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Abstract—The co-design of multiple RF functions provides the
means to efficiently use the resources available for transmission
(i.e. time, frequency, space, and power). Digital array technology
supports simultaneous control over all domains of diversity
through independent generation of the waveform emitted by
each antenna element. The Far-field Radiated Emission Design
(FFRED) formulation considers the efficient use of all available
resources by simultaneously performing multiple functions in
the same frequency band via spatially separated beams. The
waveforms in the FFRED problem are constrained to have
attractive signal properties via reduction in peak-to-average
power ratio (PAPR) to increase power efficiency. This design
constraint is shown to leverage the spatial orthogonal complement
to the desired transmission directions so as to not interfere
with the RF functions. Here, the FFRED problem is formulated
as a gradient-based optimization with reduced computational
complexity relative to the previous alternating projection imple-
mentation. For a certain initialization, the optimized waveforms
are shown to be near-optimal in terms of minimal energy within
the orthogonal complement.

I. INTRODUCTION

Solutions to the problem of spectral congestion can be
split into two categories: 1) cohabitation between RF users
within the same band where no cooperation is assumed (e.g.
dynamic spectrum access); and 2) co-design of multiple RF
functions within the same band, where there is full control
over the interplay between the functions (e.g. time-division
multiple access, beam-scheduling in radar). Here, the co-
design problem is considered from the perspective of utilizing
spatial degrees-of-freedom to limit the mutual interference
between different functions as a means to make efficient use
of both time and frequency resources. The fully digital array
facilitates this concept by providing the capability to perform
multiple simultaneous functions from the same aperture by
supporting independent control of the waveforms emitted by
each antenna element [1]–[5]. Thus by utilizing this technol-
ogy, the spatially-separated multifunction capability can be
viewed as a waveform design problem that places each desired
RF function within a separate beam on transmit.

In [6]–[8], it was shown that a set of physically realizable
frequency-modulated (FM) waveforms can be optimized using
the Error Reduction Algorithm [9] to emit simultaneous,
pulsed radar and communications signals in different spa-
tial directions, a formulation denoted as Far-Field Radiated

Emission Design (FFRED). The FFRED approach considers
the transmission of multiple simultaneous signals (e.g. radar
and/or communications signals) from a digital array while con-
sidering practical waveform attributes (e.g. constant amplitude,
power efficiency). It was shown that by utilizing the spatial
orthogonal complement to the desired transmission directions,
the optimized waveforms can be constrained to be constant
amplitude. Here, the FFRED objective function is reexam-
ined for gradient-based optimization to reduce computational
complexity and to minimize the energy within the orthogonal
complement required to obtain a viable solution.

A relaxed form of the FFRED objective function from
[7] is defined that reduces the computational cost of finding
a set of waveforms that meet both the constant amplitude
and desired emission constraints. The simplified objective
function does not explicitly reduce the energy within the
orthogonal complement, though (for a particular waveform
initialization) the resulting waveforms after optimization are
shown to be near-optimal through comparison to an optimality
bound calculated via the Lagrange dual problem [10].

II. FAR-FIELD EMISSION MODEL WITH SIGNAL
CONSTRAINTS

Consider an M element antenna array with an arbitrary
geometry satisfying the narrowband assumption (for some
transmission bandwidth B) indexed as m = 0, . . . ,M − 1. It
is assumed that this array has full control over the waveforms
transmitted by each element (i.e. a digital array). Define
Fm(θ, ϕ) as the time-harmonic (with respect to some center
frequency fc) in-situ far-field antenna pattern for the mth
element as a function elevation θ and azimuth ϕ.1 It is assumed
that the polarization of all antennas are aligned.

Given a set of complex-baseband continuous waveforms
{s0(t), s1(t), . . . , sM−1(t)} transmitted by the corresponding
antenna elements as a function of time t, the complex-
baseband far-field emission can be written as

g(t, θ, ϕ) =

M−1∑
m=0

Fm(θ, ϕ)sm(t). (1)

1In Cartesian coordinates, elevation θ is defined as the angle relative to the
xy-plane towards the +z-axis and azimuth ϕ is defined as the angle relative
to the +y-axis towards the +x-axis (i.e. in the xy-plane).



Within this emission structure, define L desired signals g`(t)
of pulse duration T to be realized in directions (θ`, ϕ`) for
` = 0, . . . , L− 1. Using (1), each of these constraints on the
emission g(t, θ, ϕ) can be expressed as

g(t, θ`, ϕ`) = g`(t). (2)

To facilitate the design of the M waveforms sm(t), the
constraints in (2) are discretized according to sampling rate
fs. Note that the L desired signals g`(t) must be oversampled
with respect to the signal bandwidth B such that sufficient
fidelity of the desired signal is maintained. We represent the
sampling frequency as fs = κB, where κ ≥ 2 has been found
to be sufficient.

For sampling period Ts = 1/fs, define sm[n] = sm(nTs)
and g`[n] = g`(nTs) as the nth sample of the mth waveform
and `th desired signal, respectively. For pulse duration T , the
length of each sequence is N = fsT . These sequences can
be collected into the complex-valued matrices S ∈ CM×N
and G ∈ CL×N for [S]m,n = sm[n] and [G]`,n = g`[n],
where [•]i,j represents the (i, j)th element of the matrix.
The M complex scalars of the antenna patterns for the L
desired transmission directions (θ`, ϕ`) can also be collected
into the matrix C ∈ CM×L for [C]m,` = F ∗m(θ`, ϕ`) and
(•)∗ complex-conjugation. Therefore from (2), the discretized
emission constraints can now be written in matrix form as

CHS = G, (3)

where (•)H is the Hermitian transpose.
Given C and G, the waveform matrix S is designed such

that the constraint of (3) is met. As long as C has full column
rank and L < M , there are infinitely many solutions to (3). In
Section III, this waveform design is formulated as an optimiza-
tion problem using two different methods: the minimum-norm
method, and the FFRED method, which includes the additional
constraint of constant amplitude waveforms.

III. FAR-FIELD RADIATED EMISSION DESIGN

The minimum-norm formulation leads to a closed-form
solution satisfying the required signal constraints CHS = G.
However, the resulting waveform matrix S may have an unac-
ceptable peak-to-average power ratio (PAPR), making the set
of waveforms undesirable from an implementation standpoint
[6], [7]. In the absence of unity PAPR, the waveforms must
be scaled so that the maximum amplitude lies within the
linear region of the amplifier to ensure that the waveforms are
transmitted without distortion. If the waveforms have the same
amplitude (unity PAPR), then the amplifiers can be operated
in the more power-efficient saturation region. Thus, the PAPR
of the waveforms is directly tied to the total energy emitted
from the array.

By leveraging the orthogonal complement of C, the PAPR
can be reduced while still satisfying the desired signal con-
straints. Thus, the addition of a constant amplitude constraint
to the minimum-norm optimization serves to minimize the
energy in the orthogonal complement while achieving both

the signal and modulus constraints. To facilitate faster com-
putation, a relaxed problem formulation is developed here.
For performance comparison, an optimality bound is also
derived via the Lagrange dual function of the original constant
amplitude constrained problem.

A. Minimum-norm Solution Method
The minimum-norm optimization problem for determining

S can be written as

minimize
S

∥∥S∥∥2
F

subject to CHS = G,
(4)

where ‖S‖2F is the squared-Frobenius norm defined as∥∥S∥∥2
F
=

M−1∑
m=0

N−1∑
n=0

|sm[n]|2. (5)

The optimization problem in (4) can be reformulated in
vectorized notation as

minimize
s̃

‖s̃‖22
subject to AH s̃ = g̃,

(6)

where s̃ ∈ CMN×1 and g̃ ∈ CLN×1 are vectorized forms of
S and G, respectively, ‖s̃‖22 is the squared l2-norm of s̃, and
A = IN ⊗C for IN the N × N identity matrix, and ⊗ the
Kronecker product. The entries of the vectorized forms are
related to those of the matrices as [s̃]m+Mn = [S]m,n and
[g̃]`+Ln = [G]`,n.

Referring to (6) as Problem A, the Lagrangian for this
constrained optimization problem is given as

LA(s̃;λ) = s̃H s̃−<
{
λH(AH s̃− g̃)

}
, (7)

where λ ∈ CLN×1 is the Lagrange multiplier pertaining to
the emission constraints and <{•} extracts the real value. The
minimum-norm optimization problem is convex with solution
[10]

s̃?,A = A
(
AHA

)−1
g̃. (8)

Equivalently, s̃?,A written in matrix form is

S?,A = C
(
CHC

)−1
G, (9)

the rows of which are the M discretized waveforms that
are optimal in the minimum-norm sense. However, these
waveforms will tend to not be constant amplitude and possess
a high PAPR.

B. Utilization of the Orthogonal Complement
By leveraging the orthogonal complement of C, the PAPR

of the waveforms can be lowered considerably. Any waveform
matrix S that satisfies the emission constraint CHS = G has
the property

S = S?,A + S⊥, (10)

where S⊥ = P⊥S is the orthogonal projection of the wave-
form matrix onto the subspace spanned by the orthogonal
complement of C, where

P⊥ = IM −C
(
CHC

)−1
CH (11)



Fig. 1. Gain curve of simplified amplifier model.

is the orthogonal projection matrix. Therefore, the far-field
emission of S⊥ has no impact on the desired emission via
CHS⊥ = 0L×N . In the vectorized form, (10) becomes

s̃ = s̃?,A + s̃⊥, (12)

where [s̃⊥]m+Mn = [S⊥]m,n. Thus the property
CHS⊥ = 0L×N is represented as AH s̃⊥ = 0LN×1 in
vectorized form.

Because s̃?,A and s̃⊥ are constructed using orthogonal
subspaces, their inner product is s̃H⊥ s̃?,A = 0. Therefore, the
energy contained in the waveform matrix ‖s̃‖22 is equal to the
summation of the energies of the two waveform components,

‖s̃‖22 = ‖s̃?,A‖22 + ‖s̃⊥‖22. (13)

Thus, any waveform matrix S (or s̃) that satisfies CHS = G
(or AH s̃ = g̃) aside from the minimum-norm solution S?,A
(or s̃?,A) will allocate a portion of its energy to S⊥ (or
s̃⊥). The net power efficiency is increased as long as the
power efficiency gained through reduction in PAPR exceeds
that of any efficiency lost through the addition of energy
within the orthogonal complement ‖s̃⊥‖22. In [6], it was shown
that a constant amplitude constrained solution increases the
power efficiency of the emission for the case of L = 2 beams
transmitting a linear frequency modulated radar waveform in
one spatial direction and a communications signal in another
direction2.

Figure 1 illustrates the gain curve of a simplified amplifier
model used to quantify the power efficiency of a particular
waveform matrix. The gain curve is separated into two regions:
linear and saturation. The maximum amplifier input in the
linear region is normalized to 0 dB. Therefore, to avoid
distortion the waveform matrix is normalized by its maximum
amplitude, which is denoted as z = maxm,n{|sm[n]|}. This
normalization corresponds to the well-known procedure of
“power back-off”.

After normalization, the component of the waveform ma-
trix that contributes to the desired emission is found via
the projection z−1PS, where P = C(CHC)−1CH projects
onto the subspace spanned by C. For a waveform matrix
S that satisfies CHS = G, this projection is equivalent to

2The communication modulations considered in [6] included rectangular
and square-root raised-cosine filtered quadrature phase-shift keying (QPSK)
and 4-ary rectangular-filtered continuous phase modulation (CPM) with a
modulation index of 1/2.

z−1PS = z−1S?,A. Thus the average power in z−1S?,A de-
fines the Average Directed Power (ADP) given as

ADP =
1

MN ‖S?,A‖
2
F

max
m,n

{
|sm[n]|2

} , (14)

for 0 ≤ ADP ≤ 1 with ADP = 1 representing the most power
efficient waveform matrix (only obtained when the minimum-
norm solution is constant amplitude and S = S?,A).

C. Constant-Amplitude Constrained Formulation

The constant amplitude constraint can be incorporated into
the optimization problem as |s̃k|2 − 1

MN ‖s̃‖
2
2 = 0 for k =

0, 1, . . . ,MN − 1, where s̃k = [s̃]k, thus forcing the squared-
amplitude to be equal to the average power. By including this
constraint the optimization problem becomes

minimize
s̃

‖s̃‖22
subject to AH s̃ = g̃

|s̃k|2 − 1
MN ‖s̃‖

2
2 = 0 ∀k.

(15)

Modifying the minimum-norm optimization problem from (4)
(or (6)) to include any additional constraints introduces a non-
zero S⊥ to the solution (unless the additional constraints are
satisfied by the minimum-norm solution). Thus, to satisfy the
constant amplitude constraint some amount of energy must be
emitted in the directions corresponding to the orthogonal com-
plement of C. However, minimizing ‖s̃‖22 also minimizes the
energy contained in the orthogonal complement (i.e. ‖s̃⊥‖22)
according to (13).

The constant amplitude constraint in (15) can be implicitly
incorporated by exchanging s̃ with the waveform model

s̃ = γ exp(jx), (16)

where j =
√
−1, γ ∈ R is a real-valued amplitude scalar,

x ∈ RMN×1 is a vector of phase values, and the entries of
the exponential are defined as [exp(jx)]k = exp(jxk). Using
the waveform model in (16) the optimization problem from
(15) can be equivalently represented as

minimize
γ,x

γ2

subject to γAHexp(jx) = g̃.
(17)

The number of optimized parameters for (17) is reduced
from 2MN real-valued coefficients (MN complex-valued) to
MN + 1 real-valued parameters while removing a constraint
from the problem. That said, the optimization problem in (17)
is nonconvex and computationally prohibitive to solve directly.
However, the Lagrangian of the problem in (17) can be used
to find a lower bound for the objective function γ2 via the
Lagrange dual problem [10]. This bound provides a test for
solution quality when optimizing parameters (γ,x) according
to a relaxed version of (17) described in Section III-D.

Referring to (17) as Problem B, the Lagragian for this
problem is given as

LB(γ,x;λ) = γ2 −<
{
λH(γAH exp(jx)− g̃)

}
. (18)



The Lagrange dual function (denoted here as G(λ)) is found
by minimizing [10] LB(γ,x;λ) over the parameters (γ,x) as

G(λ) = inf
γ,x
LB(γ,x;λ), (19)

which results in the expression

G(λ) = − 1
4‖Aλ‖

2
1 + <

{
λH g̃

}
. (20)

A derivation for (20) is provided in the appendix. The La-
grange dual function is concave over the Lagrange multipliers
(even for nonconvex optimization problems). Thus the La-
grange dual problem is the maximization of the dual function
[10].

The optimal function value G(λ?) sets a lower bound for
the value of the original objective function3

G(λ?) ≤ γ2? , (21)

where γ2? is the global minimum of (17). Updating the
energy relationship from (13) to incorporate γ (assuming the
constraint from (17) holds) yields

γ2 = 1
MN ‖s̃?,A‖

2
2 +

1
MN ‖s̃⊥‖

2
2. (22)

Therefore, G(λ?) is effectively a lower bound on the amount
of energy contained in the orthogonal complement (i.e ‖s̃⊥‖22)
that is needed to achieve both the amplitude and emission
constraints. Note that the bound in (21) may not be tight.
However, a feasible waveform matrix with square-amplitude
γ2 close to this bound gives an indication that the waveform
matrix is a near-optimal solution to (17).

D. Relaxed Problem Formulation

To reduce the computational complexity of solving (17) a re-
laxed problem is formulated that only considers the feasibility
of (γ,x) as represented by the constraint γAH exp(jx) = g̃.
This relaxed problem is expressed as

minimize
γ̃,x̃

J (γ̃, x̃) =
∥∥γ̃AH exp(jx̃)− g̃

∥∥2
2, (23)

where γ̃ and x̃ are used to distinguish the parameters from
those of (17). The minimum of (23) is guaranteed to be
feasible for (17) given that such a point exists, and the quality
of the solution found using the relaxed formulation can be
determined by comparing γ̃2 to the bound in (21).

A multivariate function can be minimized by first minimiz-
ing over a portion of the variables, and then minimizing over
the remaining variables. For the objective function J (γ̃, x̃),
this property is shown via the relationship [10]

inf
γ̃,x̃
J (γ̃, x̃) = inf

x̃

(
inf
γ̃
J (γ̃, x̃)

)
= inf

γ̃

(
inf
x̃
J (γ̃, x̃)

)
.

(24)
By minimizing J (γ̃, x̃) with respect to γ̃, we find that the
amplitude has a closed form solution,

γ̃(x̃) =
<{g̃HAH exp(jx̃)}
‖AH exp(jx̃)‖22

. (25)

3The dual function from (20) is found to have weak duality except for the
case when N = 1, which has strong duality. Definitions of weak and strong
duality can be found in [10].

Thus, the property in (24) can be employed to formulate the
problem as a minimization of objective function J (γ̃(x̃), x̃)
over only the phase vector x̃.

Inserting γ̃(x̃) from (25) into J (γ̃, x̃) from (23) then yields
the modified objective function

J (γ̃(x̃), x̃) = J̃ (x̃) = ‖g̃‖22−

(
<
{
g̃HAHexp(jx̃)

})2
‖AHexp(jx̃)‖22

. (26)

The gradient of J̃ (x̃) with respect to x̃ can be shown to be

∇x̃J̃ (x̃)=2=
{̃
γ(x̃) exp(−jx̃)�

(
A
(
γ̃(x̃)AHexp(jx̃)−g̃

))}
,

(27)
where � is the Hadamard (element-wise) product and ={•}
extracts the imaginary part of the argument. The form of the
gradient in (27) can be used in a multitude of different algo-
rithms to converge onto a locally-optimal point of J̃ (x̃) [11].
Note that the relaxed objective function in (26) is nonconvex
and the obtained solution is dependent on the initialization of
x̃.

For a locally-optimal phase vector x̃? that minimizes (26)
that meets the feasibility requirements of J̃ (x̃?) = 0, the
inequality bound from (21) can be updated as

G(λ?) ≤ γ2? ≤ γ̃2(x̃?). (28)

Using (22), the bound from (28) can be stated in
terms of the converged orthogonal energy ‖s̃⊥,?‖22 as
1

MN ‖s̃⊥,?‖
2
2 ≥ G(λ?)− 1

MN ‖s̃?,A‖
2
2. Normalizing this lower

bound to unity yields the metric

β =
1

MN ‖s̃⊥,?‖
2
2

G(λ?)− 1
MN ‖s̃?,A‖

2
2

≥ 1, (29)

where β represents the ratio of the converged average or-
thogonal power 1

MN ‖s̃⊥,?‖
2
2 to (G(λ?)− 1

MN ‖s̃?,A‖
2
2) which

is the theoretical lower bound on average orthogonal power.
Likewise, using (14) the bound from (28) can be rearranged
in terms of the ADP of the converged solution as

ADP
ADPopt

≤ 1, (30)

where ADP = 1
MN ‖S?,A‖

2
F γ̃
−2(x̃?) is the average

directed power of the obtained solution and
ADPopt =

1
MN ‖S?,A‖

2
FG−1(λ?) is the theoretical upper

bound on average directed power for a constant amplitude
solution.

IV. ANALYSIS OF THE RELAXED PROBLEM FORMULATION

A Monte Carlo analysis is used to characterize the perfor-
mance of the relaxed FFRED formulation from Section III-D
for the cases of L ∈ {2, 3, 4} simultaneous signals. In each
case the desired transmission angles (θ`, ϕ`) and signals g`(t)
are based on randomized parameters, and the converged values
of γ̃2(x̃?) are compared to G(λ?) using the metrics defined in
(29) and (30).

The desired signals are chosen to have a constant amplitude,
which is known to decrease the amount of energy in the



Fig. 2. Power Spectral Density of random PCFM waveform with Gaussian
shaping filter of duration 3Tp sampling frequency fs = 3/Tp.

orthogonal complement needed to achieve a feasible solution
[6]. Thus, the desired signals conform to

g`(t) =

{
a` exp (jψ`(t)) 0 ≤ t ≤ T

0 otherwise , (31)

where a` is a real-valued, positive scalar and ψ`(t) is the
continuous phase function. It is assumed that g0(t) is the
dominant signal in energy relative to the other signals (e.g.
a radar transmission). Therefore, a0 = 1 while the remaining
L − 1 signal amplitudes are randomly drawn according to
10 log10 |a`|2 ∼ U [−20,−10], where U [a, b] is the uniform
probability distribution over the interval [a, b]. Thus the re-
maining amplitudes range from −20 dB to −10 dB relative
to the dominant signal.

The continuous phase function ψ`(t) is randomly gener-
ated using a random parameterization of the polyphase-coded
frequency-modulated (PCFM) framework given by [12]

ψ`(t) =

t∫
0

Np−1∑
n=0

α`,nh(ζ − nTp)dζ, (32)

where α`,n ∼ U [−π, π] are the Np PCFM code values, h(t) is
a shaping filter, and Tp = T/Np ≈ 1/B. Here, h(t) is chosen
to be a truncated-Gaussian window with duration 3Tp and
unit area. The sampling rate is fs = 3B = 3/Tp and Np = 40
random code values per pulse equates to N = 120 samples in
each discretized waveform. The power spectral density of this
random pulsed waveform is shown in Figure 2. This signal
could represent either a radar or communications transmission
(e.g. FM noise radar [13], continuous phase modulation (CPM)
communications [14]).

For this analysis, consider an M = 16 element uniform
linear array (ULA) with half-wavelength spacing aligned in
the θ = 0◦ plane with array boresight toward ϕ = 0◦. The
antenna patterns from (2) are assumed to be omnidirectional
in the θ = 0◦ plane and normalized to unity, thus the mth
in-situ antenna pattern is expressed as

Fm(θ = 0◦, ϕ) = exp

(
jm

2π

λ
d sinϕ

)
. (33)

The desired transmission directions in the elevation dimension
are fixed to θ` = 0◦ ∀`; thus, the signals are separated in
azimuth ϕ`. The dominant signal is directed towards array
boresight at ϕ0 = 0◦ while the remaining signal directions
are sequentially determined according to independent draws

Fig. 3. Histogram of β − 1 from (29) for (a) L = 2, (b) L = 3, and (c)
L = 4 desired transmit signals over 2000 Monte Carlo trials with minimum-
norm (blue) and random (red) phase initializations for x̃.

from sinϕ` ∼ U [−1, 1]. If a randomly chosen transmission
angle falls within the array peak-to-null beamwidth of a
previously chosen angle (i.e. | sinϕ` − sinϕi| < 2/M for
i = 0, . . . , `− 1) a new angle is randomly selected until the
condition is satisfied.

A total of 2000 Monte Carlo trials were performed for
two different phase initializations (i.e. x̃0) for each of the
L ∈ {2, 3, 4} desired signals: uniformly distributed initial-
ization, x̃0 ∼ U [−π, π]; and initialized using the phase of
the minimum-norm solution, x̃0 = arg{s̃?,A}, where arg{•}
extracts the phase. The limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [11] (coupled with a
backtracking line search) was used to minimize the relaxed
problem from (23) for each Monte Carlo trial. A total of
10 prior gradients are kept during the optimization process
for estimation of the local second-order properties of J̃ (x̃).
The algorithm is terminated when J̃ (x̃) < ‖g̃‖22 × 10−12. The
dual function G(λ) from (20) is maximized using the CVX
Matlab toolbox [15].

Figure 3 shows the histograms of β − 1 ≥ 0 from (29)
for the minimum-norm phase initializations (blue) and the
random phase initializations (red) for (a) L = 2, (b) L = 3,
and (c) L = 4 desired signals. It is observed that the bound
from (21) is tight for the minimum-norm phase initialization
since β − 1 takes on values on the order of 10−10. Recall
that β represents the ratio of the obtained average orthogonal
power to its theoretical lower bound. Therefore, the energy
in the orthogonal complement is marginally greater than the
theoretical lower bound for all three cases, increasing slightly
when L is increased. The random phase initialization falls
into a local minimum of J̃(x̃), resulting in a significant
increase in β and thereby indicating that the energy in the
orthogonal complement is not near the theoretical bound for
this initialization.

Figure 4 depicts the histograms of 1− ADP
ADPopt

≥ 0 from (30)
for the minimum-norm phase initialization and L = 2, 3, 4



Fig. 4. Histogram of 1− ADP
ADPopt

for L = 2 (blue), L = 3 (red), and
L = 4 (yellow) desired transmit signals over 2000 Monte Carlo trial for
the minimum-norm phase initialization, x̃0 = arg{s̃?,A}.

desired signals. These results indicate that the solutions found
using the relaxed problem from (23) with the minimum-
norm phase initialization are near-optimal in terms of power
efficiency relative to the original problem in (17).

V. CONCLUSIONS

The ability to emit multiple signals simultaneously from
a digital array provides the flexibility to efficiently use all
available resources (i.e. time, frequency, space, and power)
for multiple functions (e.g. radar and/or communications).
The FFRED formulation considers efficient use of all the
resources while conforming to practical waveform constraints
(e.g. constant amplitude). The Lagrange dual problem of
FFRED provides an optimality bound upon the amount of
energy in the orthogonal complement needed to achieve a
solution. It is shown that a near-optimal (in terms of orthogonal
complement energy) set of waveform can be designed via
minimization of a relaxed FFRED formulation initialized with
the phase of the minimum-norm solution.

APPENDIX

The Lagrange dual function G(λ) for Lagrangian
LB(γ,x;λ) can be written as a successive minimization over
variables γ and x as [10]

G(λ) = inf
x

(
inf
γ
LB(γ,x;λ)

)
. (34)

The problem infγ LB(γ,x;λ) can be solved by taking the
derivative of LB(γ,x;λ) from (18) with respect to γ and
setting equal to zero as

∂
∂γLB(γ,x;λ) = 0 = 2γ −<

{
λHAH exp(jx)

}
. (35)

Thus, the closed-form expression for γ as a function of x and
λ is

γ(x;λ) = 1
2<
{
λHAH exp(jx)

}
. (36)

Inserting (36) into the original Lagrangian from (18) then
yields the updated form

L̃(x;λ) = − 1
4

(
<
{
λHAH exp(jx)

})2
+ <{λH g̃}. (37)

The dual function is now found by minimizing L̃(x;λ) with
respect to x via the gradient

∇xL̃(x;λ)=0=− 1
2<
{
λHAHexp(jx)

}
=
{
exp(−jx)�(Aλ)

}
.

(38)

Solutions to (38) occur when x has the form

x = arg
{
Aλ
}
+ πu, (39)

where arg{•} extracts the phase and u ∈ ZMN×1 for Z the
set containing all integers.

Observing (37), the Lagrangian is minimized with respect
to x when (<{λHAH exp(jx)})2 is maximized. Inserting the
form of x from (39) into this expression yields

<
{
λHAH exp(jx)

}
=
∑
k

bk|aHk λ|, (40)

where bk ∈ {−1,+1}. Therefore, to maximize
(<{λHAH exp(jx)})2 the sign variable bk needs to be
bk = −1 ∀k (all odd entries in u) or bk = 1 ∀k (all even
entries in u). Either selection results in the expression

(<{λHAH exp(jx?)})2 = ‖Aλ‖21, (41)

where x? corresponds to x from (39) when the entries of u
are either all odd or all even. Inserting the expression from
(41) into (37) yields the form of the dual function G(λ) from
(20).
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