fully adaptive clairvoyant SINR defined as  
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  1
opt D st opt stSINR H  c R c .              (40) 

Normalizing the SINR from (39) by SNR also yields the 
SINR loss factor [4] 

D
SINR D

SINR( )

SNR
( )L

                    (41)  

that compares interference-limited performance to 
noise-limited performance, here also including the 
impact of the given covariance matrix estimate and the 
dimensionality reducing transform.  

Let fmin=min/2 be the clairvoyant minimum 
detectable Doppler (MDD) from [3], defined as 

        min SINR U SINR L SINR
1

2
f L f L f L  ,      (42) 

where L SINR( )f L and U SINR( )f L demarcate the lower 
and upper Doppler edge frequencies of the clutter notch, 
respectively. The minimum detectable velocity can then 
be obtained by multiplying minf by a half-wavelength. 

We consider the clutter notch edges to be the 
frequencies at which SINR D( )L   from (41) equals −3dB. 
For the parameters used in these simulations and based 
on clairvoyant knowledge of the clutter, the normalized 
clairvoyant MDD is min SINR 0.13,( )f L   which as 

observed in Fig. 3 could be positive or negative. 

Figure 3: Clairvoyant Minimum Detectable Doppler 

It is also useful to define an estimation loss factor 
[4, 30] that relates SINR performance for an estimated 
SCM via (39) to the SINR performance based on the 
optimal (clairvoyant) covariance knowledge. In contrast 

to the worst-case loss factor defined in [30], here we 
consider the average loss defined as 

D

D

opt D

SINR( )
mean

SINR ( )




  
 
  

                  (43) 

which is computed over 
minD     and minD     

(i.e. outside the clutter notch region). This value is 
determined as a function of the number of range sample 
intervals included in SCM estimation for different 
implementation schemes and clutter scenarios.  

5.1. Simulation parameters 

Consider an airborne multichannel GMTI radar that 
is side-looking. Here the antenna is an N = 11 element 
uniform linear array with half-wavelength spacing that 
emits a CPI of M = 21 identical pulsed waveforms. The 
platform is assumed to have no crab angle and traverses 
one half-interelement spacing during the CPI (so  = 1). 
The clutter is generated by dividing the range ring in 
azimuth into 241(>NM=231) equal-sized clutter 
patches. The scattering from each patch is IID, drawn 
from a complex Gaussian distribution, and scaled such 
that the total clutter-to-noise ratio (CNR) is 54 dB. The 
thermal noise is also complex white Gaussian.  

For beam-space dimensionality reduction the  
N =11 receive elements are reduced to Ds=5 beams. 
The post-Doppler implementations likewise reduce the 
M =21 pulses in the CPI to either Dt1=5 or Dt2=11 
pulses in each sub-CPI to assess different sample 
support regimes. The adjacent-bin and adjacent-beam 
implementations are both uniformly tapered.  
The number of range samples used to estimate the SCM 
is varied from 1 to 2 462.NM   For Pµ-STAP, the 
number of range samples for SCM estimation is varied 
from ( 1)K   to ( 1)2K NM  due to the additional 
training data provided by the K secondary filters. 
Diagonal loading is employed for all SCM estimates 
using the true noise power. The primary (transmit) 
waveform used here is an optimized polyphase-coded 
FM (PCFM) waveform [39, 40] that has a time-
bandwidth product of BT=100. Generation of this 
waveform is outlined in Appendix A of [30]. Four 
secondary homogenization filters (K=4) are used via 
(9) to provide no more than 17 dB of normalized cross-
correlation with the primary waveform. Figure 4 shows 
the particular primary and secondary filter responses, 
with the primary (delayed matched filter) response in 
black realizing a peak sidelobe level of nearly −44 dB.  
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Figure 4: Primary and secondary filter responses to an 
optimized PCFM waveform 

Performance of reduced-dimension Pµ-STAP is 
evaluated for three environments: 1) non-homogeneous 
clutter, 2) non-homogeneous clutter with a large 
discrete in the CUT, and 3) non-homogeneous clutter 
with several modest targets in the training data. The 
SINR loss for each clutter scenario and dimensionality 
reduction combination is averaged over 50 independent 
Monte Carlo trials.  

We present a comparison between the standard 
(primary only) STAP SCM and two Pµ-STAP 
formulations: a) primary plus 4 secondary filters, and b) 
only 1 secondary filter. Each of these is implemented 
according to fully adaptive and partially adaptive 
formulations. Table I shows the different receive 
processing configurations. 
   

 

5.2. Non-homogeneous clutter 

Like in [30], non-homogeneous clutter is modeled 
by  randomly modulating the power of each complex 
Gaussian range/angle clutter patch using a Weibull 
distribution with a shape parameter of 1.7 [37, 38]. To 
accompany this local modulation, an exponentially 
distributed regional clutter modulation with λ = 0.05 is 
applied independently to each region (here 10 range 
cells  1/N angle segments). Random internal clutter 

motion (ICM) is also introduced that is uniformly 
distributed on ±2% relative to the normalized Doppler 
response. These values were selected because they were 
found to produce noticeable degradation for standard 
STAP but they are otherwise arbitrary. 

For the adjacent-bin implementation of element-
space post-Doppler (ESPoD) P-STAP from Section 
4.1, Fig. 5 shows the SINR estimation loss factor of (43) 
as a function of training data sample support. As the 
number of sub-CPIs are reduced from Dt2=11 to 
Dt1=5, modest improvement is observed due to the 
need for less training data. It is also observed that P-
STAP using primary + 4 secondary sets of training data 
realizes an enhancement similar to that observed for the 
original -STAP approach in [30]. When this 
arrangement is combined with the Dt1=5 partially 
adaptive implementation the best performance is 
realized, particularly at very low sample support. 
 

 
Figure 5: SINR estimation loss from (43) versus sample 
support using ESPoD in non-homogeneous clutter  

 

Table 2 presents values of the estimation loss factor 
from (43) for 2NDt1 and 2NDt2 range sample intervals 
used as training data. Because the reduced dimension 
schemes inherently require lower sample support, there 
is less SINR loss than is encountered for the fully 
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Table 1 Receive processing configurations 
Receive Processing  Line 

style/color 
primary only, full (M = 21) solid blue 
primary only, partial (Dt1 = 5) solid red 
primary only, partial (Dt2 = 11) solid green 
 
secondary only (K = 1), full (M = 21) 
secondary only (K = 1), partial (Dt1 = 5) 
secondary only (K = 1), partial (Dt2 = 11) 
 
primary & K = 4 sec., full (M = 21) 

 
dotted blue 
dotted red 
dotted green 
 
dashed blue 

primary & K = 4 sec., partial (Dt1 = 5)  dashed red 
primary & K = 4 sec., partial (Dt2 = 11) dashed green 

 

Table 2 SINR estimation loss via (43) per sample support 
for non-homogeneous clutter using ESPoD (in dB) 

Receive Processing  2NDt1  2NDt2 

primary only, full (M = 21)  −5.60 −4.34 
primary only, partial (Dt1 = 5) −2.90 −2.10 
primary only, partial (Dt2 = 11) −3.43 −2.60 
 
secondary only, full (M = 21) 

 
−5.59 

 
−4.36 

secondary only, partial (Dt1 = 5) −3.14 −2.40 
secondary only, partial (Dt2 = 11) −3.55 −2.76 
 
primary + 4 sec., full (M = 21) 

 
−4.15 

 
−3.58 

primary + 4 sec., partial (Dt1 = 5) −2.30 −1.89 
primary + 4 sec., partial (Dt2 = 11) −2.66 −2.23 
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adaptive cases, particularly at these lower sample values 
that may be necessary for highly non-homogeneous 
clutter environments.  

In particular, the highlighted values illustrate the 
achieved SINR loss corresponding to the RMB rule for 
sample support (i.e. twice the degrees of freedom) [1, 2]. 
When a single set of Pµ-STAP secondary training data 
(middle three rows in Table 2) is used in place of the 
primary (matched filtered) training data (top three rows), 
a small degradation is incurred. However, this result 
does show the general utility of the secondary data that 
is obtained by the use of a homogenization filter per (23). 
Moreover, when four sets of secondary data are 
combined with the primary training data – noting that 
these data sets involve different range domain mixtures 
of the same received clutter response – an SINR 
improvement of roughly 0.2 dB (for 2NDt1 samples) and 
0.8 dB (for 2NDt2 samples) is realized for this scenario 
due to the beneficial range smearing of non-
homogeneous clutter. 

In Fig. 6, the SNR-normalized SINR from (41) is 
plotted relative to normalized Doppler for 2NDt1 range 
sample intervals of training data (last column in Table 
2). Here it is observed that the minimum detectable 
velocity (MDV via direct extension of MDD) is 
likewise improved for partially adaptive Pµ-STAP 
compared to the standard (primary only) partially 
adaptive STAP implementation. Similar plots for the 
BSPrD and BSPoD implementations are excluded since 
the results are comparable to that observed in Fig. 6 for 
ESPoD.  

 

 
Figure 6: SNR-normalized SINR from (41) versus normalized 
Doppler using ESPoD in non-homogeneous clutter for 2NDt1 
training data sample intervals 

 
In Fig. 7, the SINR loss via (43) for the beam-space 

pre-Doppler (BSPrD) implementation of Section 4.2 is 
shown when reducing from N=11 elements to Ds=5 
beams and from M=21 pulses to Dt1=5 or Dt2=11 
pulses in each sub-CPI. While the differences are less 
distinct as for the ESPoD arrangement, the SINR 

enhancement afforded by the P-STAP version is still 
evident, particularly at low sample support.  

Table 3 likewise illustrates the SINR loss for the 
BSPrD implementation of these different SCM 
estimators at sample support values of 2DsDt1 and 
2DsDt2. As in the previous ESPoD case, the combination 
of the reduced dimension implementation and multiple 
sets of Pµ-STAP training data provides the best 
performance. 
 

 
Figure 7: SINR estimation loss from (43) versus sample 
support using BSPrD in non-homogeneous clutter 

 

 
Finally, Fig. 8 shows the SINR loss of (43) for the 

beam-space post-Doppler (BSPoD) implementation of 
Section 3.3, which also uses Ds=5 beams and Dt1=5 
or Dt2=11 pulses in each sub-CPI. Like ESPoD, this 
scheme realizes significant SINR improvement 
compared to the fully adaptive implementations. While 
relatively modest in this case, further enhancement is 
still observed when using multiple sets of Pµ-STAP 
training data. In short, all three of these reduced 
dimension schemes work well with Pµ-STAP for non-
homogeneous clutter and their combination provides 
enhanced SINR at low sample support. 
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Table 3 SINR estimation loss via (43) per sample support 
for non-homogeneous clutter using BSPrD (in dB) 

Receive Processing  2DsDt1 2DsDt2 

primary only, full (M = 21)  −6.17 −5.33 
primary only, partial (Dt1 = 5) −4.77 −3.86 
primary only, partial (Dt2 = 11) −5.39 −4.45 
 
secondary only, full (M = 21) 

 
−6.61 

 
−5.41 

secondary only, partial (Dt1 = 5) −5.35 −4.29 
secondary only, partial (Dt2 = 11) −5.88 −4.79 
 
primary + 4 sec., full (M = 21) 

 
−4.45 

 
−4.00 

primary + 4 sec., partial (Dt1 = 5) −3.81 −3.47 
primary + 4 sec., partial (Dt2 = 11) −4.16 −3.77 
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Figure 8: SINR estimation loss from (43) versus sample 
support using BSPoD in non-homogeneous clutter 

5.3. Clutter Discrete in CUT 

The presence of a clutter discrete in the cell under 
test (CUT) is a form of non-homogeneous interference 
that degrades SINR because the space-time structure of 
the training data differs from that in the CUT. Further, 
clutter discretes can also be erroneously detected as 
actual moving targets. Here we consider a clutter 
scenario in which a large discrete (20 dB above the 
average clutter power) is present in the CUT and the rest 
of the clutter is non-homogeneous in the same manner 
as the previous section. While such a large discrete 
would likely be detected as an outlier and subsequently 
excised prior to the application of STAP, the point here 
is to illustrate the capability of Pµ-STAP to compensate 
for discretes that are not excised, such as may occur in 
complex environments. 

For the ESPoD reduced dimension implementation, 
Fig. 9 depicts the SINR estimation loss of (43) and 
Table 4 presents specific loss values for different 
processing arrangements using 2NDt1 and 2NDt2 range 
sample intervals as training data. Compared to the 
discrete-free (but otherwise still non-homogeneous 
clutter) results from Fig. 5 and Table 2, the large 
discrete imposes of a 1-2 dB further SINR loss 
depending on the particular implementation. 
Specifically, for Dt1=5 pulses in each sub-CPI and 
2NDt1 range sample intervals, the primary-only and 
secondary-only cases experience 1.11 and 0.98 dB of 
additional SINR loss while the “primary + 4 secondary” 
Pµ-STAP scheme realizes 0.84 dB of further loss. It is 
also rather clear in Fig. 9 that the Pµ-STAP traces 

corresponding to the “primary + 4 secondary” cases in 
are superior to the other training data schemes. 

 

 
Figure 9: SINR estimation loss from (43) versus sample 
support using ESPoD in non-homogeneous clutter with a 
discrete in the CUT 

 
 
Figures 10 and 11 likewise illustrate the SINR 

estimation loss of (43) for this clutter discrete scenario 
when using the BSPrD and BSPoD reduced dimension 
implementations. While the latter reveals the least 
difference between standard (primary only) and Pµ-
STAP SCM estimation, both of these reduced 
dimension implementations show that the “primary + 4 
secondary” Pµ-STAP versions again provide an SINR 
performance enhancement benefit. 
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Table 4 SINR estimation loss via (43) per sample support 
for non-homogeneous clutter and discrete in the CUT using 
ESPoD (in dB) 

Receive Processing  2NDt1 2NDt2 

primary only, full (M = 21)  −6.65 −8.18 
primary only, partial (Dt1 = 5) −3.21 −4.17 
primary only, partial (Dt2 = 11) −3.39 −4.41 
 
secondary only, full (M = 21) 

 
−6.18 

 
−7.89 

secondary only, partial (Dt1 = 5) −3.38 −4.36 
secondary only, partial (Dt2 = 11) −3.46 −4.50 
 
primary + 4 sec., full (M = 21) 

 
−5.17 

 
−5.90 

primary + 4 sec., partial (Dt1 = 5) −2.73 −3.28 
primary + 4 sec., partial (Dt2 = 11) −2.83 −3.34 
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Figure 10: SINR estimation loss from (43) versus sample 
support using BSPrD in non-homogeneous clutter with a 
discrete in the CUT 

 
Figure 11: SINR estimation loss from (43) versus sample 
support using BSPoD in non-homogeneous clutter with a 
discrete in the CUT 

Table 5 provides specific loss values of the BSPrD 
implementations for different processing arrangements 
using 2NDt1 and 2NDt2 range sample intervals as 
training data. In the same manner as with ESPoD, for 
Dt1=5 pulses and 2NDt1 range sample intervals the 
BSPrD implementation for the clutter discrete scenario 
compared to the discrete-free scenario (Table 3) 
experiences 2.18, 2.52, and 1.70 dB of additional SINR 
loss for the primary-only, secondary-only, and “primary 
+ 4 secondary” training data schemes. These results 
again illustrate the improved robustness provided by 
Pµ-STAP for reduced dimension implementations. 

 

 
Finally, Fig. 12 shows the SNR-normalized SINR 

from (41) plotted relative to normalized Doppler for 
2DsDt1 range sample intervals of training data for the 
BSPoD implementation when a large clutter discrete is 
present. The important take-away from this figure is that 
the different realizations of Pµ-STAP using “primary + 
4 secondary” all provide some MDV enhancement, 
though with diminishing improvement as the 
dimensionality is further reduced. 
 

 
Figure 12: SNR-normalized SINR from (41) versus 
normalized Doppler using BSPoD in non-homogeneous 
clutter and discrete in the CUT for 2DsDt1 training data 
sample intervals 

5.4. Targets in Training Data 

The last non-homogeneous effect we consider 
involves the presence of targets in the training data that 
are known to contaminate the SCM in such a way that 
can ultimately lead to substantial SINR loss for a 
prospective target in the CUT. In this context the benefit 
of Pµ-STAP is that, since such targets would tend to be 
relatively few in number compared to the pervasive and 
higher power clutter response, the range smearing effect 
should drive the target contributions to a level near or 
even below the noise floor on a per-range-cell basis. 
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Table 5 SINR estimation loss via (43) per sample support 
for non-homogeneous clutter and discrete in the CUT 
using BSPrD (in dB) 

Receive Processing  2NDt1 2NDt2 

primary only, full (M = 21)  −9.02 −8.16 
primary only, partial (Dt1 = 5) −7.40 −6.36 
primary only, partial (Dt2 = 11) −6.95 −5.80 
 
secondary only, full (M = 21) 

 
−9.95 

 
−8.10 

secondary only, partial (Dt1 = 5) −8.35 −6.82 
secondary only, partial (Dt2 = 11) −7.87 −6.45 
 
primary + 4 sec., full (M = 21) 

 
−6.60 

 
−5.97 

primary + 4 sec., partial (Dt1 = 5) −5.81 −5.24 
primary + 4 sec., partial (Dt2 = 11) −5.51 −5.02 
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Consequently, their contribution to the SCM would be 
greatly reduced, thereby at least partly ameliorating the 
SINR loss that otherwise occurs. 

Here we consider ten targets that reside in the range 
cells surrounding the CUT (beyond the guard cells) that 
have 15 dB SNR, normalized Doppler of 0.5, and 
scattering phase that is otherwise random and 
independent. Because they possess rather modest SNR 
and are grouped together, such a target arrangement 
could be difficult to address via pre-processing based on 
non-homogeneity detection, yet their combination 
could be rather detrimental to SINR since they have the 
same Doppler. 

Figures 13-15 show the SNR-normalized SINR 
from (41) for the ESPoD, BSPrD, and BSPoD 
implementations, respectively. Of particular note is the 
loss incurred at the 0.5 normalized Doppler where the 
10 targets reside. However, it is observed that the 
“primary + 4 secondary” Pµ-STAP SCM estimates do 
provide greater robustness in the form of less severe 
SINR loss by virtue of the range smearing effect of the 
secondary training data sets. Moreover, the reduced 
dimension versions of Pµ-STAP reveal ever greater 
robustness, with the partially adaptive BSPoD 
implementation in Fig. 15 showing almost no 
degradation at all.  

 

 
Figure 13: SNR-normalized SINR from (41) versus 
normalized Doppler using ESPoD in non-homogeneous 
clutter and 10 targets in the training data for 2NDt1 training 
data sample intervals 

 

Figure 14: SNR-normalized SINR from (41) versus 
normalized Doppler using BSPrD in non-homogeneous 
clutter and 10 targets in the training data for 2DsDt1 training 
data sample intervals 

 

 
Figure 15: SNR-normalized SINR from (41) versus 
normalized Doppler using BSPoD in non-homogeneous 
clutter and 10 targets in the training data for 2DsDt1 training 
data sample intervals 

 

6. Conclusions 
A new post-processing form of multi-waveform 

space-time adaptive processing (µ-STAP) denoted as 
post µ-STAP (or Pµ-STAP) was introduced and 
combined with well known partially adaptive STAP 
implementations to assess the prospective robustness 
enhancements that could be achieved in practice. For 
simulated clutter it has been observed that Pµ-STAP 
outperforms STAP under several non-homogeneous 
scenarios including a discrete in the CUT and multiple 
similar targets of modest size in the training data. 
Further, the combination of Pµ-STAP with reduced 
dimension implementations realizes very good SINR 
performance with rather low training data sample 
support. 
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