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Abstract 

A new form of Space-Time Adaptive Processing (STAP) is presented that leverages additional 

training data obtained from waveform-diverse pulse compression filters possessing low cross-

correlation with the primary waveform that is used for traditional airborne and space-based 

Ground Moving Target Indication (GMTI). In contrast to traditional training data in which clutter 

and targets are “focused” in range via pulse compression of the primary waveform, this new set 

of training data possesses a “smeared” range response that better approximates the identically 

distributed assumption made during sample covariance estimation. The Multi-Waveform STAP 

(MuW-STAP or simply μ-STAP) formulation is shown for both Multiple-Input Multiple-Output 

(MIMO) and Single-Input Multiple-Output (SIMO) configurations, with the former retaining the 

spatially-focused primary emission supplemented by low-power secondary emissions that 

illuminate sidelobe clutter and the latter a special case of the former. In simulation, Signal to 

Interference plus Noise Ratio (SINR) analysis reveals enhanced robustness to non-stationary 

interference compared to standard STAP training data. 
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I.  INTRODUCTION 

Radar ground moving target indication (GMTI) from an airborne/space-based 

platform requires the use of a coupled space-time receive filter to cancel clutter 

effectively. In general, space-time adaptive processing (STAP) schemes determine this 

receive filter by estimating the covariance matrix of the clutter for a given cell-under-test 

(CUT), within which a target may also exist [3,4]. Ideally, estimation of the clutter 

covariance matrix employs target-free training data whose space-time characteristics are 

otherwise homogenous with that of the CUT. However, due to the tendency for clutter to 
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be non-homogeneous in range and azimuth, the presence of internal clutter motion, the 

possible contamination of training data by targets of interest, and often insufficient 

sample support, the accurate estimation of the clutter covariance matrix remains one of 

the most difficult aspects of a practical STAP implementation [5-7]. To provide an 

additional tool to address this issue a new source of training data is proposed that is 

obtained from multiple waveform-diverse pulse compression filters designed to possess 

an unfocused response to the emitted primary waveform. Both multiple-input multiple 

output (MIMO) and single-input multiple-output (SIMO) arrangements are considered 

and their relative merits and trade-offs discussed. It is anticipated that this new training 

data may be leveraged to further enhance existing robust STAP implementations. 

The spatial and slow-time (Doppler) channels provided respectively by N antenna 

elements and M pulses in the coherent processing interval (CPI) clearly establish a multi-

channel framework for interference suppression and subsequent target detection. That 

said, standard GMTI STAP is conventionally viewed as a single-input single-output 

(SISO) operation due to the emission and subsequent receiver pulse compression of a 

single waveform. This emitted waveform illuminates the clutter and targets according to 

the transmit spatial beampattern, with Doppler induced by the motion of the platform, 

radial target motion, and intrinsic clutter motion. In general, estimation of the STAP 

covariance matrix CUT( )R , representing a second-order characterization of clutter and 

other interference within the CUT range cell, is realized as [4] 

CUT

2
CUT

1ˆ ( ) ( ) ( )
( )

H
v

Ln L





 R z z I ,                                      (1) 
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using the ( )n L  space-time training data snapshots ( )z  in set L  that are near the CUT 

according to range index . The CUT snapshot and guard cells are generally excluded to 

avoid self-cancellation of a prospective target in the CUT. Diagonal loading by the noise 

power 2
v , which can be readily estimated in practice since the receiver thermal noise 

dominates external noise at microwave frequencies [8], alleviates some of the numerical 

problems of low sample support.   

Under the condition that the interference is independent and identically distributed 

(i.i.d.), the training data is homogeneous with the interference in the CUT. Thus, the well-

known rule of Reed, Mallet, and Brennan applies, which states that CUT
ˆ ( )R  yields a 

signal to interference plus noise ratio (SINR) that is within 3 dB of optimal if the number 

of snapshots ( )n L  is at least 2 3NM   [9], notwithstanding the use of reduce-rank 

processing (see [3]) that exploits the fact that clutter is typically not full rank. This 

minimum number increases when the training data is non-homogeneous [5-7], thus 

leading to insufficient sample support for accurate interference characterization that 

subsequently results in increased false alarms and/or degraded detection sensitivity. 

Numerous robust methods have been developed to address these practical limitations 

(e.g. [7,8,10-30], references therein, and many others) using techniques such as non-

homogeneity detection, a priori knowledge, statistical modeling, imposing matrix 

structure, etc. with varying degrees of enhanced robustness, computational requirements, 

and necessary assumptions.  

The fundamental problem introduced by non-homogeneous interference is that, 

while the training data samples may be statistically independent, they are not identically 

distributed. In such a case, the Sample Covariance Matrix (SCM) in (1) is a poor estimate 
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of the true interference covariance matrix corresponding to CUT( )z , thus resulting in 

under/over-nulled interference that degrades detection performance. For example, a 

clutter discrete (such as induced by a building, water tower, etc.) will often generate a 

response at the radar receiver that is larger than the surrounding clutter. When a large 

discrete is present in the CUT, it therefore cannot be adequately suppressed using the 

SCM that is based on the surrounding clutter that does not include the CUT. 

Clearly, knowledge of such non-homogeneities in the CUT needs to be incorporated 

into the SCM, yet direct inclusion of CUT( )z  in the SCM estimation of (1) could 

likewise suppress a prospective target that may reside in the CUT. This conundrum 

exemplifies the practical difficulty encountered with STAP [31]. A prominent notion that 

has been examined in recent years is to exploit prior knowledge of the clutter as a means 

to better model the interference in the CUT (e.g. [25-28]). Another approach is to select 

an appropriate subset of the training data (i.e. non-homogeneity detection) while 

including some portion of CUT( )z  in the SCM [12-15,19] by relying on the fact that the 

targets we seek to detect using STAP are generally received with powers far below that 

of the clutter (or else STAP would not be needed). Thus the problem becomes one of 

selection of appropriate training data followed by appropriate scaling of snapshots to 

minimize contamination by targets of interest that would otherwise induce self-

cancellation. 

Here, we take a step back (from a processing chain perspective) to consider the 

impact that pulse compression has on STAP covariance estimation and how an expansion 

of the pulse compression process using waveform diversity [32-35] could be used to 

provide additional useful training data for subsequent robust covariance matrix 
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estimation, such as via the techniques denoted above. Specifically, additional secondary 

pulse compression filters are incorporated in parallel to the receive filter corresponding to 

the primary waveform, where the waveforms to which these secondary filters are 

matched exhibit a low cross-correlation with the primary waveform. These secondary 

filters yield a range-smeared response to the echoes generated by the primary waveform, 

and thereby intrinsically capture the non-homogeneities in range (such as clutter 

discretes) while inherently de-emphasizing the already small target echoes to avoid self-

cancellation. This smearing by the secondary filters provides a “homogenization” in the 

range dimension that validates the identically distributed assumption. Of course, as will 

be demonstrated, this range-domain form of linear pre-processing does not introduce new 

independent training data.  

This waveform-diverse manner of training data generation can be performed as a 

SIMO mode for existing GMTI systems or as a MIMO mode whereby a small amount of 

primary mainbeam power is diverted to emit the secondary waveform(s) in the spatial 

directions corresponding to the sidelobes of the primary mainbeam. The inherent trade-

off for the MIMO mode is the degree of lost primary mainbeam SNR (for target detection 

in mainbeam clutter) to provide power for the secondary emission(s). It is important to 

note that no assumptions regarding the statistical or structural properties of the 

interference are required to obtain the Multi-Waveform STAP training data (which we 

shall refer to as MuW-STAP, or simply -STAP).  

 

II.  MULTI-WAVEFORM STAP 
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Classifying standard STAP as a single-input single-output (SISO) configuration, 

since it involves the use of only one waveform, the MIMO version is clearly an 

expansion to the emission and subsequent reception of multiple waveforms (though not 

with equal transmit power if it is to be useful for GMTI). The SIMO version is then a 

special case of MIMO in which the standard single waveform is emitted, yet multiple 

waveform-oriented receive filters are still applied to obtain additional diverse receive 

channels of training data. We begin by establishing the standard SISO framework and 

then generalize to the MIMO and SIMO cases. 

A) Standard SISO STAP 

Consider the standard STAP formulation for an airborne/space-based GMTI radar 

with N  antenna elements in a uniform linear array that transmit a coherent processing 

interval (CPI) of M  pulses modulated with waveform ( )s t  in the spatial look direction 

θlook. This waveform is physically realizable using a power-efficient transmitter and is 

designed according to the usual criteria of low range sidelobes and perhaps Doppler 

tolerance (e.g. [36,37]). This well-known SISO STAP architecture involves the collection 

of the resulting echoes to perform adaptive processing and subsequently attempt to 

discern moving targets.  This received signal can be defined as 

  ( )
look noise jam( , , ) ( , , ) ( , , ) ( ) ( )j m ny m n t s t x t e v t v t 

 

        ,         (2) 

where look look( , , ) ( ) ( , )s t s t b    , for look( , )b    the transmit beampattern relative to 

look direction θlook that illuminates the scatterers in ( , , )x t    as a function of spatial 

angle   and Doppler frequency  , the operation   is convolution, noise( )v t  is additive 
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noise, and jam( )v t  is noise-like barrage jamming [3,4]. The summations in (2) collect the 

clutter (and possible target responses) that are distributed over angle and Doppler.   

The first processing stage for the received signal of (2) is to perform pulse 

compression, which can be written as 

( , , ) ( ) ( , , )z m n t h t y m n t  ,                                              (3) 

for ( )h t  a matched or mismatched filter of waveform ( )s t . Regardless of whether pulse 

compression is performed in analog (with sampling to follow) or digitally, a discretized 

version of (3) is obtained that is represented as ( , , )z m n , where  is the discrete range 

index. We shall assume throughout that the pulse compression filter is normalized to 

produce a unity response at the matched point (or very close to unity in the case of 

mismatch filtering). 

For a uniform linear array the spatial steering vector for direction θ is formed as  

s ( ) [1 exp( ) exp( 2 ) exp( ( 1) )]Tj j j N    c .                     (4) 

Likewise, for Doppler frequency D  a temporal steering vector is formed as  

t D D D D( ) [1 exp( ) exp( 2 ) exp( ( 1) )]Tj j j M    c .                    (5) 

The space-time steering vector for specific direction θ = θlook and arbitrary D  is 

therefore 

st look D t D s look( , ) ( ) ( )    c c c ,                                         (6) 

where   is the Kronecker product. The discretized pulse compressed outputs from (3) 

are organized in the same manner as the space-time steering vector of (6) to yield length-

NM space-time snapshots denoted as ( )z . These snapshots represent the primary data 
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and can be used to obtain the estimated CUT interference SCM denoted as CUT
ˆ ( )R  via 

(1) to form the standard (SISO) STAP filter as 

1
CUT look CUT st look

ˆ( , , ) ( ) ( , )D D   w R c ,                              (7) 

for application to the CUT snapshot as 

CUT CUT look CUT( , ) ( , , ) ( )H
D D    w z .                              (8) 

The resulting value CUT( , )D   is then compared to a threshold (e.g. generated via 

CFAR detector [38]) to ascertain the presence of a target in range and Doppler. Of 

course, practical effects such as non-homogeneous clutter, discretes, and contaminating 

targets necessitate this primary training data be employed within more robust 

implementations of (1), such as via [7,8,10-30]. 

Now consider how waveform diversity could be employed to supplement this primary 

training data with additional secondary training data that could likewise be incorporated 

into the various robust STAP implementations. In so doing it is important to note that a 

generalization to MIMO is only useful to the degree that it enhances the practical 

performance of STAP without the requirement of additional assumptions such as 

orthogonality, perfect knowledge of the clutter distribution or array manifold, etc. 

[31,39]. 

B) Practical MIMO for STAP 

To date, the practical application of MIMO to radar has been largely limited to over-

the-horizon (OTH) radar (e.g. [40,41]) and as a means to synchronize spatially distributed 

transmitters to “cohere-on-target” [42]. For GMTI, the oft-proposed MIMO trade-off 

between spatial directivity and dwell time is unlikely to be feasible in many 
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circumstances due to short decoherence time and “range walking” effects for moving 

targets [39]. As such, the benefit of the usual focused mainbeam must be balanced against 

the possible diversity afforded by emitting multiple waveforms. Further, any transmitted 

waveforms must be physically realizable and therefore must be continuous, relatively 

bandlimited signals that are amenable to a physical transmitter [36,37,39]. Finally, given 

the feasible (non-zero) cross-correlation that can be achieved for a set of physical 

waveforms occupying the same spectrum with respect to the high dynamic range of the 

received clutter, targets, and noise powers, the mathematical assumption of waveform 

“orthogonality” is not appropriate (and also compounded by the fact that clutter is 

distributed in range and angle).  

These requirements as well as other physical constraints lead to a set of practical 

attributes for a MIMO GMTI radar that are summarized in Table I. Given a finite power 

source, the loss of power to the focused mainbeam due to the concurrent emission of 

additional waveforms involves a trade-off between energy on target (detection 

probability) and any diversity-induced enhancement to clutter suppression that may be 

achieved. Likewise, power efficiency necessitates operation of power amplifiers in 

saturation, which requires constant modulus, relatively bandlimited waveforms to 

minimize transmitter distortion. Lastly, simultaneously emitting different waveforms 

from the different antenna elements within an array can be significantly impacted by 

imperfect array calibration and mutual coupling between elements [43,44], which 

suggests instead that sub-arraying or even separate antennas be used to generate the 

different waveforms, though such separation may introduce further practical issues to 

consider that are not addressed here. 
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TABLE I.  PRACTICAL ASPECTS FOR MIMO GMTI 

1) Avoid loss of spatial resolution (maintain focused mainbeam) 

2) Minimize loss of mainbeam power (minimize detection loss) 

3) Physical emissions (continuous, relatively bandlimited waveforms)  

4) Constant modulus waveforms for high power emissions 

5) Non-zero waveform cross-correlation (not orthogonal) 

6) Non-ideal antenna arrays (calibration, mutual coupling, arrangement on platform) 

 

With this litany of practical constraints in mind, we propose a pragmatic approach to 

incorporating MIMO into airborne/space-based GMTI for the purpose of improving 

suppression of sidelobe clutter, to subsequently enhance target detection and reduce false 

alarms, while maintaining the objective of cancelling mainlobe clutter that obfuscates 

moving targets. Denote the original GMTI waveform from (2) as the primary waveform 

and label it as prime( )s t . This waveform is to be emitted as usual for GMTI using a high-

power focused beam in spatial direction look . In addition, assuming the presence of K 

separate sub-arrays and/or antennas on the same platform, K secondary waveforms 

denoted as sec, ( )ks t  for 1, 2, ,k K  are simultaneously transmitted with the stipulations 

that 1) they emit minimal power in spatial direction look  that corresponds to the primary 

mainbeam and 2) they are designed to have minimal cross-correlation with the primary 

waveform (though not necessarily with one another). As such, the primary mainbeam 

emission and the secondary emissions are separable in both the waveform (range) and 

spatial domains.  Further, these secondary waveforms are emitted at a much lower power 

than the primary to minimize the amount of power diverted from the primary mainbeam, 

which still performs the traditional STAP function of clutter cancellation for subsequent 

target detection in direction look . 

Given this MIMO emission scenario, the received signal from (2) is now expanded as 
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( )
prime look

( )
sec, look

1

noise jam

( , , ) ( , , ) ( , , )

( , , ) ( , , )

( )

j m n

K
j m n

k

k

y m n t s t x t e

s t x t e

v t v t

 

 

 

 

   

   







   

   

 



 ,                  (9) 

where prime look prime prime look( , , ) ( ) ( , )s t s t b    , for prime look( , )b    the primary transmit 

beampattern relative to look , illuminates ( , , )x t    as a function of angle   and Doppler 

 . Likewise, the kth secondary emission sec, look sec, sec, look( , , ) ( ) ( , )k k ks t s t b    , for 

sec, look( , )kb    the kth secondary transmit beampattern relative to look  (with low power 

in the look  direction), illuminates ( , , )x t    as a function of angle and Doppler, for 

1, 2, ,k K . It is useful at this point to rewrite (9) so that the beampattern is associated 

with the scattering response instead of the transmitted waveform as 

( )
prime prime look

( )
sec, sec, look

1

noise jam

( , , ) ( ) ( , , , )

( ) ( , , , )

( ) ( )

j m n

K
j m n

k k

k

y m n t s t x t e

s t x t e

v t v t

 

 

 

 

  

  







   

   

 



 ,               (10) 

where prime look prime prime look( , , , ) ( , , ) ( , )x t x t b        is the response to the primary 

beampattern, for which the mainbeam points in direction look , and 

sec, look sec, sec, look( , , , ) ( , , ) ( , )k k kx t x t b        is the response to each of the K secondary 

beampatterns, each of which de-emphasizes the scattering in direction look . Assuming 

the total 1K   waveforms are all constant modulus, the relative instantaneous powers of 

their associated emissions are 
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2

prime prime look( , )P b d



                                               (11) 

and 

2

sec, sec, look( , )k kP b d



       for    1, 2, ,k K ,                           (12) 

resulting in the total emitted power 

total prime sec,

1

K

k

k

P P P


  ,                                             (13) 

which is a constant regardless of how power is distributed among the 1K   emissions. 

As with the standard SISO STAP formulation, the first processing stage for the 

received signal in (10) is pulse compression. The bank of filters corresponding to the 

1K   emitted waveforms is applied as 

prime prime

sec,1 sec,1

sec, sec,

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )

( , , ) ( ) ( , , )K K

z m n t h t y m n t

z m n t h t y m n t

z m n t h t y m n t

 

 

 

,                                      (14) 

where prime ( )h t  is the primary pulse compression filter corresponding to prime ( )s t  and 

sec, ( )ih t  for 1, 2, ,i K  is the pulse compression filter corresponding to the ith 

secondary waveform. Using index 0 to denote the primary waveform/filter for 

compactness, the set of 1K   filter outputs from (14) can thus be combined with the 

received signal representation of (10) as 

( )
, look

0

noise, jam,

( , , ) ( ) ( , , , )

( ) ( )

K
j m n

i k i k

k

i i

z m n t a t x t e

v t v t

 

 

   



   

 


  for  0,1, 2, ,i K ,    (15) 
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in which , ( ) ( ) ( )k i i ka t h t s t   is the filter response to each of the 1K   waveforms, and 

noise, ( )iv t  and  jam, ( )iv t  are the ith filter responses to noise and jamming, respectively. 

The components in (15) for which i k  correspond to a range-focused response due to 

coherent integration while the components for which i k  produce a range smearing of 

the associated echo response look( , , , )kx t     that provides a useful homogenizing effect 

on the interference that is non-homogeneous in range. As with the SISO case, the filtered 

outputs are discretized and collected in like manner to the space-time steering vector in 

(6) to realize the snapshots prime( )z   and sec, ( )iz  for 1, 2, ,i K . 

Considering (15), with the ultimate goal of isolating the target echoes in look 

direction look  for Doppler frequencies D  parameterized by (5), it is evident that the 

emissions should be designed according to two criteria. First, in addition to the usual 

design considerations for the primary waveform (e.g. low range sidelobes, Doppler 

tolerance) the secondary waveform should be designed such that 

sec,

2

prime sec,
( )

min max ( ) ( )
k

k
s t

s t s t dt k


                                 (16) 

to minimize the peak cross-correlation between the primary waveform and each of the 

secondary waveforms so that the associated filter responses , ( )k ia t  in (15) provide some 

degree of separability in the waveform (range) domain. Because the cross-correlation 

response is in fact useful as a means to aggregate the interference in range, these 

secondary waveforms are constrained to be constant modulus and generally possess the 

same spectral footprint as the primary. Further, for the MIMO instantiation the secondary 
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waveforms must likewise adhere to the physical design requirements from Table I (e.g. 

via [36,37]).   

The second emission design goal is that 

prime look look sec, look look( , ) ( , )kb b k        ,                      (17) 

to either optimize or constrain the primary response to be much greater than the 

secondary responses in the look direction of the radar. This requirement provides 

separability of the primary and secondary responses in the spatial domain (at least in the 

look direction). As with the need for physical waveforms, these beampatterns are 

likewise limited to what can be physically achieved within the context of mutual coupling 

and non-ideal calibration. 

For example, Fig. 1 illustrates the primary and four secondary matched filter 

responses (per (16)) to an optimized primary waveform (implemented via the polyphase-

coded FM (PCFM) framework of [36,37] and having time-bandwidth product of 100). 

Where the primary (auto-correlation) response is focused in range, the secondary (cross-

correlation) responses are smeared in range with different sidelobe structures. Likewise, 

Fig. 2 depicts the standard primary beampattern (with look  at boresight) and a possible 

secondary beampattern that is omnidirectional (per (17)). 
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Fig. 1: Primary and secondary matched filter responses to an optimized primary 

waveform with BT = 100 

 

 
Fig. 2: Primary beampattern (for N = 8 antenna elements) and an omnidirectional 

secondary beampattern 

The K secondary filter outputs in (14) and (15) represent a new source of STAP 

training data that provide a diverse perspective on the collective interference response by 
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virtue of the waveform and spatial separability between the primary and secondary 

emissions with respect to the look direction. We denote this new training data 

formulation as Multi-Waveform (MuW) STAP, or simply -STAP. 

Leveraging the new training data, the baseline sample covariance matrix (SCM) of 

(1) can be modified in a couple different ways. First, a new SCM can be defined by 

supplementing (1) with secondary training data as 

prime

CUT

sec

CUT prime prime
prime

sec, sec,
sec 1

2

2
prime CUT sec, CUT

1

1ˆ ( ) ( ) ( )
( )

1
( ) ( )

( )

1ˆ ˆ( ) ( )

H

L

K
H

i i

i L

v

K

i v

i

n L

n L K

K











 









  



 



R z z

z z

I

R R I

.                     (18) 

Here prime( )n L  is the cardinality of the set primeL  for the primary data snapshots which 

excludes the CUT and guard cells, while  sec( )n L  is the cardinality of the set secL  for the 

secondary data snapshots that, in contrast, can contain the CUT and surrounding guard 

cells. The inclusion of the CUT and guard cells in the secondary training data is valid 

because of the separability achieved through proper waveform and beampattern design 

via (16) and (17) that serves to diminish the relative power of mainbeam targets of 

interest (generally of lower power) within the secondary data while also capturing the 

specific interference (typically of much higher power) present in the CUT. By using (18) 

to replace the SCM in (7), the -STAP filter is formed. 

Alternatively, the secondary training data could be used without the primary as 
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sec

2
,NP CUT sec, sec,

sec 1

2
sec, CUT

1

1ˆ ( ) ( ) ( )
( )

1 ˆ ( )

K
H

i i v

i L

K

i v

i

n L K

K

 



 



 

 

 



R z z I

R I

,                 (19) 

where the subscript ‘NP’ denotes no primary data is used. Likewise, using (19) to replace 

the SCM in (7) results in a version of the -STAP filter that is based only on the 

secondary training data. Note that the primary data portion of the SCM in (18) is not 

scaled with respect to the number of additional secondary training data sets K. If it were, 

then increasing K would simply converge towards the NP version in (19). Here we shall 

address the two SCM forms in (18) and (19), though whether there is an optimum scaling 

among the various primary and secondary components remains an open question (the 

analysis in Section III may shed further light on the matter). Of course, such an 

optimality condition is likely to be an intrinsic function of the echo responses primez  and 

sec,iz  for 1, 2, ,i K , which are not known a priori. 

It is worth mentioning that, even though it does not use the primary training data, the 

SCM in (19) is capable of cancelling mainbeam clutter despite the secondary emissions 

having transmit beampatterns with little/no gain in direction look . The reason for this 

effect is that the primary waveform / secondary filter cross-correlations in (14) and (15), 

and exemplified in Fig. 1, still serve to capture the mainbeam clutter response. Further, 

while not considered here, robust STAP processors (e.g. [7,8,10-30]) such as data-

adaptive censoring/scaling of training data could likewise be extended to incorporate this 

new secondary training data. 
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C) SIMO -STAP 

The SIMO instantiation of the -STAP formulation is essentially a special case of the 

MIMO version in which sec, 0kP   for 1, 2, ,k K . In other words, only the primary 

waveform is actually emitted which, without the need to divert power to transmit the 

secondary waveform(s), therefore achieves the maximum mainbeam power and thus the 

maximum receive SNR for any illuminated targets in the mainbeam. From a transmit 

perspective, the SIMO formulation is identical to the standard SISO framework. 

For the SIMO case, the received signal from (9) and (10) now becomes 

( )
prime look

noise jam

( )
prime prime look

noise jam

( , , ) ( , , ) ( , , )

( ) ( )

( ) ( , , , )

( ) ( )

j m n

j m n

y m n t s t x t e

v t v t

s t x t e

v t v t

 

 

 

 

   

  





   

 

   

 




,                  (20) 

which is the response to the primary emission alone (i.e. same as the SISO case). 

However, the bank of filters from (14) is still applied so that the filter outputs from (15), 

again using index 0 to denote the primary waveform/filter for compactness, now yield 

( )
0, 0 look

noise, jam,

( , , ) ( ) ( , , , )

( ) ( )

j m n
i i

i i

z m n t a t x t e

v t v t

 

 

      

 


  for  0,1, 2, ,i K .    (21) 

Thus, the secondary filter outputs consist only of range-smeared versions of the echoes 

generated by the primary emission, thereby still providing homogenized secondary 

training data to implement SCM estimation via (18) or (19), albeit without the loss of 

primary mainbeam power otherwise needed to generate secondary MIMO emissions. 
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It is interesting to note that the SIMO μ-STAP approach bears some similarity to the 

notion of a data-adaptive de-emphasis factor as described in [12-15,19] in so far as the 

unfocused secondary data provides much less signal gain on any single range cell such 

that targets in the secondary training data produce little self-cancellation degradation 

(though those previous approaches focused on how to modify the existing sample data, 

whereas μ-STAP non-adaptively produces additional sets of training data). Likewise, 

SIMO μ-STAP can also be viewed as being related to multi-resolution STAP approaches 

such as those in [45,46] that leverage high-resolution SAR imaging to generate low-

resolution GMTI training data (the analogy to μ-STAP is the range smearing of training 

data via the cross-correlation of the primary waveform and the secondary filters as in Fig. 

1). 

III. ANALYSIS OF -STAP COVARIANCE ESTIMATION 

Because it is not necessarily obvious that -STAP should provide a good estimate of 

the interference covariance matrix for the CUT, we analytically examine this covariance 

matrix under the condition of homogeneous clutter in noise. For simplicity we first 

restrict attention to the SIMO response of (21), comparing the resulting theoretical 

covariance matrix arising from secondary filtering to that based on primary filtering such 

as in the standard SISO case, and then likewise consider the MIMO response of (15). The 

impact of non-homogeneous interference is then examined relative to the homogenous 

cases as a result of primary and secondary SCM estimation as part of (18) and (19). 

A) SIMO Covariance Matrix Analysis 
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Applying the ith matched filter to the received signal of (20) yields (21) which, after 

collecting the NM channels and using (6), can be expressed as  

0, 0 look st

noise, jam,

0 look 0, st

noise, jam,

( ) ( ) ( , , , ) ( , )

( ) ( )

( , ) ( ) ( , , ) ( , )

( ) ( )

i i

i i

i

i i

t a t x t

t t

b a t x t

t t

 

 

    

     

   

 

   

 





z c

v v

c
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.                        (22) 

In the lower portion of (22) we have separated the primary transmit beampattern from the 

scattering and the bar above the noise and jamming terms indicate they have been filtered 

by ( )ih t . 

Assuming stationarity, the SIMO space-time covariance matrix for (22) is  

(SIMO) ( ) ( )H
i i iE t t 

 
R z z ,                                           (23) 

which, for i =0, is identical to that for standard SISO STAP. Inserting (22) into (23) and 

assuming that every clutter patch is statistically independent (likewise for barrage 

jamming and noise) with no targets present, and taking the expectation, results in 

2 2 2(SIMO)
0 look 0, st st

noise, jam,

( , ) ( ) ( , , ) ( , ) ( , )H
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which simplifies to 

2 22(SIMO)
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22 

for pulsewidth T. In (25) the term 

22
clut ( , ) ( , , )E x t                                                 (26) 

is the expected clutter power as a function of Doppler and angle (coupled due to platform 

motion), and the noise and jamming terms have been generalized as noise, noisei R R  and 

jam, jami R R , respectively, since pulse compression would not affect their space-time 

properties.   

For the primary receive filter (i = 0), the matched filter response 0,0( )a t  is generally 

designed to possess a narrow mainbeam (for the given time-bandwidth product) and low 

range sidelobes. Thus, it is typically assumed (e.g. [3]) that 0,0( )a t  can be replaced by an 

impulse function ( )t . In so doing, (25) further simplifies to the SISO covariance matrix 

(SISO) (SIMO)
0

2 2
0 look st stclut

noise jam

( , ) ( , ) ( , ) ( , )
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R R

c c
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.               (27) 

Note that the result in (27) is realized by setting 

2 2

0,0( ) ( ) 1

T T

T T

a t dt t dt

 

   .                                      (28) 

In contrast, the SIMO covariance matrix for the data produced by a secondary filter 

( 0i  ) cannot be further simplified beyond (25) since the structure of the cross-

correlation 0, ( )ia t  is arbitrary. However, based on Monte Carlo trials using physical 

Frequency Modulated (FM) waveforms (derived from [36,37]) and shown in Appendix 
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A), it can be inferred that the final unity condition in (28) is relatively well approximated 

if the secondary matched filters correspond to waveforms possessing at least a modest 

time-bandwidth product (> 20, which is easily achieved) and possess the same physical 

traits as the primary waveform (i.e. constant modulus, continuous, well-contained 

spectrally, same pulsewidth). While the extent of design freedom for these secondary 

filters is still being explored, the above analysis demonstrates that their output provides a 

valid source of STAP training data, even when combined as in (18) and (19) since the 

relative scaling is small. 

B) MIMO Covariance Matrix Analysis 

For the MIMO emission scheme the data vector representation of (22) can be 

generalized using (15) as 
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where 

look look ,

0

( , , ) ( , ) ( )
K

i k k i

k

g t b a t   


                                     (30) 

is, by linearity, the aggregation of the 1K   transmit beamformed responses to the ith 

pulse compression filter. The term in (30) could likewise be expressed as 

look look

0

( , , ) ( ) ( , ) ( )
K

i i k k

k

g t h t b s t   


 
  

 
 ,                              (31) 
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using , ( ) ( ) ( )k i i ka t h t s t  , where the bracketed term in (31) is the far-field superposition 

of the 1K   emitted waveforms weighted by their respective beampatterns as a function 

of spatial angle. 

Again assuming stationarity and statistical independence, the MIMO space-time 

covariance matrix for (29) is found to be 

(MIMO)

2 2
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noise jam

22
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Unlike the SIMO and SISO cases in (25) and (27), respectively, in which the transmit 

beamforming component is separable from the emitted waveform, the integral term in the 

MIMO covariance matrix of (32) is a non-separable function of the waveforms and their 

beampatterns that arise from the combination in (31).  As such, greater design freedom 

exists that may be exploited to discriminate non-homogeneous clutter from moving 

targets. The degree to which there is utility in this trade-off of mainbeam power for 

greater sidelobe illumination for non-homogeneous interference cancellation remains to 

be seen, particularly given the system modifications necessary for MIMO compared to 

the rather minor modifications for the SIMO mode. 
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C) SIMO/MIMO -STAP SCM Analysis 

Incorporating the SIMO, SISO, and MIMO analytical covariance matrices from (24), 

(27), and (32), respectively, into the associated primary and secondary SCM components 

from (18) and (19), along with the inclusion of non-homogeneous interference, reveals 

the true utility of the -STAP approach. Using (24), the expectation of the secondary 

SIMO SCM when non-homogeneous interference is present is thus 
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where 
2
NH ( , , )t    is the power of the non-homogeneous scattering as a function of 

continuous time delay, angle, and Doppler, and sampT  is the sampling period. Likewise, 

again using the approximation of the primary filter response to the primary waveform as 

an impulse function [3], the expectation of the primary (SISO) SCM via (27) is  
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The SISO SCM of (34) illustrates why contaminating targets in the training data can 

be problematic, since the 
2
NH ( , , )t    term can lead to self-cancellation if corresponding 

to a target in the CUT with similar   and  . In contrast, the same target response in (33) 

is smeared over multiple range cells and is de-emphasized by the cross-correlation 
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response 
2

0, ( )ia t . Further, while a clutter discrete in the CUT would be similarly 

smeared and de-emphasized in the secondary SCM of (33), the result is still an 

improvement over the primary SCM of (34) that excludes the clutter discrete altogether 

since the CUT snapshot is not included in the primary SCM. 

Using (32), the expectation of the MIMO SCM for primary and secondary filtering is  
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  (35) 

for secL L  when 1, 2, ,i K  and primeL L  with CUT  when 0i  . Clearly, the 

relationship between the secondary waveforms and beampatterns relative to the primary 

waveform and beampattern determines, via 
2

look( , , )ig t   , how non-homogeneous 

interference in the CUT is represented in the SCM. In the following section it is 

demonstrated that a modest enhancement in SINR (even accounting for loss of primary 

mainbeam power) can be achieved under conditions of non-homogeneous interference for 

a simple MIMO emission scheme. The optimization of the secondary MIMO emissions 

(waveforms and associated beampatterns) and their associated receive filtering to 

maximize SINR (or perhaps some alternative metric) for GMTI in arbitrary non-

homogeneous interference is left for later investigation. From a cognitive sensing 

perspective, it may also be possible to make these secondary emissions adaptive to the 

observed interference environment. 
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IV. SIMULATION RESULTS 

Based on the model in [3], consider an airborne side-looking radar with no crab angle, 

 = 1, and look direction of look 0   . The receive array is comprised of 8N   uniform 

linear elements and the CPI consists of 16M   pulses, so that 128NM  . The specific 

manner in which the secondary emissions are generated for the MIMO mode (i.e. 

implementation of sub-arrays/separate apertures with associated platform and mutual 

coupling effects) is not considered here. The signal/clutter model used here is relatively 

simple and serves the purpose of evaluating the impact of the various -STAP training 

data configurations to specific forms of interference non-homogeneity in a controlled 

manner. Separate work is investigating the prospective performance benefits on measured 

data. 

The MIMO emission consists of a primary waveform and four secondary waveforms 

( 4K  ) having time-bandwidth product BT = 100. The specific waveforms employed 

here are those whose response to the primary matched filter was shown in Fig. 1. The 

implementation and specific coding for the generation of these physical waveforms is 

taken from [36,37] and described in Appendix B. The SISO/SIMO emission is simply the 

primary beampattern in Fig. 2 while the secondary emission for the MIMO case consists 

of only the k = 1 secondary waveform using the omnidirectional beampattern illustrated 

in Fig. 2. It was previously shown in [1] that a spatial null could also be formed for the 

secondary beampattern in the direction of the primary mainbeam. It is expected that the 

need for additional secondary beams would only be warranted (given the additional loss 

to primary mainbeam power) if prior knowledge were available regarding known clutter 
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effects (e.g. a collection of sidelobe discretes) relative to the mainbeam direction, for 

which another more focused secondary beam could be beneficial. 

In [1] it was shown that the homogenization effect of this new secondary data 

provides enhanced detection and false alarm performance in non-homogeneous 

environments. Here the impact to SINR is evaluated. From [4] we shall use the SNR-

normalized SINR metric 

2
2 1

st st prime

1 1
totalst o st

ˆ( , ) ( , )SINR

ˆ ˆSNR ( ) ( , ) ( , )

H
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,                      (36) 

where 2
v  is the noise power, oR  is the true clutter covariance for the CUT, and R̂  is 

the estimated SCM using some combination of training data (denoted in Table II). 

Relative to [4], the additional power ratio included in (36) represents the loss in the 

primary mainbeam for the MIMO emission ratio and is 1 for the SIMO/SISO case and is 

equal to 0.93 (‒0.3 dB) for the secondary MIMO emission considered here. From (36) the 

(SNR-normalized) optimal SINR is 
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c R c ,                                (37) 

which is obtained when o
ˆ R R . The ratio of (36) for either SIMO/SISO or MIMO to 

(37) for the SISO/SIMO condition provides the SINRo normalized result  
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which we shall use to evaluate performance as a function of sample support that likewise 

accounts for the primary mainbeam power loss for the MIMO emission.  Specifically, the 

value  

D

o,SIMO D

SINR( )
min

SINR ( )





 
 
  

                                              (39) 

is determined as the worst-case performance for each scenario as a function of the 

amount of training data according to the particular Doppler steering vectors of (6) and 

excluding the clutter notch. Here the clutter notch is conservatively defined to be the 

Doppler interval in which 

o,SIMO DSINR ( )
0.5 dB

SNR


                                             (40) 

to avoid misrepresentative results at the edge of the notch. All the results considered are 

for the look direction look  . 

From [3], we also consider the minimum detectable Doppler which is defined as 

 min U L

1
(SINR) (SINR)

2
f f f                                       (41) 

where L(SINR)f  and U (SINR)f  demarcate the Doppler frequencies above and below the 

mainlobe clutter notch at which the designated value of SINR loss is attained. The minimum 

detectable velocity (MDV) can be directly obtained by multiplying this Doppler frequency by a 

half wavelength [3]. Thus the percent change in MDV, relative to that obtained for the standard 

SISO training data, can be determined as 

min min

min

new SISO 
% MDV change 100%

SISO 

f f

f

 
  
 

.                         (42) 
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To represent the continuous environment, the received signal descriptions of (2), (9), 

(10), and (20), along with the matched filters to be applied in (3) and (14), are “over-

sampled” by a factor of 5 relative to the nominal 3-dB range resolution (the Nyquist 

criterion cannot be met for an ideal pulse that has theoretically infinite bandwidth). After 

the pulse compression stage of (3) or (14), each channel is decimated (lowpass filtered 

and downsampled) in range by 5 to obtain independent training data snapshots (from a 

primary data perspective). 

From the five different channels of pulse compression filtered output via (14) there 

are multiple combinations of training data that could be used to obtain the SCM estimates 

of (1), (18), or (19) for both the SIMO and MIMO emission schemes. We shall show nine 

SINR performance curves, as indicated in Table II, for each interference scenario for both 

the SIMO and MIMO emission schemes. While these plots are rather busy, the point is to 

illustrate the impact of incorporating each additional channel of training data, with and 

without the inclusion of primary data. For each interference scenario tables are also 

provided to highlight selected performance comparisons in terms of SINR and MDV.   

 

TABLE II.  COMBINATIONS OF TRAINING DATA FOR SINR ANALYSIS 
Training data used Line style/color 
primary solid blue 
primary, secondary k=1 solid green 
primary, secondary k=1,2 solid red 
primary, secondary k=1,2,3 solid teal 
primary, secondary k=1,2,3,4 solid purple 
secondary k=1 dashed green 
secondary k=1,2 dashed red 
secondary k=1,2,3 dashed teal 
secondary k=1,2,3,4 dashed purple 
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Since the secondary snapshots do not provide independent data, the convergence is 

depicted in terms of the number of range sample intervals. For example, NM snapshots 

for the ‘primary-only’ case would translate to 5NM snapshots for the ‘primary + 4 

secondary’ case, with both having the same (NM) range sample intervals. As such, even 

though the CUT snapshot need not be excised from the secondary training data, it is for 

these results so that a commensurate number of range sample intervals can be portrayed 

for each of the training data cases in Table II. 

A) Homogeneous Clutter 

The simulated noise is complex white Gaussian. The clutter is generated by dividing 

the range ring in azimuth into 136 equal-sized angle clutter patches, with the scattering 

from each patch being i.i.d. complex Gaussian. This spatial clutter distribution is 

weighted by the transmit beampattern and scaled such that, following coherent 

integration (pulse compression, beamforming, and Doppler processing) without clutter 

cancellation, the aggregate received clutter-to-noise ratio (CNR) is ~59 dB.   

Figures 3-6 show the SNR-normalized (37) and worst-case SINR (39) results for the 

MIMO and SIMO emissions. Little difference is observed between the MIMO and SIMO 

cases for this scenario, with MIMO generally being at about a 0.2 dB disadvantage in the 

worst-case assessment, which arises from the power diverted from the primary mainbeam 

to enable the secondary emission. It is worth noting that convergence (as a function of 

sample intervals) increases rapidly as additional sources of training data are incorporated, 

though each successive new source of training data provides diminishing improvement. 

This result is to be expected since each filter response provides a different mixture (in 
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range) of the same echo response surrounding the CUT demarcated by the extent of the 

auto/cross-correlations in range.  

 
Fig. 3: SNR-normalized SINR for homogeneous clutter (MIMO) 
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Fig. 4: Worst-case SINRo-normalized SINR for homogeneous clutter (MIMO) 

 
Fig. 5: SNR-normalized SINR for homogeneous clutter (SIMO) 
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Fig. 6: Worst-case SINRo-normalized SINR for homogeneous clutter (SIMO) 

Per Table III, the case involving the MIMO emission using only the primary training 

data generally performs the worst (highlighted in red), though it is only marginally worse 

than standard SISO (i.e. SIMO primary only). The best MIMO configuration employs the 

‘primary + 4 secondary’ training data sets, achieving performance improvements relative 

to standard SISO of 1.7 dB, 0.6 dB, and 0.1 dB, respectively, for 0.5NM, NM, and 2NM 

range sample intervals. The best SIMO configuration is likewise the ‘primary + 4 

secondary’ training data sets with performance improvements relative to standard SISO 

of 1.9 dB, 0.8 dB, and 0.3 dB for 0.5NM, NM, and 2NM range sample intervals, 

respectively. The latter is also the best performing of those considered. It is interesting to 

note that both the SIMO and MIMO ‘k = 1 secondary’ cases (dashed green) yield SINR 

responses nearly identical to that of standard SISO. 
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TABLE III.  CONVERGENCE COMPARISON FOR HOMOGENEOUS CLUTTER 
(RED: WORST, GREEN: BEST MIMO, BLUE: BEST SIMO) 

Emission, training  0.5NM NM 2NM 

MIMO, prime ‒4.9 dB ‒3.1 dB ‒2.0 dB 
MIMO, prime + 1 sec. ‒3.3 dB ‒2.5 dB ‒1.7 dB 
MIMO, prime + 4 sec. ‒2.8 dB ‒2.2 dB ‒1.6 dB 
MIMO, 1 sec. ‒4.7 dB ‒3.0 dB ‒2.0 dB 
MIMO, 4 sec. ‒2.9 dB ‒2.3 dB ‒1.6 dB 

SIMO, prime (SISO) ‒4.5 dB ‒2.8 dB ‒1.7 dB 
SIMO, prime + 1 sec. ‒3.1 dB ‒2.3 dB ‒1.5 dB 
SIMO, prime + 4 sec. ‒2.6 dB ‒2.0 dB ‒1.4 dB 
SIMO, 1 sec. ‒4.7 dB ‒2.9 dB ‒1.9 dB 
SIMO, 4 sec. ‒2.7 dB ‒2.1 dB ‒1.4 dB 

 

The reason that the -STAP implementations using 2 or more sets of training data 

outperform the standard ‘primary only’ SISO case (solid blue) for this homogeneous 

clutter scenario is because the additional training data provides different mixtures of an 

extended segment of clutter samples due to the range-extended smearing (see Fig. 1). 

Given BT = 100 for all these waveforms and one sample per range cell (after down-

sampling as discussed before), the secondary responses capture nearly 2BT more clutter 

samples than the range-focused primary response. Accounting for this increased sample 

support for the SISO case (i.e. using 2NM + 2BT snapshots) would yield a value of   

oSINR/SINR 1.1 dB  , which upper bounds all of the -STAP implementations (and 

likewise for all the results to follow). If the nature of the clutter were to change 

significantly as a function of range (e.g. in a littoral environment) such that one would 

wish to avoid this range extension effect, then the problem becomes one of properly 

designing the secondary filters according to the resulting cross-correlation responses and 

then judiciously selecting the secondary training data that is produced. 

It is also interesting to consider the impact of these different sets of training data upon 

the minimum detectable velocity (MDV). Table IV provides comparisons of the 
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minimum detectable Doppler fmin from (41) for two different normalized SINR values, as 

well as the resulting percent change in MDV via (42). For the MIMO emission using only 

the primary training data, modest degradation in MDV is observed (note that the fmin 

values are already small). Using all four sets of secondary training data for the MIMO 

case then yields essentially the same performance as standard SISO. The SIMO case 

using ‘primary + 4 secondary’ training data sets does provide a minor MDV 

improvement, though again relative to already small fmin values. 

TABLE IV.  MDV COMPARISON FOR HOMOGENEOUS CLUTTER AT 2NM SAMPLE 

INTERVALS  (RED: WORST, GREEN: BEST) 

@ 3 dB SINR/SNR normalized fmin % MDV change 

SIMO, prime (SISO) 0.0855 0.0% 

SIMO, prime + 4 sec. 0.0810 
 

81 

‒5.3% 
 MIMO, prime 0.0935 

 

+9.4% 

MIMO, prime + 4 sec. 0.0855 0.0% 
 

@ 10 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.0325 0.0% 

SIMO, prime + 4 sec. 0.0320 ‒1.5% 
 MIMO, prime 0.0340 +4.6% 

MIMO, prime + 4 sec. 0.0330 +1.5% 

 

B) Non-Homogeneous Clutter 

To model non-homogeneous clutter [3], the power of the complex Gaussian 

homogeneous clutter patches is randomly modulated for each range/angle clutter patch 

based on a Weibull distribution with a shape parameter of 1.7 [47,48]. In addition to this 

‘local’ modulation, a ‘regional’ modulation is also imposed using an exponential 

distribution with  = 0.05 and applied independently to each region, which comprises an 

area of clutter patches corresponding to 10 range cells (“over-sampled” by 5 as discussed 

above) × 1/N angle segments (of the 136 in each range ring). The clutter in the particular 
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range swath that includes the CUT is increased by an additional 10 dB to ensure 

sufficient clutter power in the CUT after random assignment. The overall clutter response 

is normalized to maintain a consistent average clutter power. Internal clutter motion is 

also incorporated that is uniformly distributed on ±0.02 normalized Doppler for each 

clutter patch. This model is not necessarily a representation of a particular measured 

instantiation of non-homogeneous clutter but is used to indicate the STAP responses 

under significant variability in range, angle, and Doppler. 

Figures 7-10 illustrate the SNR-normalized SINR (37) and the worst-case SINR (39) 

for the MIMO/SIMO emissions and the different sets of training data. As a function of 

Doppler, Figs. 7 and 9 show the expected wider clutter notch, as compared to the 

homogeneous clutter case from Figs. 3 and 5, which results from internal clutter motion. 

Overall, slower convergence is observed for the non-homogeneous clutter case compared 

to homogeneous clutter, particularly for the ‘primary only’ training data, though the use 

of secondary data reduces the gap. As expected [5], much more training data is required 

for non-homogeneous clutter to attain the same SINR performance as the homogeneous 

clutter case. 
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Fig. 7: SNR-normalized SINR for non-homogeneous clutter (MIMO) 

 

 
Fig. 8: Worst-case SINRo-normalized SINR for non-homogeneous clutter (MIMO) 
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Fig. 9: SNR-normalized SINR for non-homogeneous clutter (SIMO) 

 

 
Fig. 10: Worst-case SINRo-normalized SINR for non-homogeneous clutter (SIMO) 
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Per Table V, the MIMO emission now provides an enhancement over SIMO for all 

training data sets, with the ‘primary + 4 secondary’ MIMO case providing 3.1 dB, 2.3 

dB, and 1.4 dB improvement over ‘primary only’ SIMO (standard SISO) at 0.5NM, NM, 

and 2NM range sample intervals, respectively. The ‘primary + 4 secondary’ SIMO case 

comes in a close second with 2.5 dB, 1.6 dB, and 1.0 dB improvement over ‘primary 

only’ SIMO (standard SISO) at the same range sample intervals. In Table VI an MDV 

enhancement is also observed for each of the implementations relative to standard SISO. 

The most significant improvement is obtained with the MIMO ‘primary +4 secondary’ 

case, while the SIMO ‘primary +4 secondary’ case is again in second place. 

TABLE V.  CONVERGENCE COMPARISON FOR NON-HOMOGENEOUS CLUTTER 
(RED: WORST, GREEN: BEST MIMO, BLUE: BEST SIMO) 

Emission, training  0.5NM NM 2NM 

MIMO, prime ‒10.2 dB ‒8.1 dB ‒6.1 dB 
MIMO, prime + 1 sec. ‒8.1 dB ‒6.8 dB ‒5.4 dB 
MIMO, prime + 4 sec. ‒7.4 dB ‒6.3 dB ‒5.1 dB 
MIMO, 1 sec. ‒10.1 dB ‒7.7 dB ‒6.2 dB 
MIMO, 4 sec. ‒7.5 dB ‒6.4 dB ‒5.2 dB 

SIMO, prime (SISO) ‒10.5 dB ‒8.6 dB ‒6.5 dB 
SIMO, prime + 1 sec. ‒8.9 dB ‒7.5 dB ‒5.9 dB 
SIMO, prime + 4 sec. ‒8.0 dB ‒7.0 dB ‒5.5 dB 
SIMO, 1 sec. ‒11.0 dB ‒8.7 dB ‒6.9 dB 
SIMO, 4 sec. ‒8.2 dB ‒7.1 dB ‒5.7 dB 

TABLE VI.  MDV COMPARISON FOR NON-HOMOGENEOUS CLUTTER AT 2NM SAMPLE 

INTERVALS  (RED: WORST, GREEN: BEST) 

@ 7 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1655 0.0% 

SIMO, prime + 4 sec. 0.1550 ‒6.3% 
 MIMO, prime 0.1595 ‒3.6% 
 MIMO, prime + 4 sec. 0.1475 ‒10.9% 
  

@ 10 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1220 0.0% 

SIMO, prime + 4 sec. 0.1185 ‒2.9% 
 MIMO, prime 0.1195 ‒2.0% 
 MIMO, prime + 4 sec. 0.1145 ‒6.1% 
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C) Clutter Discrete in CUT 

Another form of non-homogeneous interference occurs when a clutter discrete resides 

in the CUT (with no similar responses in surrounding training data) [6]. Here, we 

consider the case of such a discrete that is 20 dB above the average response of the other 

clutter patches and arrives in the mainbeam direction. The remainder of the clutter is 

otherwise non-homogeneous as described in the previous section. Thus, the interference 

in the CUT is different from that in the surrounding primary (SISO) training data, thereby 

resulting in uncancelled clutter. Figures 11-14 show the SNR-normalized SINR and 

worst-case SINR for the MIMO/SIMO emissions for non-homogeneous clutter with a 

clutter discrete in the CUT. The results are qualitatively the same as Figs. 7-9, albeit with 

a further SINR degradation of 1 to 4 dB depending on the training data being used. 

 
Fig. 11: SNR-normalized SINR for large clutter discrete in CUT (MIMO) 
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Fig. 12: Worst-case SINRo-normalized SINR for large clutter discrete in CUT (MIMO) 

 
Fig. 13: SNR-normalized SINR for large clutter discrete in CUT (SIMO) 
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Fig. 14: Worst-case SINRo-normalized SINR for large clutter discrete in CUT (SIMO) 

 

From Table VII, the ‘primary + 4 secondary’ data for both MIMO and SIMO cases 

demonstrate enhanced performance relative to SISO. The former yielding an 

improvement of 4.6 dB, 3.3 dB, and 2.2 dB and the latter 4.1 dB, 3.2 dB, and 2.0 dB 

improvement at 0.5NM, NM, and 2NM range sample intervals, respectively. Likewise, in 

Table VIII it is shown that both of these training data sets provide a marked reduction in 

MDV, which is really due to less MDV degradation for these cases relative to the 

previous scenario when the clutter discrete was absent. 
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TABLE VII.  CONVERGENCE COMPARISON FOR NON-HOMOGENEOUS CLUTTER + 

CLUTTER DISCRETE  (RED: WORST, GREEN: BEST MIMO, BLUE: BEST SIMO) 
Emission, training  0.5NM NM 2NM 

MIMO, prime ‒14.3 dB ‒12.2 dB ‒10.1 dB 
MIMO, prime + 1 sec. ‒11.0 dB ‒9.6 dB ‒8.0 dB 
MIMO, prime + 4 sec. ‒10.0 dB ‒9.2 dB ‒7.8 dB 
MIMO, 1 sec. ‒13.1 dB ‒10.6 dB ‒8.9 dB 
MIMO, 4 sec. ‒10.2 dB ‒9.3 dB ‒8.0 dB 

SIMO, prime (SISO) ‒14.6 dB ‒12.5 dB ‒10.0 dB 
SIMO, prime + 1 sec. ‒11.6 dB ‒10.0 dB ‒8.3 dB 
SIMO, prime + 4 sec. ‒10.5 dB ‒9.3 dB ‒8.0 dB 
SIMO, 1 sec. ‒13.5 dB ‒11.0 dB ‒9.3 dB 
SIMO, 4 sec. ‒10.6 dB ‒9.4 dB ‒8.2 dB 

 

TABLE VIII.  MDV COMPARISON FOR NON-HOMOGENEOUS CLUTTER +                   

CLUTTER DISCRETE AT 2NM SAMPLE INTERVALS   (RED: WORST, GREEN: BEST) 

@ 8 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1980 
0.158 

0.0% 

SIMO, prime + 4 sec. 0.1580 ‒20.2% 
 MIMO, prime 0.1965 ‒0.8% 
 MIMO, prime + 4 sec. 0.1515 ‒23.5% 
  

@ 10 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1455 0.0% 

SIMO, prime + 4 sec. 0.1315 ‒9.6% 
 MIMO, prime 0.1420 ‒2.4% 
 MIMO, prime + 4 sec. 0.1280 ‒12.0% 
  

D) 10 Targets in Training Data 

The final case considers the impact of 10 targets of 15 dB SNR (and random 

independent phase responses) in the training data with normalized Doppler of 0.5. These 

targets reside in the first 10 training data samples and, being of modest SNR within non-

homogeneous clutter as described earlier, may not be easily found by non-homogeneity 

detection. The purpose of this evaluation is to ascertain the degree of self-cancellation 

that occurs for the various SIMO and MIMO -STAP training data formulations since the 
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cross-correlation “smearing” would ensure these target responses are incorporated into all 

the surrounding secondary training data samples.  

Whereas the previous case involving a CUT clutter discrete realized degradation 

across all Doppler, Figs. 15-18 show that all the different combinations of training data 

exhibit an SINR loss at the associated targets’ Doppler. The SCMs based on secondary 

data still outperform the standard SISO case formed only from primary data. Further, 

unlike the previous three scenarios, both MIMO and SIMO results for this case reveal 

that the exclusion of primary data from the SCM (previously referred to as the ‘no 

primary’ -STAP configurations of (19)) is preferable from an SINR standpoint due to 

contamination of the training data (which is lessened in the smeared secondary data).  

 
Fig. 15: SNR-normalized SINR for large target in training data (MIMO) 
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Fig. 16: Worst-case SINRo-normalized SINR for large target in training data (MIMO) 

 
Fig. 17: SNR-normalized SINR for large target in training data (SIMO) 
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Fig. 18: Worst-case SINRo-normalized SINR for large target in training data (SIMO) 

 

Now the MIMO emission using ‘4 secondary (no primary)’ filters provides the best 

performance with an improvement of 6.0 dB, 3.5 dB, and 2.1 dB over the ‘primary only’ 

SIMO case (standard SISO) at 0.5NM, NM, and 2NM range sample intervals, 

respectively, according to Table IX.  The MIMO ‘primary + 4 secondary’ case is the next 

best, followed close behind by the SIMO ‘4 secondary (no primary)’ case. The MDV 

results for this scenario shown in Table X are quite similar to those observed for non-

homogeneous clutter, with the different -STAP training data sets providing an 

improvement relative to the SISO training data. 
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TABLE IX.  CONVERGENCE COMPARISON NON-HOMOGENEOUS CLUTTER + 10 

TRAINING DATA TARGETS  (RED: WORST, GREEN: BEST MIMO, BLUE: BEST SIMO) 
Emission, training  0.5NM NM 2NM 

MIMO, prime ‒15.9 dB ‒12.1 dB ‒8.7 dB 
MIMO, prime + 1 sec. ‒12.6 dB ‒10.2 dB ‒7.5 dB 
MIMO, prime + 4 sec. ‒11.1 dB ‒9.4 dB ‒7.1 dB 

MIMO, 1 sec. ‒12.6 dB ‒10.2 dB ‒7.9 dB 
MIMO, 4 sec. ‒10.5 dB ‒9.2 dB ‒7.1 dB 

SIMO, prime (SISO) ‒16.5 dB ‒12.7 dB ‒9.2 dB 
SIMO, prime + 1 sec. ‒13.6 dB ‒11.1 dB ‒8.1 dB 
SIMO, prime + 4 sec. ‒12.0 dB ‒10.2 dB ‒7.6 dB 

SIMO, 1 sec. ‒13.8 dB ‒11.1 dB ‒8.7 dB 
SIMO, 4 sec. ‒11.4 dB ‒9.9 dB ‒7.5 dB 

 

TABLE X.  MDV COMPARISON FOR NON-HOMOGENEOUS CLUTTER + 10 TRAINING 

DATA TARGETS AT 2NM SAMPLE INTERVALS  (RED: WORST, GREEN: BEST) 

@ 7 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1715 0.0% 

SIMO, prime + 4 sec. 0.1600 ‒6.7% 
 MIMO, prime 0.1650 ‒3.8% 
 MIMO, prime + 4 sec. 0.1530 ‒10.8% 
  

@ 10 dB SINR/SNR normalized fmin % change from SISO 

SIMO, prime (SISO) 0.1285 0.0% 

SIMO, prime + 4 sec. 0.1235 ‒3.9% 
 MIMO, prime 0.1250 ‒2.7% 
 MIMO, prime + 4 sec. 0.1205 ‒6.2% 
  

 

 

It is worth noting, since the secondary filters produce a smearing in range, that the 

case in which the target is in the CUT can exhibit some SINR degradation for the various 

-STAP implementations relative to standard SISO STAP (for which the CUT snapshot 

is excluded from the SCM). For the STAP parameterization considered here with 

homogeneous clutter and the given set of secondary filters, it has been found that if the 

target SNR exceeds about 22 dB then the SISO case and the SIMO cases that include the 

primary data yield effectively the same worst-case SINR performance (via (39)) when 

2NM range sample intervals of training data are used for SCM estimation (with 
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commensurate performance for the MIMO instantiation). If the CUT target SNR is higher 

still, then the addition of further secondary training data channels in the SCM induces 

further SINR losses to a modest degree.  

For example, if the target in the CUT has a 30 dB SNR, then up to 1.8 dB of SINR 

degradation occurs when all four secondary filters are used, though this amount of loss on 

a 30 dB target response is not all that significant. However, this example highlights the 

difference one would obtain from using -STAP training data relative to the standard 

primary training data. Of course, when targets in the training data have sufficient SNR, 

non-homogeneity detection can be employed to excise/de-emphasize the associated 

training data snapshots. Such an approach may likewise be employed for the new form of 

secondary training data described here through some variant of the CLEAN algorithm 

[49]. 

 

CONCLUSIONS 

A multi-waveform variant of STAP, denoted as μ-STAP, has been proposed that 

provides additional training data obtained from secondary pulse compression filters that 

may or may not actually correspond to waveforms that have been transmitted. In a 

MIMO instantiation, low-power secondary waveforms having low cross-correlation with 

the primary (traditional GMTI) waveform are emitted, with the stipulation that the 

secondary beampatterns have low gain in the direction of the primary mainbeam. This 

requirement serves to maximize the separability of the clutter generated by the primary 

and secondary emissions, thus enhancing suppression of non-homogeneous interference 

in the spatial sidelobes while maintaining sufficient cancellation of mainlobe clutter for 

target detection.  
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Alternatively, a SIMO instantiation is also proposed in which only the primary 

waveform is emitted yet the secondary filters are still applied to the received signal. This 

SIMO mode thus requires no hardware/antenna modification to the radar system. In both 

the MIMO and SIMO cases the additional training data from the secondary filters 

provides a range-smeared response for the mainbeam clutter that serves to improve 

robustness to non-homogeneous clutter, clutter discretes, and targets in the training data. 

Ongoing work is exploring how existing robust STAP implementations could incorporate 

these secondary training data sets. 

 

APPENDIX A: MONTE CARLO OF WAVEFORM CROSS-CORRELATIONS 

We evaluate the integral 
2

0, ( )

T

i

T

a t dt



  from (25) for arbitrary FM waveforms by 

leveraging the PCFM implementation from [36,37] in which an arbitrary polyphase code 

is used to define a constant modulus, continuous, and spectrally well-contained FM 

waveform amenable for high-power emissions. As such, characterization of the cross-

correlation response using such waveforms provides an accurate representation of 

possible performance for practical waveforms. 

For each Monte Carlo trial, two waveforms are generated from independent length 

codeN  sequences of phase-change parameters   randomly drawn according to a uniform 

distribution in the interval [ , ]  , where codeN  closely approximates the time-

bandwidth product [36]. Here, time-bandwidth products (BT) of 20, 50, 100, 150, and 

200 are considered. For each trial, the normalized cross-correlation (by BT and the “over-

sampling” factor relative to 3 dB bandwidth) is evaluated in terms of integrated cross-
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correlation sidelobe response 
2

0, ( )
T

iT
a t dt

  such as appears in (25) and (33). A Monte 

Carlo aggregated peak cross-correlation sidelobe response from (16) is also shown to 

provide insight into waveform separability as a function of BT. 

Figure 19 illustrates the results of the Monte Carlo trials for integrated cross-

correlation, which is observed to become more tightly bound to unity as BT increases, 

thus ensuring that secondary training data provides an estimate of the covariance matrix 

commensurate with that of the primary training data. Figure 20 also shows the peak 

cross-correlation sidelobe responses for the different BT values. As expected, the trend 

shows the peak response decreasing in general with increasing BT. Note that these 

waveforms were randomly generated so that a lower peak response would be expected if 

actual optimization of the metric in (16) were performed. 
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Fig. 19: Integrated cross-correlation response – Monte Carlo results 
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Fig. 20: Peak cross-correlation response – Monte Carlo results 

 

APPENDIX B: IMPLEMENTATION OF PHYSICAL WAVEFORMS 

The 1 5K    waveforms with BT = 100 used in the simulation results are based on 

the PCFM implementation described in [36,37] that enables the generation of arbitrary 

FM waveforms amenable to the physical requirements of a high-power radar. The 

implementation scheme is rather straightforward as demonstrated by the Matlab
TM

 

function provided in Table XI (note that this is a first-order implementation [36] and 

additional variants have also been developed [50,51]). 
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TABLE XI.  MATLAB
TM

 FUNCTION TO IMPLEMENT A FIRST-ORDER PCFM WAVEFORM 

     % alpha: code of phase-shifts, bound between  

     % over: “over-sampling” with respect to 3 dB bandwidth, generally  2 
 
function  s = PCFM(alpha,over) 
     Len = length(alpha);          % length of code 
     f = ones(over,1);          % define rectangular shaping filter 
     f = f. / sum(f) ;          % normalize shaping filter to integrate to unity 
     train = zeros (1,over*Len);          % define impulse train 
     train(1:over:end) = alpha;          % weight impulse train with code values 
     pfilt = filter(f,1,train);          % apply shaping filter to weighted impulse train 
     phi = filter(1,[1 -1],pfilt);          % integrate response from shaping filter 
     s = exp(j*phi);          % resulting complex baseband waveform 

 

The primary waveform has been optimized according to the ‘performance diversity’ 

approach [37] to yield a peak sidelobe level (PSL) of ‒44.4 dB. The 4K   secondary 

waveforms were selected as the four waveforms having the lowest cross-correlation with 

the primary waveform (via (16)) from among a set of 10,000 randomly generated 

polyphase codes and subsequent PCFM implementation. These waveforms have peak 

cross-correlations of ‒16.6, ‒16.4, ‒16.2, and ‒16.1 dB and integrated cross-correlations 

of 0.9, 1.1, 1.0, and 1.1, for k = 1, 2, 3, and 4, respectively.  

Since BT is well approximated by code length for PCFM [36], we use code 100N  . 

For 64Q   possible phase transitions drawn from a uniform sampling over the phase 

interval [ , ]  , the phase transition sequence can be expressed as 

1
2

1

n
n

q

Q
  

 
  

 
                       (43) 

with index [1, 2, , ]nq Q  such that 1q   corresponds to     and q Q  

corresponds to    . For the waveforms used here, ( )f t  is a rectangular shaping 

filter, the integration stage is implemented using a simple IIR filter with transfer function 

( ) / ( 1)H z z z  , and the waveforms are “over-sampled” by 5 with respect to their 3 dB 
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bandwidth (see Table XI). Based on the conversion in (43), the indices for these five 

waveforms are listed in Table XII. 

TABLE XII.  PHASE TRANSITION INDICES nq  TO IMPLEMENT BT = 100 PCFM 

WAVEFORMS FOR USE IN MIMO AND SIMO -STAP SIMULATIONS 

Primary waveform 

[1, 13, 12, 15, 18, 17, 20, 18, 20, 21, 21, 22, 22, 21, 23, 24, 23, 25, 23, 25, 24, 

25, 26, 26, 27, 26, 27, 26, 28, 27, 28, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 30, 

30, 31, 31, 31, 32, 32, 32, 33, 32, 33, 33, 33, 33, 34, 33, 35, 35, 35, 35, 35, 35, 

36, 35, 36, 37, 37, 37, 36, 38, 38, 39, 37, 40, 39, 38, 40, 39, 40, 41, 42, 40, 43, 

40, 43, 43, 44, 43, 44, 44, 47, 46, 47, 46, 49, 49, 55, 52, 64] 

Secondary waveform, k = 1 

[28, 41, 45, 55, 4, 6, 59, 30, 45, 54, 22, 55, 8, 56, 27, 12, 25, 24, 5, 60, 31, 5, 25, 

13, 1, 3, 64, 49, 46, 62, 10, 64, 9, 19, 6, 36, 31, 57, 54, 45, 48, 29, 1, 10, 45, 11, 

30, 23, 9, 20, 62, 53, 64, 57, 29, 62, 6, 3, 63, 4, 61, 16, 9, 30, 15, 62, 42, 60, 56,  

3, 35, 8, 50, 52, 58, 12, 33, 4, 2, 46, 60, 60, 13, 2, 43, 55, 52, 24, 63, 64, 48, 44, 

10, 6, 28, 19, 45, 2, 34, 40] 

Secondary waveform, k = 2 

[35, 54, 58, 55, 31, 55, 44, 41, 55, 22, 43, 58, 33, 38, 26, 14, 59, 46, 11,  7, 22, 

30, 24, 28, 60, 60, 2, 59, 50, 16, 39, 51, 50, 46, 59, 27, 47, 63, 29, 42, 9, 63, 18, 

51, 53, 62, 59, 14, 1, 26, 1, 39, 50, 55, 42, 7, 38, 12, 36, 55, 6, 37, 62, 30, 52, 

27, 3, 50, 2, 57, 64, 46, 23, 16, 26, 17, 31, 28, 6, 22, 23, 1, 63, 59, 8, 29, 54, 27, 

37, 54, 37, 39, 1, 53, 44, 45, 17, 25, 1, 63] 

Secondary waveform, k = 3 

[22, 17, 28, 10, 53, 56, 37, 3, 52, 48, 5, 63, 21, 24, 20, 51, 17, 11, 42, 41, 58, 45,    

10, 13, 27, 59, 7, 6, 2, 43, 53, 9, 2, 7, 8, 25, 62, 44, 17, 34, 45, 49, 12, 54, 38, 

16, 11, 50, 53, 57, 15, 24, 42, 19, 7, 44, 1, 29, 4, 61, 44, 62, 42, 59, 60, 5, 29, 7,    

27, 21, 15, 1, 21, 30, 1, 45, 26, 42, 57, 17, 8, 14, 18, 58, 2, 27, 10, 21, 52, 2, 12,    

21, 50, 60, 25, 53, 35, 6, 12, 61] 

Secondary waveform, k = 4 

[41, 55, 24, 2, 21, 60, 16, 23, 6, 42, 44, 3, 44, 40, 20, 27, 37, 55, 34, 38, 61, 22,    

31, 30, 50, 50, 54, 64, 60, 29, 44, 36, 2, 2, 7, 23, 19, 13, 26, 11, 47, 8, 14, 3, 14,    

29, 9, 39, 7, 56, 1, 13, 2, 50, 41, 15, 46, 42, 26, 51, 4, 63, 53, 59, 59, 6, 29, 28, 

58, 24, 30, 17, 40, 51, 12, 61, 2, 7, 14, 15, 11, 50, 15, 21, 2, 7, 64, 34, 31, 29, 

14, 29, 6, 41, 60, 41, 55, 34, 21, 6] 
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