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Abstract: Design methodologies are developed for complementary frequency modulated (FM) waveforms and for optimized 
complementary mismatched filtering (MMF) of arbitrary nonrepeating waveforms. The former is a sub-class of random FM 
waveforms denoted as complementary FM (Comp-FM) while the latter extends a practical instantiation of Least-Squares 
MMF yielding the mismatched complementary-on-receive filtering (MiCRFt) scheme. Both of these approaches have an 
emphasis on the non-ideal physical effects of the radar transmitter and receiver, thereby permitting high-fidelity simulation 
analysis and subsequent experimental demonstration of their efficacy using open-air measurements. 
 

1. Introduction  

Complementary codes/sequences were originally proposed 

by Golay in the early 1960’s [1] and have since been 

extensively explored (e.g. [2-16]) as a means to completely 

remove autocorrelation sidelobes through combining of the 

pulse compressed responses resulting from pairs/sets of 

complementary coded pulses. However, there are two factors 

that limit the efficacy of complementary coding in practice: 

Doppler sensitivity and implementation/ transmitter 

distortion. 

Doppler sensitivity occurs because these codes are 

generally designed to achieve perfect sidelobe cancellation 

when their respective (matched or mismatched) filter 

responses are directly combined, which naturally corresponds 

to the zero-Doppler condition (subsuming compensation by a 

single known Doppler shift). Consequently, if a collection of 

scattering incurs unanticipated phase-changes due to Doppler 

– interpulse phase offsets, intrapulse phase ramps, or both – a 

deviation from the ideal condition arises that results in a 

commensurate regrowth of residual sidelobes (noting that 

some degree of cancellation may still be achieved). While 

sequence ordering of complementary codes was proposed as 

a strategy to provide more Doppler resilience [12, 15], it was 

noted in [16] that such an approach degrades when interpulse 

weighted is employed. Moreover, this method and other 

traditional approaches rely on the direct implementation of 

codes, which leads to the second limiting factor. 

Limitations of complementary coding due to distortion are 

caused by some combination of a) realization of the code as 

a physical signal and/or b) distortion induced by the radar 

transmitter (see [16-18]). Taking these in reverse order, the 

rapid (theoretically instantaneous) phase changes that exist 

for coded waveforms exhibit extended spectral skirts that 

cannot be passed through a radar transmitter, which possesses 

some finite operational bandwidth (the passband) and 

associated spectral roll-off characteristics (itself a topic of 

ongoing research to address increasing spectral congestion 

[19]). Attempts to shape the spectrum through windowing or 

filtering (e.g. [20]) subsequently introduce amplitude 

modulation (AM) that incurs further distortion (possibly 

severe) since high-power transmitters operate in saturation. 

Consequently, it is necessary in practice to employ an 

appropriate code-to-waveform implementation that provides 

some degree of spectral containment while also preserving 

the constant amplitude structure. In so doing, the degree of 

transmitter distortion can be kept to a manageable level, 

though it cannot be completely mitigated, particularly at high 

power. 

Well-known methods for the implementation of binary 

codes as physical waveforms are derivative phase-shift 

keying (DPSK) [21] and the biphase-to-quadriphase (BTQ) 

transformation [22], which is a form of minimum shift keying 

(MSK). Of course, in the process of producing a physical 

waveform, both of these implementations necessarily modify 

idealized complementary codes, thereby significantly 

degrading the complementarity condition. 

It was more recently shown in [23, 24] that the polyphase-

coded frequency modulation (PCFM) code-to-waveform 

implementation, a form of digital FM, can be realized by 

modifying the communication-oriented continuous phase 

modulation (CPM) scheme [25] to make it suitable for radar. 

Consequently, PCFM provides the means with which to 

convert arbitrary polyphase codes into physical FM 

waveforms that are amenable to a radar transmitter because 

they possess relatively good spectral containment (no abrupt 

phase changes) and constant amplitude. These attributes of 

FM in general are part of the reason why linear FM (LFM) is 

still so widely used today. 

It was noted in [16] that the precursor form of PCFM in 

[26] (and also [23, 24] by extension) likewise produces a 

physical waveform that deviates from the idealized structure 

of a code, which again is particularly problematic for 

complementary combining. However, these discrepancies 

introduced by DPSK, BTQ, and PCFM should actually not be 

viewed as distortions of idealized codes, but as missing 

components in the design of coded (i.e. parameterized) 

physical waveforms. From this perspective, one can then 

consider how to realize a complementary sidelobe 

cancellation condition for physical waveforms. Such an 



 

approach is precisely what was done in [27] using PCFM, of 

which this paper is an expansion. Accordingly, the resulting 

complementary FM (Comp-FM) waveforms can be deployed 

in real radar systems, as experimentally demonstrated later 

using free-space measurements. 

From a particular outlook, Comp-FM waveforms may be 

viewed as a generalization of complementary coding. 

Specifically, where the latter achieves sidelobe cancellation 

by exploiting the additional degrees of freedom provided by 

a pair of (or in general N) different waveforms, Comp-FM 

belongs to a growing family of “random FM” waveforms 

whereby every pulse possesses a unique waveform that is not 

repeated (see [28] for an overview). The benefit of non-

repetition in this context is that, while unique subsets of 

waveforms can be designed for sidelobe cancellation via 

complementary combining, the overall coherent processing 

interval (CPI) is comprised of distinct subsets that provide 

even further sidelobe reduction by virtue of incoherent 

sidelobe averaging. As a result, additional resilience is 

obtained in practice when complementary sidelobe 

cancellation alone is degraded due to Doppler. 

It should be noted, of course, that the use of random FM 

waveforms does introduce an effect denoted as range sidelobe 

modulation (RSM) [29, 30] that can limit the efficacy of 

clutter cancellation. Simply put, the pulse-to-pulse changing 

of range sidelobes modulates the clutter, thus introducing a 

nonstationarity. That said, suppression of sidelobes through 

Least-Squares mismatched filtering (LS-MMF) [31] 

appropriate for FM waveforms [23, 32-34] can be an effective 

compensation strategy to this problem. Therefore, because 

the very purpose of complementary combining is range 

sidelobe cancellation, the use of random FM waveforms in 

this context has a built-in mechanism for RSM compensation, 

as later demonstrated experimentally. 

Another interesting attribute of random FM waveforms is 

that their inherent diversity enables the prospect of 

complementary sidelobe cancellation based on appropriate 

filtering of arbitrary non-repeating waveforms (such as those 

described in [33, 35-38]). Specifically, work by Bi and 

Rohling [13] on mismatched filters (MMFs) for sets of binary 

codes has recently been generalized [39] to permit application 

to random FM waveforms. In so doing, complementary 

combining can be achieved through the joint optimization of 

subsets of MMFs, thus providing an alternative to 

complementary waveform design. Denoted as mismatched 

complementary-on-receive filtering (MiCRFt), this approach 

can be used to place the burden of complementary design 

solely on the receive side, as demonstrated experimentally 

using free-space measurements. Moreover, it is likewise 

shown that the combination of Comp-FM waveforms and 

MiCRFT receive processing can yield even better 

performance (in terms of sidelobe suppression and associated 

RSM compensation) than either approach alone. 

The remainder of the paper is organized as follows. Section 

2 briefly surveys the PCFM waveform structures considered 

here, while Sect. 3 subsequently summarizes optimal 

mismatched filtering for FM waveforms. In Sect. 4 the 

structure, optimization approach, and some simulation results 

for Comp-FM waveforms are provided. Section 5 

subsequently derives the MiCRFt formulation, incorporates 

range straddling effects, defines a mismatch loss metric, and 

provides additional simulation results. Finally, Sect. 6 

demonstrates how these waveforms and this joint filtering 

scheme perform using free-space measurements, as well as 

the prospective benefits of combining them. 

2. FM Waveform Representation 

Consider the baseband form of a constant amplitude, 

pulsed radar waveform having pulsewidth T, which can be 

generically expressed as 

 ( )( ) exp ( )s t j t=    (1) 

for 0  t  T and  (t) the instantaneous phase as a function of 

continuous time t. Traditional biphase and polyphase codes, 

and subsequent complementary codes that rely on these 

signal structures, represent the phase function as a discrete 

sequence ̅𝑛 that modulates a train of rectangular “chips” (or 

subpulses) via 

 c( ) rect( )n

n

t t nT = − ,   (2) 

where 𝑇c is the temporal extent of each constant-phase chip. 

Consequently, the spectral content of these coded waveforms 

is a weighted sum of sinc(⦁) functions; hence the extended 

spectral skirts noted in [17, 18, 23]. 

The DPSK and BTQ implementations [21, 22] can be used 

to convert binary codes (̅𝑛 ∈ {0, }) into physical waveforms 

with better spectral containment – note that we do not say 

bandlimited because a finite duration pulse still possesses 

theoretically infinite bandwidth. However, the use of 

polyphase coding within the PCFM framework provides 

greater design freedom due to use of the entire 2 phase 

continuum. The parameterized phase function for the PCFM 

implementation [23] takes the form 
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where vector 𝐱 = [1 2  ⋯ 𝑁]𝑇 collects the N PCFM phase-

change (instantaneous frequency) parameters 𝑛[−, +], 

the operation (⦁)𝑇  is the vector transpose, and   denotes 

convolution. The term g( ) is a frequency shaping filter 

(usually rectangular with time support on [0, 𝑇p] ) that is 

convolved with the weighted impulse train in (3), where the 

impulses are separated by 𝑇p and 𝑇 = 𝑁𝑇p . Integration turns 

the resulting instantaneous frequency function into a 

continuous phase function that is piece-wise linear with initial 

phase ̅0 .  

The representation in (3) is the first-order PCFM 

implementation because it involves a single integration stage. 

The attributes of higher-order PCFM implementations with 

additional integration stages have also been examined [40], 

though they will not be considered here. The reader should 

note, however, that MatlabTM code for the various PCFM 

implementation orders can be found in the appendix of [40]. 

Evaluation of the convolution and integration operations in 

(3) provides the equivalent form 
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is the nth continuous basis function (of N). If the shaping filter 

is rectangular with amplitude 1/𝑇p (so it integrates to unity), 

then the nth basis function from (5) is the time-shifted ramp 
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The nth basis function can be discretised as the length-M 

(>N) vector bn , where N is also a good approximation for the 

waveform’s time-bandwidth product BT (for B the 3-dB 

bandwidth) [23]. Since true Nyquist sampling cannot be 

achieved for a time-limited pulse, setting M = NK for some 

“over-sampling” value K (relative to 3-dB bandwidth) allows 

aliasing to be kept to a minimum; with K as low as 2 or 3 

generally sufficient.  

Therefore, a discretised representation of the continuous 

phase function in (4) can be expressed as the length-M vector 

 0( ) = +Bxx ,     (7) 

where the 𝑀 × 𝑁 matrix B is comprised of the N discretised 

basis functions. A discretised form of the corresponding 

PCFM waveform can likewise be expressed via (1) as 

 ( )exp( ) )(j=xs x ,     (8) 

noting that the construction above ensures abrupt phase 

changes are avoided. Further, if resampling is required 

relative to the digital-to-analog converter (DAC) rate when 

generating a PCFM waveform in hardware, phase 

interpolation (instead of standard sinc interpolation) should 

be used to avoid unnecessary amplitude distortion. Also, 

because the arbitrary initial phase ̅0  cancels when 

performing receiver matched filtering, we shall henceforth 

ignore it. 

3. Optimal Mismatched Filtering - FM Waveforms 

It is well known that windowing of the LFM matched filter 

can be used to compensate for what are otherwise rather high 

range sidelobes [17, 18], though this approach does not 

represent optimality in any sense. Conversely, it has been 

shown [31] that a mismatched filter that is optimal in the 

Least Squares sense (LS-MMF) can be determined for the 

abstract form of arbitrary codes (i.e. represented solely by the 

values in the code via (2)). That said, range straddling effects 

[23, 41, 42] can lead to degradation in practice due to model 

mismatch. 

More recently, [23] demonstrated how the LS-MMF 

formulation could be modified for application to arbitrary FM 

waveforms, where the continuous nature of FM provides 

some natural robustness to range straddling effects. Moreover, 

while straddling cannot be completely avoided when 

performing digital receive processing, it was likewise shown 

[32] that simple averaging based on sub-sample delay shifts 

of the model can provide further robustness. Later we 

leverage this LS-MMF formulation for FM waveforms to 

establish a complementary approach based solely on receive 

processing. Hence a brief review is in order. 

Let arbitrary FM waveform s(t), with pulsewidth T and 3-

dB bandwidth B, be discretised into the length-M vector s 

according to sampling period 

 s
( )

T T
T

K BT M
= = ,     (9) 

where BT is again the time-bandwidth product and K is the 

same “over-sampling” factor discussed above. The original 

LS-MMF for codes [31] defines the ((κ +1)M ‒1)  κM 

convolution matrix 
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and subsequently poses the relationship 

 m=Ah e ,     (11) 

where κM is the length of the resulting filter (with κ typically 

on the order of 2 to 4), em is the length (κ +1)M ‒1 elementary 

vector with a one in the mth element and zeros elsewhere, and 

h is the desired MMF. 

The well-known solution to (11) is 

 ( )
1

H H
m

−

=h A A A e ,     (12) 

with (•)H denoting the Hermitian operation. However, as it 

stands, (12) does not properly account for the over-sampling 

that is needed to represent an FM waveform with high fidelity 

(i.e. minimal aliasing), and thus this form of LS-MMF 

produces a super-resolution condition that causes sidelobe 

and mismatch loss degradation [18]. That said, (12) can be 

readily modified to make it suitable for FM waveforms and 

the associated over-sampling via [23] 

 ( )
1

H H
m

−

= +h A A I A e .     (13) 

Here  I provides diagonal loading and A  is the same as A 

except that some number of rows above and below the mth 

row are replaced with zeros to facilitate the “beam-spoiling” 

needed to prevent the range super-resolution condition. It is 

this form in (13) that we expand upon to design a set of 

mismatched filters that realize a complementary capability. 

4. Complementary FM Waveforms 

The compact, discretised representation of parameterized, 

continuous PCFM waveforms embodied by (7) and (8) 

permits the use of a variety of optimization approaches and 

the consideration of many different physically-realizable, 

waveform-diverse applications. For example, in [43] (with 

detailed derivation in [44]) gradient-descent optimization was 

performed and subsequently demonstrated experimentally to 

realize waveforms that can reach a lower bound on sidelobe 

performance for discretised FM waveforms. This general 

approach was also employed to optimize coded FM 

waveforms based on Legendre polynomials [45] (and also 

account for receiver range straddling), to efficiently 

incorporate spectral notches into FM waveforms [46], to 

realize an intermodulation-based formulation for nonlinear 

harmonic radar [47], and to design different sub-classes of 

random FM waveforms [36, 37]. Here we use gradient 

descent to optimize subsets of complementary FM 

waveforms. 

 
4.1 Complementary FM Waveform Design 



 

The following leverages the work in [27] to obtain subsets 

of complementary FM waveforms that also belong to the 

class of random FM waveforms. Denoting each subset as 

consisting of Z pulsed waveforms, the sequentially 

transmitted subsets comprise the total CPI of C pulses. 

Considering the z = 1, 2, , Z pulses within a particular 

subset (for Z  2), parameterize the zth discretised FM 

waveform 𝐬𝑍  using 𝐱𝑍  based on (8). Thus our goal is to 

design the set of PCFM codes 𝐱1 , 𝐱2 , ⋯ , 𝐱𝑍  such that the 

coherent combination of autocorrelations, for the 

corresponding waveforms 𝑠(𝑡;  𝐱𝑍) produced by (1) and (3), 

realizes a response with (ideally perfect) sidelobe 

cancellation. 

It is convenient to use a frequency domain representation 

and so M −1 zeros are appended to the zth discretised 

waveform 𝐬𝑍 to form 

 1 ( 1)[ ]T T
z z M −=s s 0 ,     (14) 

with the corresponding (2M −1)  1 discretised frequency 

response therefore denoted as 

 f,
H

z z=s D s ,     (15) 

where DH is the (2M −1)  (2M −1) discrete Fourier 

transform (DFT) matrix and D is the inverse DFT matrix. 

Therefore, complementary combining for the set of Z 

waveforms yields the length-(2M −1) discretised aggregate 

autocorrelation that can be written as 

   ( )f1 f

1

0 , ,1        
T

M M

Z

z z

z

r rr−


+

=

−= = r D s s ,   (16) 

in which (•) denotes complex conjugation and  is the 

Hadamard product. 

Minimisation of the complementary aggregated sidelobes 

in (16) is a non-convex problem and global optimality cannot 

be guaranteed. However, in keeping with the spirit of random 

FM waveforms [28], it is not the single best solution we seek, 

but rather a diverse set of sufficiently good solutions that 

further benefit from incoherent sidelobe combining when 

slow-time (Doppler) processing is subsequently performed. 

Therefore, instead of an optimal, yet brittle, result that is 

sensitive to degradation when inevitable mismatch arises, we 

obtain a sub-optimal result that is more robust to these 

mismatch effects by virtue of simple coherent averaging. 

Consequently, we shall use the generalised integrated 

sidelobe level (GISL) metric from [43, 44] defined as 
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in which ||•||p denotes the p-norm for p  2, and the length-

(2M −1) vectors 𝐰ML and 𝐰SL are each composed of ones and 

zeros that extract the respective mainlobe and sidelobe 

regions of the autocorrelation r. For the PCFM construction 

above, the null-to-null width of the mainlobe comprises the 

(2K −1) samples in the center of r, which therefore 

correspond to the only values in 𝐰ML that are set to one (with 

the rest zero), and subsequently 𝐰SL = 𝟏 − 𝐰ML . It was 

demonstrated in [45] that setting the width of the mainlobe in this 

way also establishes the 3-dB bandwidth. 
For each complementary subset of Z waveforms there are 

therefore NZ parameters to optimize with respect to (17). For the 

zth waveform the N  1 gradient vector is 
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which is comprised of partial derivatives with respect to each 

of the N phase-change parameters. Leveraging the gradient 

formulation in [43] (with detailed derivation in [44]), of 

which (16) is a direct extension by virtue of the summation of 

Z autocorrelations, realizes the gradient [27] 
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for the zth of Z waveforms. Here the basis function matrix B 

from (7) has also been appended with M −1 rows of zeros as 
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to be consistent with (14) and the operator { } extracts the 

imaginary part of the argument. The length-(2M −1) vectors 

that are Hadamard multiplied with r in (19) are 
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which arise from the gradient derivation. The gradient 

expression in (14) permits computation using fast Fourier 

transforms (FFTs) and matrix/vector multiplication [44, 48]. 

The gradient of (19) can thus be used to perform a descent-

based optimization update for each of the Z parameter vectors 

𝐱𝑍. At the ith iteration for the zth waveform this update is 

 , 1 , , ,z i z i z i z i+ = +x x p ,                         (23) 

where 𝜇𝑧,𝑖  is the current step-size and the current descent 

direction is 
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for 0   < 1, where we have chosen to use the heavy-ball 

descent method [49] and the step-size is determined via a 

back-tracking method [50]. Further discussion of these 

selections can be found in [44]. 

Note that each iteration of (23) is performed concurrently 

for the set of Z waveforms, based on the aggregate discretised 

autocorrelation r from (16) and the subsequent gradient from 

(19), which are dependent on the set of updated waveforms 

obtained in the previous iteration. Further, to provide the 

needed diversity within each subset and across the distinct 

subsets, each PCFM waveform is independently initialized 

with a random instantiation of x, with the individual values 

independently drawn from a uniform distribution on [−, +]. 

Finally, while this complementary FM waveform design 

approach relies on the gradient-descent formulation 

developed in [43, 44], there are two important (and related) 

distinctions to make regarding implementation. The most 

obvious of these is that here we are making use of the degrees 

of freedom from Z different waveforms in a collective manner, 

as opposed to the optimization of a single waveform in [43, 

44]. The relevant consequence of that difference is that the 



 

single-waveform optimization in [43, 44] subsequently 

requires use of “over-coding” (see [51]), which provides an 

expansion of available degrees of freedom, to achieve 

sidelobe performance commensurate with that observed here. 

However, expansion of spectral content can arise as an 

undesired by-product of over-coding, thus necessitating 

further spectral containment measures. In contrast, the access 

to greater degrees of freedom afforded by complementary 

design avoids the spectral expansion issue altogether. 

 
4.2 Simulation Analysis 

To illustrate the efficacy of the Comp-FM framework to 

produce FM (and thus physically realizable) waveforms 

possessing complementary attributes, two distinct sets of 

C = 1000 random FM waveforms were generated. For both 

sets, each waveform has a 3-dB bandwidth of B = 33.3 MHz 

and a pulsewidth of T = 4.5 μs, thereby realizing a time-

bandwidth product of BT = 150. Each waveform is also 

discretised using an over-sampling factor of K = 6 (relative to 

B), thus yielding a vector of length N = K(BT) = 900. 

The first set serves as a non-complementary baseline and 

consists of C = 1000 pseudo-random optimized (PRO) FM 

waveforms that are each designed to approximate a Gaussian 

power spectrum, but are otherwise unique due to independent 

initializations (see [33]). The other set consists of C/Z = 250 

unique subsets of Z = 4 Comp-FM waveforms.  

Figure 1 illustrates the relative range sidelobe performance 

of individual PRO-FM and Comp-FM waveforms after 

matched filtering, as well as the aggregated autocorrelations 

obtained when coherently combining respective subsets of 

four for zero Doppler (i.e. averaging the autocorrelations 

from four different waveforms). Corresponding peak sidelobe 

level (PSL) values for each are summarized in Table I. For 

the individual waveform comparison, PRO-FM achieves a 

PSL of −27.4 dB, which is 7 dB lower than the −20.4 dB for 

Comp-FM. However, while the combination of four unique 

PRO-FM autocorrelations realizes about 10 log10 (4) = 6 dB 

of additional sidelobe suppression due to incoherent 

averaging (5.7 dB here, to be exact), the combining of Z = 4 

Comp-FM autocorrelations achieves 34.7 dB of additional 

sidelobe cancellation (to −55.1 dB) due to complementarity. 

Figure 2 then demonstrates the benefit of coherently 

combining autocorrelations over the entire set of L = 1000 

unique waveforms. Now PRO-FM realizes a PSL of −57.3 dB 

due to the roughly 10 log10 (1000) = 30 dB of incoherent 

sidelobe averaging relative to the single waveform result in 

Fig. 1. Similar combining for Comp-FM over the 250 unique 

subsets corresponds to 10 log10 (250) = 24 dB, with the 

simulated result in Fig. 2 revealing a relatively close 

approximation of 21 dB of incoherent sidelobe averaging on 

top of the complementary sidelobe cancellation, thereby 

achieving a final PSL of −76.1 dB. Thus, despite Comp-FM 

having a 7-dB PSL disadvantage relative to PRO-FM on the 

single-waveform basis, it ends up with an 18.8-dB PSL 

advantage after combining over the entire set of 1000 unique 

waveforms. 

 

 

 
Fig. 1. Simulated autocorrelations for a single Comp-FM 

waveform and a single PRO-FM waveform, along with the 

coherent sum of autocorrelations for 4 unique PRO-FM 

waveforms and for a subset of Z = 4 Comp-FM waveforms. 

 

 
Fig. 2. Simulated coherent sum of autocorrelations for 1000 

unique PRO-FM waveforms and for 250 unique subsets of 

Z = 4 Comp-FM waveforms. 

 

Table I.  PSL comparison after autocorrelation combining 

Waveform Combining PSL 

PRO-FM none (single waveform) −27.4 dB 

Comp-FM none (single waveform) −20.4 dB 

PRO-FM average of 4 −33.1 dB 

Comp-FM Z = 4 subset −55.1 dB 

PRO-FM CPI of C = 1000 −57.3 dB 

Comp-FM C/Z = 250 unique Z = 4 subsets −76.1 dB 

 

In Fig. 3 the power spectral density (PSD) averaged over 

each set of C = 1000 waveforms is shown. For the PRO-FM 

case, where each waveform is designed to approximate a 

Gaussian power spectrum, the resulting average is clearly 

rather close to a Gaussian. In contrast, no overt spectral 

shaping was employed for the Comp-FM design process, 

though the “over-sampling” (by K) of the N-dimensional 

parameter space for each waveform does provide a natural 

degree of spectral containment. It is therefore interesting to 

observe here that the top 25 dB of the spectral content for 

Comp-FM tends toward a Gaussian shape as well, though this 

result is not all that surprising in hindsight given that the 

inverse Fourier transform of a Gaussian PSD is a Gaussian 



 

autocorrelation, which theoretically possesses no range 

sidelobes (and the sidelobes in Fig. 2 are quite low). 

Finally, to draw a comparison between Comp-FM and 

traditional complementary coding schemes, the resulting 

value of PSL was determined as a function of pulse-to-pulse 

Doppler phase shift. For this comparison we considered a 

polyphase complementary set comprised of two length-10 

codes [16], along with a subset of Z = 2 Comp-FM 

waveforms and a subset of Z = 4 Comp-FM waveforms. 

Figure 4 depicts the results of this Doppler tolerance 

analysis, where the polyphase complementary set clearly 

experiences the most degradation as Doppler increases. The 

Z = 2 Comp-FM case provides far less sidelobe cancellation 

at zero Doppler, but then is relatively robust to increasing 

Doppler. The Z = 4 Comp-FM case is then a little more 

sensitive to Doppler (relative to Z = 2), but since it achieves 

so much better cancellation at zero Doppler it remains the best 

over the Doppler interval considered. While these results are 

clearly only anecdotal, they do indicate a general tendency 

towards better Doppler robustness for Comp-FM waveforms. 

 

 
Fig. 3. Power spectral density averaged over the PRO-FM 

and Comp-FM sets of 1000 unique waveforms. 

 

 
Fig. 4. PSL vs. Doppler for a polyphase complementary set 

of two length-10 codes compared to Z = 2 and Z = 4 Comp-

FM waveform subsets. 

5. Complementary MMF for FM Waveforms 

The complementary sidelobe cancellation concept has 

historically focused almost exclusively on the design of codes 

that achieve this condition when combined after pulse 

compression. A notable exception is the work of Bi and 

Rohling [13] which considers how the original LS-MMF of 

[31] could be incorporated to provide greater freedom in the 

design of complementary binary codes. Here we take this 

interesting idea a step further by relaxing the waveform 

design portion altogether (from the complementary 

perspective) and focusing instead on what can be achieved 

solely via receive filtering. In so doing, we also consider how 

robustness to range straddling can likewise be incorporated. 

 
5.1 Complementary Design of Joint MMFs 

Consider the design of LS-MMFs for Q diverse FM 

waveforms such that, when the respective filter responses are 

combined, a complementary condition is achieved. This 

approach is denoted as mismatched complementary-on-

receive filtering, or MiCRFt (pronounced like “Mycroft” 

Holmes, fictional elder brother of Sherlock Holmes). 

Returning to the LS formulation of (11), albeit with 

inclusion of the beam-spoiling modification within each 

convolution matrix as employed in (13), we can express this 

multiple MMF design problem as 

 
1

Q

q q m

q

Q
=

=A h e ,                           (25) 

where scaling of the elementary vector em by Q accounts for 

coherent integration gain over the subset. This form can be 

rearranged into a single matrix/vector multiplication via 

 mQ=F h e ,                              (26) 

in which 

 1 2[ ]T T T T
Q=h h h h                        (27) 

 1 2[ ]Q=F A A A                         (28) 

are a length-κMQ concatenation of MMFs and a concatenated 

matrix with dimensionality ((κ +1)M ‒1)  κMQ, respectively. 

Since (26) has the same general form as (11), the collection 

of Q MiCRFt MMFs for this subset of diverse FM waveforms 

can be obtained by direct application of (13) as 

 ( )
1

H H
mQ 

−

= +h F F I F e ,                    (29) 

where the expanded identity matrix I  is κMQ  κMQ. Note 

that this solution necessarily requires Q diverse waveforms. 

In the degenerate case where the Q waveforms are identical, 

(25) reverts back to (11) and thus only one MMF is obtained. 

Moreover, if the Q waveforms are different, yet still 

somewhat similar (e.g. [52]), some degree of ill-conditioning 

in (29) may arise. Hence, the diversity from fully unique 

waveforms are key. 

 
5.2 Incorporating Range Straddling into MiCRFt 

Range straddling (or cusping) [41, 42] occurs when digital 

receive processing is performed and it arises from the fact that 

Nyquist sampling cannot be achieved for a time-limited 

pulse, which has a theoretically infinite bandwidth. 

Consequently, the receive-captured version of a waveform 

produced by a hypothetical point scatterer will generally not 

be sampled in precisely the same way as the discretised 

version used to perform matched/mismatched filtering. Thus 

the theoretical peak value of the pulse compression mainlobe 

is not obtained, which subsequently incurs mismatch loss. 

Further, for optimized MMFs, model mismatch effects arise 



 

that cause increased sidelobes relative to the optimal (delay-

aligned) condition. 

While using a higher “over-sampling” factor in the receiver 

analog-to-digital converter (ADC) is an obvious solution, 

there tend to be practical limits on ADC rates given a 

prescribed quantisation bit depth. Moreover, one would also 

have to contend with increased noise and interference in the 

receiver front-end. Consequently, we shall consider how to 

improve robustness to straddling mismatch within the joint 

MMF formulation itself (in contrast to the a posteriori MMF 

averaging approach previously examined in [32] for an 

individual MMF). 

Segment the sampling period Ts from (9) into delay offsets 

s/T L  for 0,1, , 1L= − that are equally spaced. After 

introducing each of these delay offsets, subsequent 

discretisation of continuous waveform s( / )s t T L−  using the 

same sampling period produces a set of L length-M vectors 

for the qth waveform that we shall denote as ,qs . From these 

vectors corresponding beam-spoiled convolution matrices 

,qA  can be formed. Thus (25) can be written for the th  

delay offset as 

 ,

1

Q

q q m

q

Q
=

=A h e                            (30) 

and the collection of L delay offsets can be assembled into 

 mQ=G h e .                                (31) 

Here 

 [ ]T T T T
m m m m=e e e e                           (32) 

is a concatenation of L elementary vectors and the matrix 
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has dimensionality ((κ +1)M ‒1)L  κMQ. 

Since (31) again has the same form as (11), the solution 

likewise follows directly from (13) as 

 ( )
1

H H
mQ 

−

= +h G G I G e .                    (34) 

Like (29), note that (34) still only produces Q MMFs, though 

each one is now more robust to straddling effects. Also like 

(29), the formulation in (34) involves a rather large κMQ  

κMQ matrix inverse that may be computationally formidable 

even when using waveforms with a modest BT. Thus ongoing 

work is also exploring ways in which to obtain these filters, 

or sub-optimal versions thereof, in a more efficient manner. 

 

5.3 MMF Normalization and Mismatch Loss 

Because the MiCRFt filters are MMFs, it is necessary to 

consider their mismatch loss as well as the resulting sidelobe 

response. Determining the mismatch loss first requires 

normalization of the set of MMFs so that, relative to the 

matched filter, the same noise gain is obtained. For 

discretised waveform s, the normalized matched filter (NMF) 

can be readily obtained via 

 NMF

B

H



=
s

h
s s

,                               (35) 

for (⦁)B the backwards operator that reverses the signal in time. 

By extension, a single noise-gain normalized MMF (NMMF), 

relative to h in (12) or (13), can be expressed as 
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Thus 
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for   denoting convolution, where the denominator is 

actually unity via (35) and can therefore be ignored. 

This definition can likewise be extended for the multi-

MMF formulation of MiCRFt under the assumption that the 

Q waveforms in the subset have the same BT. Therefore, 

using the set of Q filters determined by either (29) or (34), the 

corresponding set of Q NMMFs can be obtained via 
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in which, like (27), 

 1 2[ ]T T T T
Q=s s s s                        (39) 

is the concatenation of the Q discretised waveforms. Thus 
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since each term in the denominator is still unity. Further, 

because (40) corresponds to the particular Q waveforms in a 

given subset of the larger CPI, the same procedure must be 

performed over the entire collection of C/Q subsets and the 

results subsequently averaged to determine the overall 

mismatch loss for the C waveforms in a CPI. 

 
5.4 Simulation Analysis 

Consider a subset of Q = 4 arbitrary PRO-FM waveforms 

with BT = 150 and K = 6 (so N = 900). To draw consistent 

comparisons between individually optimized MMFs from 

(13) and a given version of MiCRFT, each is parameterized 

with (K − 1) = 5 rows of zeroes above and below the mth row 

for beamspoiling of the convolution matrices, a value of κ = 2 

(so each MMF is length 2M), and a diagonal loading factor of 

 = 10. The total response from a hypothetical noise-free 

point scatterer is evaluated using the different filtering 

strategies, which involves coherently combining the 

individual responses from Q filter/waveform pairs. Here we 

consider the PSL, the integrated sidelobe level (ISL), and the 

mismatch loss (MML) via (37) or (40) as appropriate. 

Figure 5 and Table II first consider the idealized case in 

which the receive sampling is perfectly aligned (i.e. no range 



 

straddling). The combination of matched filter (MF) 

responses for four unique waveforms realizes no mismatch 

loss, as expected, and a PSL of −33.1 dB. The combination of 

four individually optimized MMFs via (13) realizes 2.0 dB of 

mismatch loss, but achieves a PSL of −43.8 dB, a nearly 11-

dB improvement. Most significantly, however, MiCRFt from 

(29) realizes a PSL of −78.2 dB (a 45-dB improvement over 

the MF!) with only 0.2 dB of mismatch loss. 

 

 
Fig. 5. Comparison of combined pulse compression 

responses for 4 PRO-FM waveforms with no straddling 

(noise-free hypothetical point scatterer)  

 

Table II.  Quantitative filter comparison of Fig. 5 (Q = 4) 

Filter PSL ISL MML 

MF  4 −33.1 dB −46.4 dB 0 dB 

LS via (13)  4 −43.8 dB −58.9 dB 2.0 dB 

MiCRFT via (29) −78.2 dB −92.8 dB 0.2 dB 

 

 
Fig. 6. Comparison of combined pulse compression 

responses for 4 PRO-FM waveforms with maximum 

straddling of Ts /2 (noise-free hypothetical point scatterer) 

 

Table III.  Quantitative filter comparison of Fig. 6 (Q = 4) 

Filter PSL ISL MML 

MF  4 −32.1 dB −43.4 dB 0.6 dB 

LS via (13)  4 −34.5 dB −51.1 dB 2.6 dB 

MiCRFT via (29) −33.9 dB −53.7 dB 0.8 dB 

 

In contrast to the ideal condition of no straddling, Fig. 6 

and Table III reveal the degree of degradation that occurs 

when maximum straddling of Ts / 2 is present. While the 

matched filters exhibit only a 1-dB increase in PSL, they also 

experience a 0.6-dB mismatch loss that is completely 

attributable to range straddling. On the other hand, the 

individually optimized MMFs from (13) incur more than 9 

dB in PSL degradation, along with an additional 0.6 dB of 

mismatch loss. Finally, in large part because the ideal results 

in Fig. 5 and Table II were so good to begin with, MiCRFt 

suffers a quite significant 44-dB degradation in PSL, as well 

as the same 0.6 dB in further mismatch loss. Of course, 

MiCRFt still has almost 2 dB lower sidelobes than the 

matched filters and nearly 2 dB less mismatch loss than the 

individual MMFs. 

Finally, Fig. 7 and Table IV illustrate the benefit of using 

the version of MiCRFt from (34) that compensates for range 

straddling. Here L = 2 is used, so that the worst-case 

straddling for MiCRFt now becomes Ts / 4 (halfway between 

delay offsets considered in the filter formulation). To ensure 

a fair comparison, similar compensation was performed for 

the individual MMFs by applying (34) with L = 2 and Q = 1. 

The MF results are now more similar to the no-straddling 

case, albeit with a small 0.2-dB mismatch loss. The individual 

compensated MMFs do recover about 3 dB of straddling-

induced sidelobe degradation, along with the original (rather 

high) mismatch loss of 2.0 dB. Finally, compensated MiCRFt 

reduces the straddling-induced mismatch loss by 0.2 dB, 

though the more significant improvement is in regaining 

more than 22 dB of sidelobe suppression. While not quite as 

good as in the no-straddling case, the −56.2-dB PSL attained 

by compensated MiCRFt is still rather substantial given that 

it is under the (now) worst-case straddling condition. 

 

  
Fig. 7. Comparison of combined pulse compression 

responses for 4 PRO-FM waveforms using compensated 

MiCRFt from (34) with L = 2, for new maximum straddling 

of Ts /4 (noise-free hypothetical point scatterer) 

 

Table IV.  Quantitative filter comparison of Fig. 7 (Q = 4) 

Filter PSL ISL MML 

MF  4 −32.5 dB −45.3 dB 0.2 dB 

LS via (34)  4 −37.8 dB −54.4 dB 2.0 dB 

MiCRFT via (34) −56.2 dB −71.0 dB 0.6 dB 

 

For subsequent experimental results in the next section, (34) 

using L = 2 is employed for MiCRFt and for the individual 

optimized MMFs (by setting Q = 1). Some modest further 

robustness to straddling can be achieved by further increasing 

the value of L, though diminishing improvement is reached 



 

rather quickly. It is therefore questionable whether the slight 

enhancement is worth the additional computational cost. 

6. Experimental Results 

The same sets of 1000 PRO-FM and Comp-FM waveforms 

evaluated via simulation in Sections 4.2 and 5.4 were 

implemented on test equipment to assess the efficacy of 

complementary FM waveforms and complementary-on-

receive MMF using experimental measurements. We first 

performed a loopback assessment to determine the impact of 

hardware separate from the effects of scattering 

phenomenology. Then open-air data was collected that 

included multiple movers in the scene, thereby providing 

some sense of the resilience to Doppler effects in practice. 

 
6.1 Closed-Loop Experimental Assessment 

As before, 1000 PRO-FM and Comp-FM waveforms were 

designed to have pulsewidth T = 4.5 μs and 3-dB bandwidth 

B = 33.3 MHz. Each waveform set was generated using a 

Tektronix AWG70002A arbitrary waveform generator (10-

bit depth) at a pulse repetition frequency (PRF) of 5 kHz and 

at a centre frequency of 3.55 GHz. The AWG was connected 

to a class A amplifier, which for this loopback configuration 

was connected to an attenuator and then directly into the 

receive chain. The latter consisted of a low-noise amplifier 

followed by a Rhode & Schwarz FSW26 spectrum analyser 

that digitized the subsequent baseband signal at a rate of 200 

Megasamples/second. 

The 250 Comp-FM waveform subsets of size Z = 4 are first 

pre-summed after pulse compression to obtain the 

complementary sidelobe cancellation. Doppler processing is 

then performed, where the corresponding effective PRF of 

1.25 kHz does reduce the Doppler space by a factor of 4. To 

provide consistent results for comparison, the same pre-

summing procedure is also applied to the pulse compressed 

PRO-FM waveforms (using MF or MMF) prior to Doppler 

processing. Pre-summing is likewise performed when 

MiCRFt is applied, where Q = 4 is used for simplicity (and so 

Comp-FM and MiCRFt can be easily combined). The 

individual MMFs and MiCRFt filters are generated via (34) 

using the loopback-captured version of each waveform, and 

otherwise the same parameterization discussed in Sect. 5.4.  

Note that individual MMFs are not formed for the Comp-

FM waveforms because doing so removes the complementary 

attribute for which they are designed. Thus the five filter/ 

waveform combinations being considered are matched 

filtering of PRO-FM (MF / PRO-FM), matched filtering of 

Comp-FM (MF / Comp-FM), individually optimized MMFs 

applied to PRO-FM (LS-MMF / PRO-FM), MiCRFt applied 

to PRO-FM (MiCRFT / PRO-FM), and then the final 

combination (MiCRFT / Comp-FM) that doubly exploits 

complementarity. 

Figure 8 and Table V illustrate these five combinations for 

a Z = Q = 4 subset using the loopback-captured 

measurements, which represent a noise-free point-scatterer 

response in the presence of whatever distortion the hardware 

imposes. The results are generally consistent with the 

corresponding simulation results in Figs. 1 and 5, where the 

most severe sidelobe degradations caused by range straddling 

have been largely mollified by the quasi-bandlimiting of the 

hardware and subsequent use of the loopback-captured 

versions of the waveforms to construct the receive filters, 

which generally always tends to be a good idea. 

Consequently, the values in Table V are quite similar to the 

no-straddling case in Table II, despite no effort being made to 

perfectly synchronize the receive sampling. It should be 

noted, however, that spectral splatter (i.e. spreading) induced 

by nonlinear effects in high-power transmitters [53] can make 

straddling compensation even more necessary.  

Most significantly, the combination of Comp-FM and 

MiCRFt yields extremely low sidelobes (PSL of −85.6 dB) as 

well as almost negligible mismatch loss. This latter 

observation makes sense when one considers that, since 

Comp-FM waveforms are designed to be combined in 

complementary fashion, the jointly optimized MiCRFt filters 

that are designed for the same purpose would not tend to 

cause much mismatch deviation when suppressing the 

sidelobes further. 

 

 
Fig. 8. Loopback measured filter responses for a single 

Z = Q = 4 subset of PRO-FM or Comp-FM 

 

Table V.  Quantitative filter comparison of Fig. 8 (Q = 4) 

Filter / Waveform PSL ISL MML 

MF / PRO-FM −33.4 dB −50.4 dB 0 dB 

MF / Comp-FM −53.3 dB −64.5 dB 0 dB 

LS-MMF / PRO-FM −41.9 dB −57.1 dB 0.5 dB 

MiCRFT / PRO-FM −76.0 dB −92.1 dB 0.4 dB 

MiCRFT / Comp-FM −85.6 dB −101.1 dB 0.04 dB 

 

6.2 Open-Air Experimental Assessment 
Finally, free-space measurements using each set of 1000 

waveforms were made from the roof of Nichols Hall on the 

University of Kansas campus. The AWG and amplifier were 

connected to a transmitting dish antenna pointed towards the 

intersection of 23rd and Iowa Streets in Lawrence, KS (about 

1 km away), while a second nearby dish antenna was used to 

receive the subsequent reflections. A visualisation of this 

arrangement courtesy of Google Earth is depicted in Fig. 9.  

The zero-Doppler slice in Fig. 10 illustrates the response 

of each of these five filter/waveform combinations, where the 

only observable difference (thus far) lies in the region 

between 200-300 meters and generally agrees with the PRO-

FM sidelobe response in Fig. 2 after coherently combining 

1000 unique waveforms. These residual sidelobes are relative 

to the direct path leakage between the transmit and receive 

antennas, which as the strongest response has been 

normalized to 0 dB in the figure.  

 



 

 
Fig. 9. Visualization of test setup for open-air measurements 

 

 
Fig. 10. Zero-Doppler slice of open-air measurements 

normalized relative to the direct path coupling between 

collocated transmit and receive antennas 

 

Following standard Doppler processing, which includes 

simple projection-based clutter cancellation (since the 

platform is stationary), Figs. 11-15 and Table VI depict the 

range-Doppler response for each of the filter/waveform pairs. 

The range interval between roughly 1000 to 1300 meters 

includes multiple moving cars and trucks traversing the 

intersection. A useful metric in this case is the integrated 

range sidelobe modulation (IRSM), which is simply an 

average of the residual power over a range-Doppler region 

where RSM is prevalent. 

Starting with the PRO-FM matched filter result in Fig. 11, 

what becomes immediately evident is the significant RSM 

that smears across Doppler out to about 700 meters. This 

RSM is a residual response from the direct path leakage that, 

though cancelled along with stationary clutter, still persists 

due to the nonstationarity of changing range sidelobes that 

remain visible given sufficient dynamic range. The IRSM in 

this region, excluding the clutter notch, is found to be −93.3 

dBm. We shall use this value as the baseline to compare 

performance improvement for other filter/waveform pairs. 

The use of Comp-FM waveforms and matched filtering in 

Fig. 12 reveals a noticeable reduction in overall RSM, enough 

so that the particular Doppler-smeared RSM that is directly 

related to the range peaks at 0 and ~120 meters in Fig. 10 are 

now visible as horizontal streaks. The IRSM measured for 

this case (again excluding the clutter notch) is −102.8 dBm, a 

9.5-dB reduction relative to the MF / PRO-FM case above. 

Further, the RSM-induced speckle in the vicinity of the traffic 

intersection in Fig. 11 is now significantly reduced as well. 

 

 
Fig. 11. Range-Doppler response for 1000 unique PRO-FM 

waveforms after pre-summing by 4, using matched filtering 

 

 
Fig. 12. Range-Doppler response for 250 unique Comp-FM 

subsets of Z = 4 waveforms, using matched filtering 

 

 
Fig. 13. Range-Doppler response for 1000 unique PRO-FM 

waveforms after pre-summing by 4, using individual MMFs 

via (34) 

 

The individual MMF result in Fig. 13 likewise provides 

some reduction in RSM, though the impacted region is now 

greater due to the factor of κ = 2 extension in filter length, 

such that part of the intersection is now obscured. Moreover, 

the raised sidelobe region for the MMF corresponding to 4 

μs in Fig. 8 is readily apparent here in the vicinity of 600 

meters in range, though the horizontal streaks noted in Fig. 

12 are no longer visible. The IRSM in this case is −102.4 

dBm, almost identical to the MF / Comp-FM case. That said, 



 

the obscuration of the region of interest makes this approach 

qualitatively poorer. 

Figures 14 and 15 illustrate the MiCRFt responses for 

PRO-FM and Comp-FM, respectively. Here we see that the 

RSM is almost completely removed, with the latter found to 

be marginally better by virtue of slightly more suppression of 

the residual direct path horizontal streaking effect noted 

above. In terms of IRSM these cases both achieve −119.5 

dBm (a 26.2-dB improvement over the MF / PRO-FM 

baseline). The likely reason for these values being precisely 

the same is that the RSM has effectively been suppressed to 

the noise floor, thus precluding the further distinction 

observed in loopback in Table V. 

 

 
Fig. 14. Range-Doppler response for 1000 unique PRO-FM 

waveforms, using MiCRFt via (34) with Q=4 

 

 
Fig. 15. Range-Doppler response for 250 unique Comp-FM 

subsets of Z = 4 waveforms, using MiCRFt via (34) with Q=4 

 

Table VI.  Integrated RSM comparison for Figs. 11-15 

Filter / Waveform 
Range-Doppler 

Integrated RSM 
Improvement 

MF / PRO-FM −93.3 dBm -- 

MF / Comp-FM −102.8 dBm 9.5 dB 

LS-MMF / PRO-FM −102.4 dBm 9.1 dB 

MiCRFT / PRO-FM −119.5 dBm 26.2 dB 

MiCRFT / Comp-FM −119.5 dBm 26.2 dB 

 

Figs. 16-20 present close-up versions of Figs. 11-15 that 

highlight the region of the traffic intersection. As noted 

above, the MF / PRO-FM case (Fig. 16) has some speckle that 

is induced by RSM, which is subsequently suppressed in the 

MF / Comp-FM case (Fig. 17), though a small degree of 

Doppler smearing is observed near 1030 meters that is 

believed to be from a ventilation fan on a building within the 

field of view (per Google Earth). 

 

 
Fig. 16. Range-Doppler response for 1000 unique PRO-FM 

waveforms after pre-summing by 4, using matched filtering 

(intersection close-up) 

 

 
Fig. 17. Range-Doppler response for 250 unique Comp-FM 

subsets of Z = 4 waveforms, using matched filtering 

(intersection close-up) 

 

 
Fig. 18. Range-Doppler response for 1000 unique PRO-FM 

waveforms after pre-summing by 4, using individual MMFs 

via (34) (intersection close-up) 

 

In Fig. 18 we see how the extended MMFs encroach upon 

the intersection, thus reducing sensitivity in this region. In 

contrast, in Figs. 19 and 20 the MiCRFt filters, which have 

the same extent as the individual MMFs, have basically 



 

removed all trace of RSM from the intersection for both PRO-

FM and Comp-FM waveforms.  

 

 
Fig. 19. Range-Doppler response for 1000 unique PRO-FM 

waveforms, using MiCRFt via (34) with Q=4 (intersection 

close-up) 

  

 
Fig. 20. Range-Doppler response for 250 unique Comp-FM 

subsets of Z = 4 waveforms, using MiCRFt via (34) with Q=4 

(intersection close-up) 

 

Finally, because random FM waveforms do provide an 

incoherent sidelobe averaging effect, it is also worth 

considering a smaller CPI within this complementary 

cancellation context. For the same measured data above, we 

now only use the first 100 pulses of each 1000-pulse CPI, 

resulting in 10 dB lower receive SNR and 10 dB less sidelobe 

reduction from averaging. Figs. 21-24 show the same close-

up view of the traffic intersection, where significant RSM is 

visible in the PRO-FM scenarios when using MFs (Fig. 21) 

and the individual MMFs (Fig. 23). The Comp-FM (Fig. 22) 

and MiCRFt (Fig. 24) results once again show that RSM has 

been suppressed below the noise floor through the use of 

complementary waveforms or processing, respectively.  

The result obtained by combining Comp-FM and MiCRFt 

(like Fig. 20) has been omitted because it appears identical to 

Figs. 22 and 24 due to the peak-power limit of our test setup. 

However, for a high-power radar operating requiring high 

dynamic range, the loopback results in Fig. 8 do suggest that 

this combination could prove useful. In short, this 

experimental demonstration of the capabilities enabled by 

Comp-FM waveforms and MiCRFt receive processing 

suggest that complementary operation may finally be within 

the realm of the feasible for some sensing applications. 

 

 
Fig. 21. Range-Doppler response for 100 unique PRO-FM 

waveforms after pre-summing by 4, using matched filtering 

(intersection close-up) 

 

 
Fig. 22. Range-Doppler response for 25 unique Comp-FM 

subsets of Z = 4 waveforms, using matched filtering 

(intersection close-up) 

 

 
Fig. 23. Range-Doppler response for 100 unique PRO-FM 

waveforms after pre-summing by 4, using individual MMFs 

via (34) (intersection close-up) 

 



 

 
Fig. 24. Range-Doppler response for 100 unique PRO-FM 

waveforms, using MiCRFt via (34) with Q=4 (intersection 

close-up) 

7. Conclusions 

The notion of complementary coding has been around for 

several decades, though its practical application has been 

limited by Doppler degradation and transmitter effects. Here 

two new contributions to this field have been made that bridge 

the gap between the theoretical and the practical. 

Complementary FM (Comp-FM) waveform subsets are a 

sub-class of random FM that are amenable to the rigors of a 

radar transmitter, provide good complementary sidelobe 

cancellation, possess some robustness to Doppler effects, and 

degrade gracefully due to non-repetition of the subsets. 

Mismatched complementary-on-receive filtering (MiCRFt) 

provides a similar sidelobe cancellation capability when used 

in the context of nonrepeating waveforms. These approaches 

can likewise be combined for even further sidelobe 

suppression with almost negligible mismatch loss. 

Experimental loopback and open-air measurements have 

demonstrated the practical efficacy of these methods. 

Finally, while outside the scope of consideration for this 

paper, the impact of multiple-time-around (MTA) echoes 

from the second (or further) range ambiguities is an 

interesting problem in the context of nonrepeating 

waveforms. While their high dimensionality may permit the 

separability required to reveal these more distant range 

intervals, the cancellation of MTA clutter introduces 

additional complexity (see [54]). Consequently, this research 

topic bears further investigation.  
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